JP2000306703A - Zinc oxide varistor - Google Patents

Zinc oxide varistor

Info

Publication number
JP2000306703A
JP2000306703A JP11112050A JP11205099A JP2000306703A JP 2000306703 A JP2000306703 A JP 2000306703A JP 11112050 A JP11112050 A JP 11112050A JP 11205099 A JP11205099 A JP 11205099A JP 2000306703 A JP2000306703 A JP 2000306703A
Authority
JP
Japan
Prior art keywords
sintered body
resistance layer
zinc oxide
mol
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11112050A
Other languages
Japanese (ja)
Inventor
Katsuyuki Miyauchi
克行 宮内
Masaaki Katsumata
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11112050A priority Critical patent/JP2000306703A/en
Publication of JP2000306703A publication Critical patent/JP2000306703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc oxide varistor superior in discharge endurance characteristic by improving bonding strength of a sintered body and a high resistance layer. SOLUTION: After a ceramic material, in which the main component is at least one or more kinds of oxide selected from among SiO2, Al2O3 and ZrO2 and AlPO4 of 1.0-25.0 mol% and low melting point glass of 1.0-10.0 mol% are contained is spread uniformly on the side surface of a sintered body 1 whose main component is zinc oxide and dried, hydrolytic curing is performed at 500 deg.C, and the low melting point glass is fused. Thereby a glass layer 2 is formed on the surface of the sintered body 1. A high resistance layer 3 is formed on the surface of the glass layer 2, and electrodes 4 are formed on the upper surface and the lower surface of the sintered body 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば避雷器などに
用いられる酸化亜鉛バリスタおよびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc oxide varistor used for, for example, a lightning arrester and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の酸化亜鉛バリスタは、焼結体の側
面の絶縁抵抗を上昇させ、異常電圧が印加された時の沿
面閃絡による放電耐量の劣化を防止するために高抵抗層
を設けている。この高抵抗層の形成方法として、例えば
特開平2−7401号公報などに記載されているよう
に、無機高分子等を主成分とした物質を酸化亜鉛を主成
分とする焼結体に塗布し、350〜500℃で脱水縮
合、加水分解させる方法が知られている。またこの高分
子抵抗層は、無機高分子を主成分とする材料を用いて形
成しているので、高抵抗層形成時に焼結体と反応せず、
焼結体自身の有する特性を最大限に活かすことができる
ものであった。
2. Description of the Related Art A conventional zinc oxide varistor is provided with a high-resistance layer in order to increase the insulation resistance on the side surface of a sintered body and prevent deterioration of discharge withstand capability due to creeping flashing when an abnormal voltage is applied. ing. As a method for forming the high resistance layer, for example, as described in JP-A-2-7401, a substance mainly composed of an inorganic polymer or the like is applied to a sintered body mainly composed of zinc oxide. , 350-500 degreeC, the method of carrying out dehydration condensation and hydrolysis is known. In addition, since this polymer resistance layer is formed using a material containing an inorganic polymer as a main component, it does not react with the sintered body when the high resistance layer is formed,
The characteristics of the sintered body itself could be maximized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この高
抵抗層は焼結体の主成分である酸化亜鉛とは反応してい
ないために、焼結体との接着強度が低いものであった。
そのため、焼結体の上、下面に電極を形成するための研
磨加工工程において外部から反応が加わった場合に、高
抵抗層の剥離強度が引張強度及び剪断強度と比較して小
さいため高抵抗層の端部が欠けやすく、放電耐量特性が
劣化するという問題点を有していた。
However, since this high resistance layer does not react with zinc oxide, which is the main component of the sintered body, the adhesive strength with the sintered body is low.
Therefore, when a reaction is externally applied in the polishing process for forming electrodes on the upper and lower surfaces of the sintered body, the peeling strength of the high-resistance layer is smaller than the tensile strength and the shear strength, so that the high-resistance layer Has a problem that the end portions are easily chipped, and the discharge capability is deteriorated.

【0004】そこで本発明は焼結体と高抵抗層との接着
を強固にすることにより、放電耐量特性の高い酸化亜鉛
バリスタを提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a zinc oxide varistor having high discharge withstand characteristics by strengthening the adhesion between a sintered body and a high resistance layer.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の酸化亜鉛バリスタは、酸化亜鉛を主成分とす
る焼結体と、この焼結体の表面に所定の間隔を有するよ
うに設けた二つの電極と、前記焼結体の表面の前記電極
非形成面に設けた高抵抗層とを備え、この高抵抗層はS
iO2,Al23,ZrO2の中から選ばれた少なくとも
1種類以上の酸化物を主成分とし、AlPO4を1.0
〜25.0モル%、低融点ガラスを1.0〜10.0モ
ル%含む材料で形成したものであり、低融点ガラスを加
えることによって、焼結体と高抵抗層の界面にガラス層
が形成されて化学的接合を得ることができ、接着強度が
大きくなるので信頼性の優れたものとすることができ
る。
In order to achieve this object, a zinc oxide varistor according to the present invention comprises a sintered body containing zinc oxide as a main component and a sintered body having a predetermined spacing on the surface of the sintered body. And a high-resistance layer provided on the non-electrode-forming surface of the surface of the sintered body.
iO 2, Al 2 O 3, as a main component at least one or more oxides selected from among ZrO 2, AlPO 4 and 1.0
~ 25.0 mol%, a material containing 1.0 to 10.0 mol% of low-melting glass. By adding the low-melting glass, a glass layer is formed at the interface between the sintered body and the high-resistance layer. When formed, chemical bonding can be obtained, and the bonding strength is increased, so that excellent reliability can be obtained.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、酸化亜鉛を主成分とする焼結体と、この焼結体の表
面に所定の間隔を有するように設けた二つの電極と、前
記焼結体の表面の前記電極非形成面に設けた高抵抗層と
を備え、この高抵抗層はSiO2,Al23,ZrO2
中から選ばれた少なくとも1種類以上の酸化物を主成分
とし、AlPO4を1.0〜25.0モル%、低融点ガ
ラスを1.0〜10.0モル%含む材料で形成したもの
であり、放電耐量特性に優れたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is directed to a sintered body containing zinc oxide as a main component and two electrodes provided at a predetermined interval on the surface of the sintered body. And a high-resistance layer provided on the surface of the sintered body on which the electrode is not formed, wherein the high-resistance layer is formed of at least one kind selected from SiO 2 , Al 2 O 3 , and ZrO 2 . oxide as a main component, AlPO 4 and 1.0 to 25.0 mol% is obtained by forming a material containing a low-melting glass 1.0-10.0 mol%, which was superior to the discharge withstand current rating characteristic is there.

【0007】請求項2に記載された発明は、酸化亜鉛を
主成分とする円柱形の焼結体の側面に高抵抗層の形成材
料を塗布する第1の工程と、次に最高温度500℃〜6
00℃の温度範囲で熱処理を行い前記焼結体の側面に高
抵抗層を形成する第2の工程と、前記焼結体の両端面に
電極を形成する第3の工程とを備え、前記第2の工程に
おける高抵抗層の形成材料はSiO2,Al23,Zr
2の中から選ばれた少なくとも1種類以上の酸化物を
主成分とし、AlPO4を1.0〜25.0モル%、低
融点ガラスを1.0〜10.0モル%含むものである酸
化亜鉛バリスタの製造方法であり、放電耐量特性に優れ
た酸化亜鉛バリスタを得ることができる。
According to a second aspect of the present invention, there is provided a first step of applying a material for forming a high resistance layer to a side surface of a cylindrical sintered body containing zinc oxide as a main component, and then a maximum temperature of 500 ° C. ~ 6
A second step of performing a heat treatment in a temperature range of 00 ° C. to form a high-resistance layer on the side surface of the sintered body; and a third step of forming electrodes on both end surfaces of the sintered body. The material for forming the high resistance layer in the step 2 is SiO 2 , Al 2 O 3 , Zr
Zinc oxide containing at least one oxide selected from O 2 as a main component and containing 1.0 to 25.0 mol% of AlPO 4 and 1.0 to 10.0 mol% of low-melting glass. This is a method for manufacturing a varistor, and a zinc oxide varistor excellent in discharge withstand characteristics can be obtained.

【0008】図1は本発明の実施の形態における酸化亜
鉛バリスタの断面図であり、1は焼結体、2はガラス
層、3は高抵抗層、4は電極である。
FIG. 1 is a sectional view of a zinc oxide varistor according to an embodiment of the present invention, wherein 1 is a sintered body, 2 is a glass layer, 3 is a high resistance layer, and 4 is an electrode.

【0009】以下本実施の形態における酸化亜鉛バリス
タの製造方法について説明する。
Hereinafter, a method of manufacturing a zinc oxide varistor according to the present embodiment will be described.

【0010】まず、酸化亜鉛を主成分とし、副成分とし
てビスマス、コバルト、ニッケル、ケイ素などの化合物
を添加した原料粉末に純水、バインダ、分散剤を加え、
ボールミルにて十分混合してスラリーを得た。次にこの
スラリーをスプレードライヤーで、噴霧乾燥、造粒し、
平均粒径100〜200μmの造粒粉を得た。次に造粒
粉を400Kg/cm2の圧力で圧縮成形し、直径40mm、
厚さ30mmの円柱状の成形体を得た。
First, pure water, a binder, and a dispersant are added to a raw material powder containing zinc oxide as a main component and compounds such as bismuth, cobalt, nickel, and silicon as auxiliary components,
The slurry was sufficiently mixed with a ball mill to obtain a slurry. Next, this slurry is spray dried and granulated with a spray dryer,
Granulated powder having an average particle size of 100 to 200 μm was obtained. Next, the granulated powder is compression-molded at a pressure of 400 kg / cm 2 and has a diameter of 40 mm.
A 30 mm-thick columnar compact was obtained.

【0011】次いでこの成形体を1200℃で5時間、
昇降温速度100℃/時間の条件で焼成して焼結体1を
得た。この焼結体1の側面にスプレーガンにて、SiO
2,Al23,ZrO2の中から選ばれた少なくとも1種
類以上の酸化物を主成分とし、AlPO4を1.0〜2
5.0モル%、低融点ガラスを1.0〜10.0モル%
含むセラミック材料(以下、低融点硬化型高抵抗剤とす
る)を均一になるように塗布した。
Then, the molded body is heated at 1200 ° C. for 5 hours.
The sintered body 1 was obtained by firing under the condition of a temperature rising / falling rate of 100 ° C./hour. The side surface of the sintered body 1 is sprayed with SiO
2 , at least one oxide selected from the group consisting of Al 2 O 3 and ZrO 2 , and AlPO 4 of 1.0 to 2
5.0 mol%, low melting glass 1.0 to 10.0 mol%
A ceramic material (hereinafter, referred to as a low melting point hardening type high resistance agent) was applied so as to be uniform.

【0012】次いで100℃で乾燥した後、500℃で
加水分解硬化および低融点ガラスを溶融させ、焼結体1
の表面にガラス層2を形成すると共に、このガラス層2
の表面に高抵抗層3を形成する。次いで焼結体1の上、
下面を平面研磨してアルミニウムの溶射により電極4を
形成し、図1に示す酸化亜鉛バリスタを得た。
Next, after drying at 100 ° C., the hydrolysis-hardened and low-melting glass is melted at 500 ° C.
A glass layer 2 is formed on the surface of
The high resistance layer 3 is formed on the surface of. Then, on the sintered body 1,
The lower surface was planarly polished, and the electrode 4 was formed by spraying aluminum to obtain a zinc oxide varistor shown in FIG.

【0013】ここで、ガラス層2を形成させる理由は焼
結体1と高抵抗層3の界面にガラス層2を形成すること
により、接着強度の大きい化学的接着が得られるためで
ある。また、低融点ガラスとはガラス転移温度が310
から400℃であるB23−SiO2−PbO系ガラス
を用いた。この低融点ガラスの形状としては、スプレー
ガンのガン先が詰まらないこと、低融点硬化型高抵抗剤
中の無機成分と低融点ガラスの分散性を良好にすること
を実現するために1〜5μm程度の平均粒径が望まし
い。ここで、硬化温度を500〜600℃としたが、そ
の理由は以下の二点である。
Here, the reason why the glass layer 2 is formed is that by forming the glass layer 2 at the interface between the sintered body 1 and the high resistance layer 3, chemical bonding with high bonding strength can be obtained. Further, low melting point glass has a glass transition temperature of 310.
B 2 O 3 —SiO 2 —PbO-based glass at a temperature of 400 ° C. to 400 ° C. was used. The shape of the low-melting glass is 1 to 5 μm in order to realize that the tip of the spray gun is not clogged and that the inorganic component in the low-melting curable high-resistance agent and the low-melting glass have good dispersibility. An average particle size of the order is desirable. Here, the curing temperature was set to 500 to 600 ° C., for the following two reasons.

【0014】(1)焼結体1自体の寿命特性を実現させ
ることができる温度であること。
(1) The temperature must be such that the life characteristics of the sintered body 1 itself can be realized.

【0015】(2)低融点ガラスを十分溶融させること
ができる温度であること。
(2) The temperature must be such that the low-melting glass can be sufficiently melted.

【0016】つまり上記した理由により、熱処理温度を
600℃より高くした場合は、焼結体1の寿命特性が著
しく劣化してしまうために好ましくない。
That is, if the heat treatment temperature is higher than 600 ° C. for the above-mentioned reason, the life characteristics of the sintered body 1 are significantly deteriorated, which is not preferable.

【0017】高抵抗層3として要求される絶縁性などは
SiO2,Al23,ZrO2の中から選ばれた少なくと
も1種類以上の酸化物を主成分とし、AlPO4を1.
0〜25.0モル%含む材料を形成させることにより十
分得られる。しかしながら高抵抗層3の剥離強度が小さ
いために、焼結体1の表面に直接高抵抗層3を形成する
と、電極4の形成前に焼結体1の両端面を研磨する工程
において、高抵抗層3が焼結体1との界面より剥がれて
しまう恐れがある。従って低融点ガラスを用いて焼結体
1と高抵抗層3との間にガラス層2を形成することによ
り、このガラス層2が焼結体1と高抵抗層3との接着剤
の役割を果たすため、高抵抗層3が焼結体1から剥がれ
にくくなるのである。
The insulating properties required for the high resistance layer 3 include at least one oxide selected from SiO 2 , Al 2 O 3 , and ZrO 2 as a main component, and AlPO 4 as an oxide.
It is sufficiently obtained by forming a material containing 0 to 25.0 mol%. However, if the high-resistance layer 3 is formed directly on the surface of the sintered body 1 because the peel strength of the high-resistance layer 3 is small, a high resistance The layer 3 may be peeled off from the interface with the sintered body 1. Therefore, by forming the glass layer 2 between the sintered body 1 and the high-resistance layer 3 using low-melting glass, the glass layer 2 serves as an adhesive between the sintered body 1 and the high-resistance layer 3. Therefore, the high-resistance layer 3 is hardly peeled off from the sintered body 1.

【0018】低融点硬化型高抵抗剤中の主成分として、
SiO2,Al23の2つをほぼ1:2の割合で配合さ
れたものを用いると、熱膨張係数が酸化亜鉛バリスタと
整合するので好ましい。
As a main component in the low melting point hardening type high resistance agent,
It is preferable to use a mixture of SiO 2 and Al 2 O 3 at a ratio of about 1: 2 because the coefficient of thermal expansion matches the zinc oxide varistor.

【0019】[0019]

【発明の効果】以上本発明によると、高抵抗層形成材料
に低融点ガラスを加えることによって、焼結体と高抵抗
層の界面にガラス層が形成されて化学的接合を得ること
ができ、接着強度が大きくなるので放電耐量特性の高い
酸化亜鉛バリスタを提供することができる。
As described above, according to the present invention, by adding a low-melting glass to the material for forming the high-resistance layer, a glass layer is formed at the interface between the sintered body and the high-resistance layer, and chemical bonding can be obtained. Since the adhesive strength is increased, it is possible to provide a zinc oxide varistor having a high discharge capability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における酸化亜鉛バリス
タの断面図
FIG. 1 is a cross-sectional view of a zinc oxide varistor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結体 2 ガラス層 3 高抵抗層 4 電極 DESCRIPTION OF SYMBOLS 1 Sintered body 2 Glass layer 3 High resistance layer 4 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とする焼結体と、この
焼結体の表面に所定の間隔を有するように設けた二つの
電極と、前記焼結体の表面の前記電極非形成面に設けた
高抵抗層とを備え、この高抵抗層はSiO2,Al
23,ZrO2の中から選ばれた少なくとも1種類以上
の酸化物を主成分とし、AlPO4を1.0〜25.0
モル%、低融点ガラスを1.0〜10.0モル%含む材
料で形成した酸化亜鉛バリスタ。
1. A sintered body mainly composed of zinc oxide, two electrodes provided on a surface of the sintered body at a predetermined interval, and a surface of the sintered body on which the electrode is not formed. and a high-resistance layer provided, the high-resistance layer is SiO 2, Al
The main component is at least one oxide selected from 2 O 3 and ZrO 2 , and AlPO 4 is 1.0 to 25.0.
A zinc oxide varistor made of a material containing 1.0 to 10.0 mol% of a low melting point glass.
【請求項2】 酸化亜鉛を主成分とする円柱形の焼結体
の側面に高抵抗層の形成材料を塗布する第1の工程と、
次に最高温度500℃〜600℃の温度範囲で熱処理を
行い前記焼結体の側面に高抵抗層を形成する第2の工程
と、前記焼結体の両端面に電極を形成する第3の工程と
を備え、前記第2の工程における高抵抗層の形成材料は
SiO2,Al23,ZrO2の中から選ばれた少なくと
も1種類以上の酸化物を主成分とし、AlPO4を1.
0〜25.0モル%、低融点ガラスを1.0〜10.0
モル%含むものとした酸化亜鉛バリスタの製造方法。
2. A first step of applying a material for forming a high-resistance layer to a side surface of a cylindrical sintered body containing zinc oxide as a main component;
Next, a second step of performing heat treatment at a maximum temperature of 500 ° C. to 600 ° C. to form a high resistance layer on the side surface of the sintered body, and a third step of forming electrodes on both end surfaces of the sintered body. A high-resistance layer forming material in the second step is mainly composed of at least one oxide selected from SiO 2 , Al 2 O 3 , and ZrO 2 , and is composed of AlPO 4 . .
0 to 25.0 mol%, and a low melting glass of 1.0 to 10.0
A method for producing a zinc oxide varistor containing about 0.1 mol%.
JP11112050A 1999-04-20 1999-04-20 Zinc oxide varistor Pending JP2000306703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11112050A JP2000306703A (en) 1999-04-20 1999-04-20 Zinc oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11112050A JP2000306703A (en) 1999-04-20 1999-04-20 Zinc oxide varistor

Publications (1)

Publication Number Publication Date
JP2000306703A true JP2000306703A (en) 2000-11-02

Family

ID=14576779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11112050A Pending JP2000306703A (en) 1999-04-20 1999-04-20 Zinc oxide varistor

Country Status (1)

Country Link
JP (1) JP2000306703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175795A1 (en) * 2012-05-25 2013-11-28 パナソニック株式会社 Varistor and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175795A1 (en) * 2012-05-25 2013-11-28 パナソニック株式会社 Varistor and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
JP2002151307A (en) Voltage nonlinear resistor
JP2000306703A (en) Zinc oxide varistor
JPH08124719A (en) Nonlinear voltage characteristic resistor and its manufacture
JPH0429204B2 (en)
JPS5848301A (en) Resistance material, resistor and method of producing same
JP2815990B2 (en) Manufacturing method of nonlinear resistor
JPH08172002A (en) Manufacture of voltage nonlinear resistor
JP2000306702A (en) Zinc oxide varistor
JP2001044008A (en) Zinc oxide nonlinear resistor and manufacture method therefor
JP4157237B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP2003229302A (en) Voltage nonlinear resistor
JP2000306704A (en) Zinc oxide varistor and manufacture thereof
JP2560851B2 (en) Voltage nonlinear resistor
JPH07122405A (en) Functional element and manufacture thereof
JPH0722207A (en) Production of voltage nonlinear resistor
JP2735320B2 (en) Non-linear resistor
JP2727699B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2819691B2 (en) Manufacturing method of zinc oxide varistor
JP2830264B2 (en) Zinc oxide varistor and method of manufacturing the same
JP3551780B2 (en) Varistor and manufacturing method thereof
JPS59124101A (en) Method of producing voltage nonlinear resistor
JPH10289807A (en) Functional ceramic element
JPH0258306A (en) Voltage-dependent nonlinear resistor and manufacture thereof
JPS5951724B2 (en) Ceramic voltage nonlinear resistor