JP2000304438A - Method and device for manufacturing ultrahigh-purity gas - Google Patents

Method and device for manufacturing ultrahigh-purity gas

Info

Publication number
JP2000304438A
JP2000304438A JP11115611A JP11561199A JP2000304438A JP 2000304438 A JP2000304438 A JP 2000304438A JP 11115611 A JP11115611 A JP 11115611A JP 11561199 A JP11561199 A JP 11561199A JP 2000304438 A JP2000304438 A JP 2000304438A
Authority
JP
Japan
Prior art keywords
gas
pressure
rectification column
pressure rectification
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11115611A
Other languages
Japanese (ja)
Other versions
JP4072841B2 (en
Inventor
Naohiko Yamashita
直彦 山下
Shinji Tomita
伸二 富田
Takao Yamamoto
隆夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP11561199A priority Critical patent/JP4072841B2/en
Publication of JP2000304438A publication Critical patent/JP2000304438A/en
Application granted granted Critical
Publication of JP4072841B2 publication Critical patent/JP4072841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/58Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture of ultrahigh-purity gas which does not need to be provided with a compressor for a product while making the most of the merit of a dual rectifying column, and besides can manufacture ultrahigh- purity gas. SOLUTION: The manufacture of ultrahigh-purity gas has a process of manufacturing ultrahigh-purity gas by refining preliminarily refined material fluid in order, using a dual rectifying column where a rectifying column 10 on low pressure side and a rectifying column 20 on high pressure side are arranged above and below through a reboil capacitor 14. In the process, a part of the fluid on the column bottom side more than the supply part of the material fluid of the rectifying column 10 on low pressure side is extracted while supplying the rectifying part of the rectifying column 10 on low pressure side with the material fluid. Then it is pressurized by a booster, and ultrahigh-purity substance is recovered from more column top side than the supply part of the pressurized fluid of the rectifying column 20 on high pressure side, while introducing the pressurized fluid into the rectifying part or the column bottom of the rectifying column 20 on high pressure side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低圧側精留塔と高
圧側精留塔とがリボイルコンデンサを介して上下に配置
された複式精留塔を用いて、予備精製した原料流体を順
次精製することにより超高純度ガスを製造する製造方法
及び製造装置に関し、特に超高純度アルゴンの製造に有
用なものである。
The present invention relates to a double rectification column in which a low-pressure rectification column and a high-pressure rectification column are arranged vertically via a reboil condenser, and the preliminarily purified raw material fluids are sequentially converted. The present invention relates to a production method and a production apparatus for producing an ultra-high-purity gas by refining, and is particularly useful for producing ultra-high-purity argon.

【0002】[0002]

【従来の技術】精留塔を利用した各種ガスの分離・精製
(深冷分離)は、空気から各種成分を低温分離する技術
や各種産業設備の排出ガスから有用ガスを高純度で回収
する技術などに利用されている。精留塔の基本原理は、
気液平衡にある気体と液体の組成が異なる現象を利用し
て、塔内の精留部を下降する還流液と、精留部を上昇す
る蒸気とを気液接触させながら、蒸発と凝縮を繰り返す
ことで、精留部の下側に高沸点成分が、上側に低沸点成
分が濃縮されていくと言うものである。その際、塔頂部
から還流液を降下させ、また塔底部から還流蒸気を発生
させるため、通常、凝縮器とリボイラが、それぞれ精留
塔の塔頂部と塔底部に設けられる。
2. Description of the Related Art Separation and purification of various gases using a rectification column (cryogenic separation) is a technique for separating low-temperature components from air and a technique for recovering useful gases from exhaust gases from various industrial equipment with high purity. It is used for such purposes. The basic principle of the rectification column is
Utilizing the phenomenon that the composition of gas and liquid in gas-liquid equilibrium is different, evaporation and condensation are performed while bringing the reflux liquid descending in the rectification section of the column and the vapor rising in the rectification section into gas-liquid contact. By repeating this, the high-boiling components are concentrated below the rectification section and the low-boiling components are concentrated above. At that time, a condenser and a reboiler are usually provided at the top and bottom of the rectification column, respectively, in order to lower the reflux liquid from the top of the column and generate reflux vapor from the bottom of the column.

【0003】このような精留塔を利用して、より高純度
なガスを製造する場合、原料ガス等を第1精留塔で精製
し、得られた高純度ガス等を第2精留塔に導いて、更に
精製する方法が採られる場合が多い。従って、複数の精
留塔を用いる各種形態の高純度ガスの製造方法が、これ
まで数多く出願されている。
[0003] When producing a higher-purity gas using such a rectification column, the raw material gas and the like are purified in the first rectification column, and the obtained high-purity gas and the like are converted into the second rectification column. , And a method for further purification is often employed. Accordingly, many methods for producing various forms of high-purity gas using a plurality of rectification columns have been filed.

【0004】このような技術は大きく分けると、第1精
留塔と第2精留塔とをそれぞれ単精留塔として別々に設
けるタイプと、第1精留塔(高圧側精留塔)と第2精留
塔(低圧側精留塔)とを複合・合体させた複式精留塔を
使用するタイプが存在する。そして、前者のタイプとし
ては、例えば、特公平7−85761号公報には、第1
精留塔の原料流体の供給部より塔底側のガスの一部を抜
き出し、第2精留塔の塔底部に導きつつ、その塔底部か
ら抜き出した液体を第1精留塔の塔底側に戻しながら、
第2精留塔の塔頂部から超高純度ガスであるアルゴン等
を回収する方法が記載されている。
[0004] Such techniques can be roughly divided into a type in which the first rectification column and the second rectification column are separately provided as single rectification columns, a type in which the first rectification column and the first rectification column (high-pressure rectification column) are provided. There is a type that uses a double rectification tower in which a second rectification tower (low-pressure rectification tower) is combined and combined. As the former type, for example, Japanese Patent Publication No. 7-85761 discloses the first type.
A part of the gas at the bottom of the rectification column is extracted from the feed portion of the raw material fluid of the rectification column, and the liquid extracted from the bottom of the second rectification column is guided to the bottom of the second rectification column. While returning to
A method of recovering ultra-high purity gas such as argon from the top of the second rectification column is described.

【0005】しかし、上記の如き方法では、超高純度の
ガスを製造することができるものの、2基の単精留塔を
別々に設けるため、複式精留塔を使用するタイプに比べ
て、装置の複雑化、コスト上昇、設置スペースの増大等
の不利な面があった。
[0005] However, the above-mentioned method can produce an ultra-high-purity gas. However, since two single rectification columns are separately provided, the apparatus is different from the type using a double rectification column. There are disadvantageous aspects such as complication, cost increase and installation space increase.

【0006】そのため、複式精留塔を使用するタイプも
種々提案されている。かかる複式精留塔は、一般的に、
低圧側精留塔と高圧側精留塔とがリボイルコンデンサを
介して上下に配置され、下側に配置される高圧側精留塔
から、精製ガス又は塔底液を抜き出し、圧力調整のため
の弁を介して、上側に配置される低圧側精留塔の精留部
に導いて、更に精製を行う方法が採られる。
Therefore, various types using a double rectification column have been proposed. Such a double rectification column generally comprises
The low-pressure rectification tower and the high-pressure rectification tower are arranged vertically via a reboil condenser, and the purified gas or the bottom liquid is withdrawn from the high-pressure rectification tower arranged below and used for pressure adjustment. Via the above-mentioned valve to the rectification section of the low-pressure rectification column arranged on the upper side for further purification.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
方法では、製品圧力が原料供給圧より低くなるため、通
常、製品用の圧縮機を更に設ける必要があり、このた
め、超高純度の製品が汚染され易いという問題があっ
た。
However, in the above-mentioned method, since the product pressure is lower than the raw material supply pressure, it is usually necessary to further provide a compressor for the product. There was a problem that it was easily contaminated.

【0008】そこで、本発明の目的は、複式精留塔を長
所を生かしつつ、製品用圧縮機を設けなくても圧力調節
が可能で、しかも超高純度のガスを製造することができ
る超高純度ガスの製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a super-high-pressure column capable of controlling the pressure without providing a product compressor while utilizing the advantages of the double rectification column, and capable of producing an ultra-high-purity gas. An object of the present invention is to provide a method for producing a purity gas.

【0009】なお、特開平8−14736号公報には、
低圧精留塔の塔頂より抜き出したガスを圧縮した後、中
圧精留塔に導いて精製を行う方法が記載されているが、
当該圧縮は、比較的純度の低い空気をリサイクルさせる
ために行うものであり、本発明における加圧とは、目的
や技術思想が相違するものである。
Japanese Patent Application Laid-Open No. 8-14736 discloses that
After compressing the gas extracted from the top of the low pressure rectification column, it is described that a method of conducting purification by introducing the medium pressure rectification column,
The compression is performed in order to recycle air of relatively low purity, and has a different purpose and technical idea from the pressurization in the present invention.

【0010】[0010]

【課題を解決するための手段】上記目的は、下記の如き
本発明により達成できる。即ち、本発明は、低圧側精留
塔と高圧側精留塔とがリボイルコンデンサを介して上下
に配置された複式精留塔を用いて、予備精製した原料流
体を順次精製することにより超高純度ガスを製造する工
程を有する超高純度ガスの製造方法において、前記原料
流体を前記低圧側精留塔の精留部に供給しつつ、前記低
圧側精留塔の前記原料流体の供給部より塔底側の流体の
一部を抜き出した後、昇圧機により加圧し、その加圧し
た加圧流体を前記高圧側精留塔の精留部又は塔底部に導
入しながら、その高圧側精留塔の前記加圧流体の供給部
より塔頂側から超高純度物質を回収することを特徴とす
る。なお、「超高純度ガス」とは、1塔の精留塔による
精製ガスより、更に高純度であるガスを指すものであ
り、相対的な意味のみを有する。
The above object can be achieved by the present invention as described below. That is, the present invention uses a double rectification column in which a low-pressure rectification column and a high-pressure rectification column are arranged vertically via a reboil condenser, and sequentially purifies preliminarily purified raw material fluids. In the method for producing an ultra-high-purity gas having a step of producing a high-purity gas, while supplying the raw material fluid to a rectification section of the low-pressure rectification tower, a supply section of the raw fluid of the low-pressure rectification tower After extracting a part of the fluid at the bottom of the column, the pressure is increased by a pressurizer, and while the pressurized pressurized fluid is introduced into the rectification section or the bottom of the high-pressure rectification column, the high-pressure rectification is performed. An ultra-high-purity substance is recovered from the top of the distillation column from the supply section of the pressurized fluid. The “ultra-high-purity gas” refers to a gas having a higher purity than a gas purified by one rectification column, and has only a relative meaning.

【0011】上記において、各種のリサイクル経路を設
けることで、リボイラやコンデンサの熱源や冷却源を好
適に発生させることができるが、前記高圧側精留塔の塔
底液を抜き出して減圧し、前記低圧側精留塔の凝縮器の
冷媒貯留部に導入し、その冷媒貯留部で気化したガスを
圧縮機で圧縮した後、リボイルガスとして前記高圧側精
留塔の塔底部に供給するリサイクル経路を構成すると共
に、前記低圧側精留塔より抜き出した前記流体を加圧す
るにあたり、弁を介してその流体を前記リサイクル経路
の圧縮機の上流側に供給混合することが好ましい。
In the above, by providing various recycle paths, a heat source and a cooling source of the reboiler and the condenser can be suitably generated, but the bottom liquid of the high-pressure rectification column is withdrawn and reduced in pressure. After being introduced into the refrigerant storage part of the condenser of the low-pressure rectification column and the gas vaporized in the refrigerant storage part is compressed by the compressor, a recycle path is supplied to the bottom of the high-pressure rectification tower as reboil gas. In addition, when pressurizing the fluid extracted from the low-pressure rectification column, it is preferable to supply and mix the fluid upstream of a compressor in the recycle path via a valve.

【0012】上記において、前記原料流体は、精留に支
障をきたさない程度に予備精製されているものであれば
よいが、原料流体が、純度95容量%以上のアルゴンで
あって、より低沸点の物質と、より高沸点の物質とを不
純物として含有するものであることが好ましい。
In the above, the raw material fluid may be preliminarily purified so as not to hinder rectification, but the raw material fluid is argon having a purity of 95% by volume or more and having a lower boiling point. And a substance having a higher boiling point as impurities.

【0013】一方、本発明の製造装置は、原料流体の供
給部を中間に備えた精留部、及びその精留部からのガス
を液化して一部還流液として供給する凝縮器を有する低
圧側精留塔と、その低圧側精留塔の下方に配置され、精
留部を有する高圧側精留塔と、前記低圧側精留塔と前記
高圧側精留塔との間に介在し、超高純度製品を未液化ガ
スとして回収する回収部を有するリボイルコンデンサと
を備えた複式精留塔と、前記高圧側精留塔の塔底液を抜
き出して減圧し、前記低圧側精留塔の凝縮器の冷媒貯留
部に導入し、その冷媒貯留部で気化したガスを圧縮機で
圧縮した後、リボイルガスとして前記高圧側精留塔の塔
底部に供給するリサイクル経路と、前記原料流体の供給
部より塔底側の流体の一部を、弁を介して前記リサイク
ル経路の圧縮機の上流側に供給混合する導出経路とを備
えたものである。
On the other hand, the production apparatus of the present invention has a low-pressure section having a rectification section having a supply section for a raw material fluid in the middle, and a condenser for liquefying the gas from the rectification section and supplying the liquefied gas partially as a reflux liquid. Side rectification column, disposed below the low pressure side rectification column, high pressure side rectification column having a rectification section, interposed between the low pressure side rectification column and the high pressure side rectification column, A double rectification column equipped with a reboil condenser having a recovery section for recovering ultra-high-purity products as unliquefied gas, and the bottom liquid of the high-pressure rectification column is withdrawn and reduced in pressure, and the low-pressure rectification column is removed. A recycle path, which is introduced into a refrigerant storage part of a condenser of the condenser, and a gas vaporized in the refrigerant storage part is compressed by a compressor, and then supplied as a reboil gas to the bottom of the high-pressure rectification column. Part of the fluid on the bottom side of the section, through a valve, It is obtained by a derivation path for mixing supplied to the flow side.

【0014】[作用効果]本発明によると、低圧側精留
塔の流体の一部を抜き出した後、昇圧機により加圧して
高圧側精留塔に導入し、その際の圧力が製品圧をほぼ決
定するため、両塔における好ましい圧力バランスを維持
しながら、主にこの昇圧機により、製品圧を調節するこ
とができる。その際、原料流体を低圧側精留塔の精留部
に供給しつつ、より塔底側の流体の一部を抜き出した
後、高圧側精留塔の精留部又は塔底部に導入しながら、
より塔頂側から超高純度物質を回収するため、低圧側精
留塔と高圧側精留塔とで、順次精留が行われるので、超
高純度の製品が回収でき、しかも、上記のように製品用
圧縮機が不要になるため、より高純度の製品を得ること
ができるようになる。
According to the present invention, after extracting a part of the fluid from the low-pressure rectification column, the fluid is pressurized by a booster and introduced into the high-pressure rectification column. The product pressure can be adjusted mainly by this pressure booster, while maintaining a favorable pressure balance in both towers, for the most part to determine. At that time, while supplying the raw material fluid to the rectification section of the low-pressure rectification column, a part of the fluid on the bottom side is extracted, and then introduced into the rectification section or the bottom of the high-pressure rectification column. ,
In order to recover ultra-high-purity substances from the top side, rectification is performed sequentially in the low-pressure rectification column and the high-pressure rectification column, so that ultra-high-purity products can be recovered, and as described above. Since a product compressor is not required, a product with higher purity can be obtained.

【0015】その結果、複式精留塔を長所を生かしつ
つ、製品用圧縮機を設けなくても圧力調節が可能で、し
かも超高純度のガスを製造することができる超高純度ガ
スの製造方法を提供することができた。
As a result, while utilizing the advantages of the double rectification column, the pressure can be adjusted without providing a product compressor, and an ultra-high purity gas can be produced. Could be provided.

【0016】また、上記の如きリサイクル経路を構成す
ると共に、前記低圧側精留塔より抜き出した前記流体を
加圧するにあたり、弁を介してその流体を前記リサイク
ル経路の圧縮機の上流側に供給混合する場合、リサイク
ル経路が、高圧側精留塔のリボイラの役割を有すると共
に、低圧側精留塔のコンデンサの冷却源を好適に発生さ
せることができる。その際、低圧側精留塔より抜き出し
た流体を加圧するにあたり、弁を介してその流体を前記
リサイクル経路の圧縮機の上流側に供給混合するため、
加圧のための昇圧機を圧縮機で兼用することができ、し
かも弁により流量調節が可能なため、両塔における精留
操作のバランスを好適に調節することができる。
In addition, the above-mentioned recycle path is constituted, and when the fluid extracted from the low-pressure side rectification column is pressurized, the fluid is supplied to a recycle path upstream of the compressor through a valve and mixed. In this case, the recycle path has a role of a reboiler of the high-pressure rectification tower, and can suitably generate a cooling source for the condenser of the low-pressure rectification tower. At that time, in pressurizing the fluid extracted from the low-pressure side rectification column, the fluid is supplied and mixed to the upstream side of the compressor in the recycle path via a valve,
A compressor can be used as a pressure booster for pressurization, and the flow rate can be adjusted by a valve. Therefore, the balance of the rectification operation in both towers can be suitably adjusted.

【0017】また、前記原料流体が、純度95容量%以
上のアルゴンであって、より低沸点の物質と、より高沸
点の物質とを不純物として含有するものである場合、よ
り低沸点の物質を略完全に低圧側精留塔で除去すること
ができるため、より高沸点の物質を高圧側精留塔で除去
することにより、超高純度のアルゴンを製造することが
できる。また、低圧側精留塔で低沸点の物質を略完全に
除去してあるため、上記の如きリサイクル経路を採用し
ても、製品の純度が低下しにくい。
Further, when the raw material fluid is argon having a purity of 95% by volume or more and contains a substance having a lower boiling point and a substance having a higher boiling point as impurities, the substance having a lower boiling point may be used. Since it can be almost completely removed in the low-pressure rectification column, ultra-high-purity argon can be produced by removing higher boiling substances in the high-pressure rectification column. Further, since the substance having a low boiling point is almost completely removed in the low-pressure rectification column, the purity of the product is hardly reduced even if the above-mentioned recycling route is adopted.

【0018】一方、本発明の製造装置によると、上記の
如き作用効果により、複式精留塔を長所を生かしつつ、
製品用圧縮機を設けなくてもよく、しかも超高純度のガ
スを製造することができる。また、リサイクル経路が、
高圧側精留塔のリボイラの役割を有すると共に、低圧側
精留塔のコンデンサの冷却源を好適に発生させることが
でき、更に、低圧側精留塔より抜き出した流体を加圧す
るための昇圧機を圧縮機で兼用することができる。
On the other hand, according to the production apparatus of the present invention, due to the above-mentioned effects, while utilizing the advantages of the double rectification column,
There is no need to provide a product compressor, and ultra-high-purity gas can be produced. Also, the recycling route
A booster that has a role of a reboiler for the high-pressure rectification tower, can suitably generate a cooling source for the condenser of the low-pressure rectification tower, and further pressurizes the fluid extracted from the low-pressure rectification tower. Can also be used as a compressor.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て、本発明の第1実施形態〜第3実施形態、第3実施形
態を利用したアルゴン回収設備の順で説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in the order of the first to third embodiments of the present invention and an argon recovery facility using the third embodiment.

【0020】(第1実施形態)本発明の第1実施形態と
して、図1に示すような、最もシンプルな実施形態を例
示する。
(First Embodiment) As the first embodiment of the present invention, the simplest embodiment as shown in FIG. 1 will be exemplified.

【0021】原料流体は経路L1より低圧側精留塔10
に供給されるが、これに先立って、図示してない設備に
より、通常、予備精製、冷却、圧縮等が行われる。予備
精製では、精留塔で除去しにくい成分や、塵等の固体成
分などの不純物が除去されたり、また、予め原料をかな
りの高純度にするための精製操作が行われる。冷却と圧
縮は、原料流体の温度と圧力を、精留塔10に供給する
のに適した範囲にするために行われ、通常、低圧側精留
塔10の供給部よりやや高い圧力まで圧縮され、その圧
での液化温度の近傍まで冷却される。
The raw material fluid is supplied to the lower pressure side rectification column 10 from the path L1.
Prior to this, preliminary purification, cooling, compression and the like are usually performed by equipment not shown. In the pre-purification, components that are difficult to remove in the rectification column and impurities such as solid components such as dust are removed, and a purification operation is performed in advance to make the raw material considerably high purity. The cooling and the compression are performed to adjust the temperature and the pressure of the raw material fluid to a range suitable for supplying to the rectification column 10 and are usually compressed to a pressure slightly higher than the supply portion of the low-pressure rectification column 10. , Is cooled to near the liquefaction temperature at that pressure.

【0022】低圧側精留塔10の内部の原料流体の供給
部より塔頂側(上側)には、精留部12が設けられてお
り、供給部より塔底側(下側)には、精留部11が設け
られている。精留部11,12の型式には、棚段式や充
填式等があり、いずれの型式も採用できる。精留部1
1,12では、下降する還流液と上昇する蒸気とが気液
接触しながら、蒸発と凝縮を繰り返すことで、精留部1
1,12の下側ほど製品及び高沸点不純物が、上側ほど
低沸点不純物が濃縮される。
A rectification section 12 is provided on the top side (upper side) of the supply section of the raw material fluid in the low pressure side rectification tower 10, and on the bottom side (lower side) of the supply section, A rectification section 11 is provided. The types of the rectification units 11 and 12 include a shelf type and a filling type, and any type can be adopted. Rectification unit 1
In 1 and 12, the evaporating and condensing are repeated while the descending reflux liquid and the ascending vapor come into gas-liquid contact, so that the rectification section 1
Products and high-boiling impurities are concentrated below 1, 12 and low-boiling impurities are concentrated above.

【0023】低圧側精留塔10の塔底部、即ち、複式精
留塔の低圧側精留塔10と高圧側精留塔20との境界部
には、低圧側精留塔10のリボイラと高圧側精留塔20
の凝縮器とを兼用するリボイルコンデンサ14が設けら
れている。このリボイルコンデンサ14では、高圧側精
留塔20の塔頂部のガスを熱源として、低圧側精留塔1
0の塔底液をリボイルさせながら、同時に、低圧側精留
塔10の塔底液を冷却源として、高圧側精留塔20の塔
頂ガスの一部を凝縮させる。その際、低圧側精留塔10
の塔底液の一部は、弁23を介して経路L2から排出さ
れる。
At the bottom of the low-pressure rectification column 10, ie, at the boundary between the low-pressure rectification column 10 and the high-pressure rectification column 20 of the double rectification column, the reboiler of the low-pressure rectification column 10 Side rectification tower 20
A reboil condenser 14 which is also used as a condenser is provided. In the reboil condenser 14, the gas at the top of the high-pressure rectification column 20 is used as a heat source,
At the same time, a part of the top gas of the high-pressure rectification column 20 is condensed while using the bottom liquid of the low-pressure rectification column 10 as a cooling source while the bottom liquid of the column 0 is reboiled. At that time, the low pressure side rectification column 10
Is discharged from the path L2 via the valve 23.

【0024】一方、低圧側精留塔10の塔頂には凝縮器
13が設けられており、経路L5より導入する冷媒によ
り、塔頂ガスの一部を液化させて還流液としつつ、残部
を排出ガスとして経路L7より弁15を介して排出す
る。凝縮器13の冷媒貯留部に貯留される冷媒は、一部
が蒸発して経路L6より弁16を介して排出される。な
お、凝縮器13の型式や、冷媒、冷却源等は、いずれで
もよい。
On the other hand, a condenser 13 is provided at the top of the low-pressure rectification column 10, and a part of the top gas is liquefied by a refrigerant introduced through a path L5 to form a reflux liquid, while the remaining part is liquefied. The exhaust gas is exhausted from the path L7 via the valve 15. A part of the refrigerant stored in the refrigerant storage part of the condenser 13 evaporates and is discharged from the path L6 via the valve 16. In addition, the type of the condenser 13, the refrigerant, the cooling source, and the like may be any.

【0025】本発明では、上記のようにして原料流体を
低圧側精留塔10で精製した後、得られた高純度流体を
高圧側精留塔20に導いて更に精製を行う際、低圧側精
留塔10の原料流体の供給部より塔底側の流体の一部を
抜き出した後、昇圧機により加圧し、その加圧した加圧
流体を高圧側精留塔20の塔底部(又は精留部)に導入
する。導出経路L8により塔底側から抜き出す流体は、
ガスでも還流液でもよいが、本実施形態では、塔底側の
ガスを抜き出して、昇圧機として圧縮機31を用いてガ
スの圧縮を行う例を示す。
In the present invention, after the raw material fluid is purified in the low-pressure rectification column 10 as described above, the obtained high-purity fluid is guided to the high-pressure rectification column 20 for further purification. After a part of the fluid on the bottom side is extracted from the feed portion of the raw material fluid of the rectification column 10, the fluid is pressurized by a pressure booster, and the pressurized fluid is pressurized and the pressurized fluid is supplied to the bottom of the high-pressure rectification column 20 (or ). The fluid extracted from the bottom of the tower by the derivation route L8 is
Although a gas or a reflux liquid may be used, this embodiment shows an example in which the gas at the bottom of the tower is extracted and the gas is compressed using a compressor 31 as a pressure booster.

【0026】経路L9より導入された加圧流体は、低圧
側精留塔10の場合と同様に、高圧側精留塔20内の精
留部21をガス成分が上昇しつつ、下降する還流液と気
液接触しながら、蒸発と凝縮を繰り返すことで、精留部
21の上側ほど製品が、下側ほど高沸点不純物が濃縮さ
れる。このため、高圧側精留塔20の塔頂部からリボイ
ルコンデンサ14を経由して、未液化ガスを経路L10
にて抜き出すことで、超高純度の製品流体(製品ガス)
を回収することができる。
The pressurized fluid introduced from the path L9 flows through the rectification section 21 in the high-pressure rectification tower 20 in the same manner as in the low-pressure rectification tower 10, and the reflux liquid descending while the gas component rises. By repeating evaporation and condensation while contacting the gas and the liquid, the product is concentrated on the upper side of the rectifying section 21 and the high boiling point impurities are concentrated on the lower side. Therefore, the unliquefied gas is transferred from the top of the high pressure side rectification column 20 via the reboil condenser 14 to the path L10.
By extracting with, ultra-high purity product fluid (product gas)
Can be recovered.

【0027】高圧側精留塔20の塔底部にはリボイラ2
2が設けられており、塔底部の経路L11より塔底液を
抜き出して蒸発させ、リボイルガスとして経路L12よ
り塔底部に戻している。その際、塔底液の一部は弁23
を介して経路L13から排出される。なお、リボイラ2
2の型式や熱源は、いずれでもよい。
A reboiler 2 is provided at the bottom of the high-pressure rectification column 20.
2 is provided, the bottom liquid is withdrawn from the path L11 at the bottom of the tower, evaporated and returned to the bottom of the tower from the path L12 as reboil gas. At that time, part of the bottom liquid was
Via the path L13. In addition, reboiler 2
The type 2 and the heat source may be any.

【0028】次に、以上の装置における、各部の圧力の
関係について説明する。低圧側精留塔10内の圧力と、
高圧側精留塔20内の圧力は、概略、リボイルコンデン
サ14の高温側/低温側の設計温度差に相当する圧力差
が生じるような圧力に設定される。従って、昇圧機の出
口側圧力を上記の圧力差とは無関係に設定できるため、
当該出口側圧力により製品圧を決定することができ、製
品圧は出口側圧力より若干低い圧力となる。
Next, the relationship between the pressures of the respective parts in the above-described apparatus will be described. The pressure in the low-pressure rectification column 10;
The pressure in the high-pressure rectification column 20 is set to a pressure that generates a pressure difference corresponding to a design temperature difference between the high-temperature side and the low-temperature side of the reboil condenser 14. Therefore, since the outlet pressure of the booster can be set independently of the above pressure difference,
The product pressure can be determined by the outlet pressure, and the product pressure is slightly lower than the outlet pressure.

【0029】(第2実施形態)本発明の第2実施形態と
して、図2に示すように、第1実施形態における低圧側
精留塔10に精留部18を更に付加したものを例示す
る。なお、他の部分については、第1実施形態と同様で
あるため、相違する部分についてのみ説明する。
(Second Embodiment) As a second embodiment of the present invention, as shown in FIG. 2, a low-pressure rectification column 10 according to the first embodiment in which a rectifying section 18 is further added is exemplified. Note that the other parts are the same as in the first embodiment, and thus only different parts will be described.

【0030】この精留部18は、精留部11の下方(塔
底側)であって、導出経路L8との接続部よりも下側
(塔底側)の位置に設けられる。従って、第1実施形態
では、低圧側精留塔10の塔底液に近い組成のガスが、
導出経路L8から抜き出されるのに対して、第2実施形
態では、精留部18が介在する分だけ、高沸点不純物の
含有量が少ないガスが、導出経路L8にて抜き出される
ことになる。その結果、高圧側精留塔20において高沸
点不純物がより少ない製品の製造が容易となる。
The rectifying section 18 is provided below the rectifying section 11 (to the bottom of the tower) and below the connection with the lead-out path L8 (to the bottom of the tower). Therefore, in the first embodiment, the gas having a composition close to the bottom liquid of the low-pressure rectification column 10 is
On the other hand, in the second embodiment, a gas having a low content of high-boiling-point impurities is extracted in the lead-out route L <b> 8 by the amount of the rectification unit 18 in the second embodiment. . As a result, in the high-pressure rectification column 20, it becomes easy to produce a product having less high boiling point impurities.

【0031】(第3実施形態)本発明の第3実施形態と
して、図3に示すように、第1実施形態にリサイクル経
路や熱交換器等を付加した実施形態を例示する。なお、
基本的な部分については、第1実施形態と同様であるた
め、付加・変更した部分についてのみ説明する。
(Third Embodiment) As a third embodiment of the present invention, an embodiment in which a recycling path, a heat exchanger, and the like are added to the first embodiment as shown in FIG. 3 will be exemplified. In addition,
Since the basic parts are the same as those in the first embodiment, only the added or changed parts will be described.

【0032】本実施形態は、第1実施形態のリボイラ2
2の代わりに、凝縮器13への冷媒供給機能を有するリ
サイクル経路を設けて、そのリサイクル経路を利用して
低圧側精留塔10から抜き出したガスの加圧と、高圧側
精留塔20への導入を行うことを特徴とする。このリサ
イクル経路では、まず高圧側精留塔20の塔底液を経路
L11より抜き出し、膨張弁36により減圧し、凝縮器
13の冷媒貯留部に導入する。その際、不足する寒冷
は、液体アルゴン等を経路L5より供給することで補給
される。凝縮器13の冷媒貯留部で気化したガスは、経
路L6を経て熱交換器32で予熱された後、圧縮機33
で圧縮されると共に、少量は高沸点成分が濃縮しないよ
うに、圧縮機39の上流側より弁35を介して排出され
る。リサイクルガスは圧縮後、再び熱交換器32に導入
され、冷却された後、リボイルガスとして経路L9から
高圧側精留塔20の塔底部に供給される。
This embodiment is similar to the reboiler 2 of the first embodiment.
In place of 2, a recycling path having a function of supplying a refrigerant to the condenser 13 is provided, and the gas extracted from the low-pressure rectification column 10 is pressurized by using the recycling path, Is introduced. In this recycling path, first, the bottom liquid of the high-pressure side rectification column 20 is withdrawn from the path L11, decompressed by the expansion valve 36, and introduced into the refrigerant storage section of the condenser 13. At this time, the insufficient cold is replenished by supplying liquid argon or the like from the path L5. The gas vaporized in the refrigerant storage part of the condenser 13 is preheated in the heat exchanger 32 via the path L6,
And a small amount is discharged from the upstream side of the compressor 39 via the valve 35 so that the high-boiling components are not concentrated. After being compressed, the recycle gas is again introduced into the heat exchanger 32, cooled, and then supplied as reboil gas from the path L9 to the bottom of the high-pressure rectification column 20.

【0033】その際、低圧側精留塔10より導出経路L
8を経て抜き出したガスを、熱交換器32で常温近くま
で加温してから、弁34を介して前記リサイクル経路の
圧縮機33の上流側に供給混合する。これにより、リサ
イクル経路の圧縮機33を利用して上記ガスを加圧で
き、加圧のための昇圧機を圧縮機で兼用することができ
る。しかも弁34により流量調節が可能なため、両塔に
おける精留操作のバランスを好適に調節することができ
る。
At this time, the lead-out route L from the low-pressure rectification column 10
The gas extracted through 8 is heated to near normal temperature by the heat exchanger 32 and then supplied and mixed via the valve 34 to the upstream side of the compressor 33 in the recycle path. Thus, the gas can be pressurized by using the compressor 33 in the recycling path, and the pressure booster for pressurization can be shared by the compressor. Moreover, since the flow rate can be adjusted by the valve 34, the balance of the rectification operation in both towers can be suitably adjusted.

【0034】なお、凝縮器13の液状冷媒の貯留量及び
圧力を制御することで、凝縮のための能力調節を容易に
行うことができる。また、液状冷媒には高沸点不純物が
濃縮し易いため、放出経路を設けて(図示省略)、液状
冷媒を一部抜き出し、気化した後、放出することも可能
である。
By controlling the storage amount and pressure of the liquid refrigerant in the condenser 13, the capacity for condensation can be easily adjusted. Further, since high boiling point impurities are easily concentrated in the liquid refrigerant, it is possible to provide a discharge path (not shown), extract a part of the liquid refrigerant, vaporize the liquid refrigerant, and then discharge it.

【0035】一方、原料流体は、熱交換器32で冷却さ
れた後、経路L1より、低圧側精留塔10に供給され、
第1実施形態と同様の精留操作が行われる。その後、上
記のように、低圧側精留塔10から高圧側精留塔20へ
とリサイクル経路を経て供給された流体は、更に、高圧
側精留塔20の精留部21で精製され、塔頂部のリボイ
ルコンデンサ14を経由して、経路L10にて超高純度
の製品流体(製品ガス)として回収される。回収された
製品ガスは、熱交換器32で寒冷回収された後に排出さ
れる。その際、製品ガスの一部を弁37を介して原料流
体の供給経路に戻して、複式精留塔の最低能力以上に原
料供給量を維持することが望ましい。その場合、原料流
体の供給経路に流量等を検出する手段を設けて、その検
出結果に基づいて弁37の開度を調節するように制御し
てもよい。
On the other hand, after the raw material fluid is cooled in the heat exchanger 32, it is supplied to the low-pressure rectification column 10 through a path L1.
The same rectification operation as in the first embodiment is performed. Thereafter, as described above, the fluid supplied from the low-pressure rectification column 10 to the high-pressure rectification column 20 via the recycle path is further purified in the rectification section 21 of the high-pressure rectification column 20, Via the top reboil condenser 14, it is recovered as ultra-high-purity product fluid (product gas) in the path L10. The recovered product gas is discharged after being cold-recovered in the heat exchanger 32. At that time, it is desirable to return a part of the product gas to the feed path of the feed fluid via the valve 37 to maintain the feed rate of the double rectification column at or above the minimum capacity. In this case, a means for detecting the flow rate or the like may be provided in the supply path of the raw material fluid, and the opening degree of the valve 37 may be controlled based on the detection result.

【0036】なお、以上の設備のうち、特に外気との断
熱が要求されるものは、図3に示すようなコールドボッ
クス内に収容されている。
Among the above-mentioned facilities, those which require heat insulation from the outside air are housed in a cold box as shown in FIG.

【0037】因みに、以上の実施形態では、純度95容
量%のアルゴンを原料として、純度99.999容量%
以上の製品アルゴンを圧力8.90barAで製造する
場合、例えば、圧縮機33の出口側圧力は9.25ba
rA、導出経路L8の接続部の圧力は7.44bar
A、経路L6の接続部の圧力は3.74barAに設定
される。但し、これらの圧力は、製品圧や原料圧、精留
操作の条件に応じて、適宜変更可能なものである。
By the way, in the above-mentioned embodiment, the purity of 99.999% by volume is obtained by using 95% by volume of argon as a raw material.
When the above product argon is produced at a pressure of 8.90 barA, for example, the outlet side pressure of the compressor 33 is 9.25 bar.
rA, the pressure at the junction of the outlet path L8 is 7.44 bar
A, the pressure at the connection of path L6 is set to 3.74 barA. However, these pressures can be appropriately changed according to the product pressure, the raw material pressure, and the conditions of the rectification operation.

【0038】(アルゴン回収設備)図4は、第3実施形
態の製造方法を利用したアルゴン回収設備のフローシー
トの一例を示す。この設備は、単結晶シリコン引上装置
1、予備精製ユニット6、冷却ユニット40、除炭乾燥
ユニット50、低温精製部60、及び高純度アルゴンタ
ンク90により、概ね構成されるが、低温精製部60と
して、図3に示す装置が採用される。
(Argon Recovery Facility) FIG. 4 shows an example of a flow sheet of an argon recovery facility using the manufacturing method of the third embodiment. This equipment is generally composed of a single crystal silicon pulling apparatus 1, a preliminary purification unit 6, a cooling unit 40, a decarburization drying unit 50, a low-temperature purification unit 60, and a high-purity argon tank 90. The apparatus shown in FIG.

【0039】単結晶シリコン引上装置1には、シールド
ガスとして高純度アルゴンガス(沸点−186℃)が配
管P1より供給される。単結晶シリコン引上装置1から
真空ボンプ2によって排出されたガス(以下、「アルゴ
ン排ガス」と呼ぶ)の中には、粉じんの他、H2 、N
2 、O2 、CO、CO2 、炭化水素などが不純物として
含まれている。炭化水素は、50volPPM以下で主
としてCH4 である。なお、図4では、簡略化のため、
単結晶シリコン引上装置1及び真空ポンプ2を1台づつ
しか図示していないが、実際には複数の装置が並列に配
置される。これらの単結晶シリコン引上装置1から排出
されるアルゴン排ガスの量は、単結晶シリコン引上装置
1の運転台数などに応じて変化するので、一旦、ガスホ
ルダ3に収容される。
The single crystal silicon pulling apparatus 1 is supplied with high purity argon gas (boiling point -186 ° C.) as a shielding gas from a pipe P1. The gas (hereinafter, referred to as “argon exhaust gas”) discharged from the single crystal silicon pulling apparatus 1 by the vacuum pump 2 includes H 2 and N in addition to dust.
2 , O 2 , CO, CO 2 , and hydrocarbons are contained as impurities. Hydrocarbons are primarily CH 4 below 50VolPPM. In FIG. 4, for simplicity,
Although only one single crystal silicon pulling device 1 and one vacuum pump 2 are shown, a plurality of devices are actually arranged in parallel. Since the amount of the argon exhaust gas discharged from the single-crystal silicon lifting device 1 changes according to the number of operating single-crystal silicon lifting devices 1 and the like, the argon exhaust gas is temporarily stored in the gas holder 3.

【0040】ガスホルダ3に収容されたアルゴン排ガス
は、サクションフィルタユニット4を介して、コンプレ
ッサ5によって予備精製ユニット6に導入される。その
際、サクションフィルタユニット4により、アルゴン排
ガスから塵埃が取り除かれる。また、後続の酸化工程で
要求される酸素量を補うため、サクションフィルタユニ
ット4から出たアルゴン排ガスに、配管P31を経て微
量の空気が添加される。アルゴン排ガスは、コンプレッ
サ5で3.5〜9.0kg/cm2 G程度の圧力に昇圧
される。この圧力の値は、後続の除炭乾燥工程における
最適な運転条件あるいはアルゴン製品圧力等に応じて設
定される。
The argon exhaust gas stored in the gas holder 3 is introduced into the preliminary purification unit 6 by the compressor 5 via the suction filter unit 4. At that time, the dust is removed from the argon exhaust gas by the suction filter unit 4. Further, in order to supplement the amount of oxygen required in the subsequent oxidation step, a small amount of air is added to the argon exhaust gas discharged from the suction filter unit 4 via the pipe P31. The argon exhaust gas is pressurized by the compressor 5 to a pressure of about 3.5 to 9.0 kg / cm 2 G. The value of this pressure is set according to the optimal operating conditions in the subsequent decarburization drying step, the argon product pressure, and the like.

【0041】コンプレッサ5を出たアルゴン排ガスは、
予備精製ユニット6に導入される。予備精製ユニット6
は、一酸化炭素酸化塔7及びデオキソ塔8を備え、デオ
キソ塔7には系外の水素ガスソースから配管P32を介
して脱酸素用のH2 が供給される。アルゴン排ガスは、
先ず、一酸化炭素酸化塔7に導入され、Pd触媒によっ
てCOが酸化されてCO2 に変わる。次いで、H2 が添
加された後、デオキソ塔8に導入される。デオキソ塔8
では、Pd触媒によってO2 とH2 との反応が促進さ
れ、O2 がH2 Oに変わる。なお、デオキソ塔8におい
てO2 をほぼ完全に除去すべく添加されるH2 の流量
は、理論上の所要量に対して過剰に設定される。
The argon exhaust gas leaving the compressor 5 is:
It is introduced into the pre-purification unit 6. Preliminary purification unit 6
Has a carbon monoxide oxidizing tower 7 and a deoxo tower 8, and H 2 for deoxygenation is supplied to the deoxo tower 7 from a hydrogen gas source outside the system via a pipe P32. Argon exhaust gas is
First, CO is introduced into the carbon monoxide oxidizing tower 7 and CO is oxidized by the Pd catalyst to change to CO 2 . Next, after H 2 is added, it is introduced into the deoxo tower 8. Deoxo Tower 8
In the above, the reaction between O 2 and H 2 is promoted by the Pd catalyst, and O 2 is converted to H 2 O. Note that the flow rate of H 2 added in the deoxo tower 8 to remove O 2 almost completely is set excessively to the theoretically required amount.

【0042】予備精製設備6を出たアルゴンガス(以
下、「デオキソアルゴンガス」と呼ぶ)は、冷却ユニッ
ト40に導入される。冷却ユニット40は、水冷式の熱
交換器41、セパレータ43、冷凍機46を備えた熱交
換器45、及び水セパレータ47から構成される。デオ
キソアルゴンガスは、先ず、熱交換器41に導入され約
40℃まで冷却される。冷却されたデオキソアルゴンガ
スは、セパレータ43に導入され、凝縮した水分が分離
される。次いで、デオキソアルゴンガスは、熱交換器4
5で約10℃まで冷却される。冷却されたデオキソアル
ゴンガスは、水セパレータ47に導入され、凝縮した水
分が更に分離される。
The argon gas (hereinafter, referred to as “deoxo argon gas”) that has exited the preliminary purification facility 6 is introduced into the cooling unit 40. The cooling unit 40 includes a water-cooled heat exchanger 41, a separator 43, a heat exchanger 45 having a refrigerator 46, and a water separator 47. The deoxo argon gas is first introduced into the heat exchanger 41 and cooled to about 40 ° C. The cooled deoxo argon gas is introduced into the separator 43 to separate condensed moisture. Next, the deoxo argon gas is supplied to the heat exchanger 4.
5. Cool to about 10 ° C. The cooled deoxo argon gas is introduced into the water separator 47, and the condensed water is further separated.

【0043】冷却ユニット40を出たデオキソアルゴン
ガスは、除炭乾燥ユニット50に導入される。除炭乾燥
ユニット50は、交互に使用される一対の吸着塔51及
び52から構成される。吸着塔5l及び52には、H2
O及びCO2 を吸着するため、アルミナ及びモレキュラ
ーシーブ等の充填物が充填されている。なお、一対の吸
着塔51及び52は、圧カスィング吸着(PSA)ある
いは温度スイング吸着〈TSA)の原理を利用して運転
されるため、吸着剤の再生用に窒素ガス供給用の配管P
50と、排出用の配管P51が接続されている。
The deoxo argon gas leaving the cooling unit 40 is introduced into the decarburization drying unit 50. The decarburization drying unit 50 includes a pair of adsorption towers 51 and 52 used alternately. The adsorption towers 51 and 52 contain H 2
Fillers such as alumina and molecular sieves are filled to adsorb O and CO 2 . Since the pair of adsorption towers 51 and 52 are operated using the principle of pressure-casing adsorption (PSA) or temperature swing adsorption (TSA), a pipe P for supplying nitrogen gas for regeneration of the adsorbent is used.
50 and a discharge pipe P51 are connected.

【0044】除炭乾燥ユニット50を出たデオキソアル
ゴンガスは、温度約10℃、圧力約6.4kg/cm2
Gで、低温精製部60の熱交換器32に導入される。そ
の時の組成は、例えばN2 :2.0vol%、CH4
0.005vol%、H2 :0.5vol%で、残りは
アルゴンである。
The deoxo argon gas exiting the decarburization drying unit 50 has a temperature of about 10 ° C. and a pressure of about 6.4 kg / cm 2.
At G, it is introduced into the heat exchanger 32 of the low-temperature purification section 60. The composition at that time is, for example, N 2 : 2.0 vol%, CH 4 :
0.005vol%, H 2: with 0.5 vol%, the remainder being argon.

【0045】低温精製部60では、前述の第3の実施形
態の如き精留操作が行われ、超高純度のアルゴンガス
(純度99.999%以上)が製品ガスとして回収され
る。その際、寒冷源として、高純度の液体アルゴンが、
タンク90より供給される。製品ガスは配管P15を通
って製品フィルタ設備70に導入され、単結晶シリコン
引上装置1の導入に必要な清浄度のレベルまで除塵され
た後、再び単結晶シリコン引上装置1に供給される。な
お、初期に又は不足分として単結晶シリコン引上装置1
に供給される高純度アルゴンガスは、上記のタンク90
から弁V8を介して蒸発器95に導入されてガス化した
ものが使用される。
In the low-temperature purification section 60, the rectification operation as in the third embodiment described above is performed, and an ultra-high purity argon gas (purity of 99.999% or more) is recovered as a product gas. At that time, high-purity liquid argon as a cold source,
It is supplied from a tank 90. The product gas is introduced into the product filter facility 70 through the pipe P15, and is dust-removed to a level of cleanliness required for introduction of the single crystal silicon lifting apparatus 1, and then supplied to the single crystal silicon lifting apparatus 1 again. . Note that the single crystal silicon pulling apparatus 1 is initially or as a shortage.
High-purity argon gas supplied to the tank 90
Is introduced into the evaporator 95 through the valve V8 and gasified.

【0046】上記の製品ガスは、その一部を弁38を介
してコンプレッサ5の出口側に戻すことにより、複式精
留塔の最低能力以上に原料供給量を維持することが望ま
しい。その場合、図3に示す低温精製部における弁37
及びその経路を設けなくてもよい。
It is desirable that a part of the above-mentioned product gas be returned to the outlet side of the compressor 5 through the valve 38 so that the raw material supply amount is maintained at least the minimum capacity of the double rectification column. In that case, the valve 37 in the low-temperature purification section shown in FIG.
It is not necessary to provide the path.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の製造方法に用いる装置の一例を
示す概略構成図
FIG. 1 is a schematic configuration diagram illustrating an example of an apparatus used in a manufacturing method according to a first embodiment.

【図2】第2実施形態の製造方法に用いる装置の一例を
示す概略構成図
FIG. 2 is a schematic configuration diagram illustrating an example of an apparatus used in a manufacturing method according to a second embodiment.

【図3】第3実施形態の製造方法に用いる装置の一例を
示す概略構成図
FIG. 3 is a schematic configuration diagram illustrating an example of an apparatus used in a manufacturing method according to a third embodiment.

【図4】第3実施形態を利用したアルゴン回収設備の一
例を示す概略構成図
FIG. 4 is a schematic configuration diagram showing an example of an argon recovery facility using a third embodiment.

【符号の説明】[Explanation of symbols]

10 低圧側精留塔 11 精留部 12 精留部 13 凝縮器 14 リボイルコンデンサ 20 高圧側精留塔 21 精留部 31 圧縮機(昇圧機) 33 圧縮機(昇圧機) 34 弁 36 膨張弁 L8 導出経路 DESCRIPTION OF SYMBOLS 10 Low pressure rectification tower 11 Rectification part 12 Rectification part 13 Condenser 14 Reboil condenser 20 High pressure rectification tower 21 Rectification part 31 Compressor (Pressure booster) 33 Compressor (Pressure riser) 34 Valve 36 Expansion valve L8 derivation route

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 隆夫 兵庫県加古郡播磨町新島16番 日本エア・ リキード株式会社播磨テクニカルセンター 内 Fターム(参考) 4D047 AA01 AB04 CA03 DA06  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takao Yamamoto No. 16 Niijima, Harima-cho, Kako-gun, Hyogo Japan Air Liquide Harima Technical Center F-term (reference) 4D047 AA01 AB04 CA03 DA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 低圧側精留塔と高圧側精留塔とがリボイ
ルコンデンサを介して上下に配置された複式精留塔を用
いて、予備精製した原料流体を順次精製することにより
超高純度ガスを製造する工程を有する超高純度ガスの製
造方法において、 前記原料流体を前記低圧側精留塔の精留部に供給しつ
つ、前記低圧側精留塔の前記原料流体の供給部より塔底
側の流体の一部を抜き出した後、昇圧機により加圧し、
その加圧した加圧流体を前記高圧側精留塔の精留部又は
塔底部に導入しながら、その高圧側精留塔の前記加圧流
体の供給部より塔頂側から超高純度物質を回収すること
を特徴とする超高純度ガスの製造方法。
An ultrahigh-purity raw material fluid is purified by sequentially purifying raw material fluids that have been preliminarily purified using a double rectification column in which a low-pressure rectification column and a high-pressure rectification column are vertically arranged via a reboil condenser. In the method for producing an ultra-high-purity gas having a step of producing a purity gas, while supplying the raw material fluid to the rectification section of the low-pressure rectification column, from the supply section of the raw fluid in the low-pressure rectification column After extracting a part of the fluid on the bottom side of the tower, pressurize with a pressure booster,
While introducing the pressurized pressurized fluid into the rectification section or the bottom of the high-pressure rectification column, the ultrahigh-purity substance is supplied from the top of the high-pressure rectification column from the supply section of the pressurized fluid to the high-pressure rectification column. A method for producing an ultra-high-purity gas, comprising recovering the gas.
【請求項2】 前記高圧側精留塔の塔底液を抜き出して
減圧し、前記低圧側精留塔の凝縮器の冷媒貯留部に導入
し、その冷媒貯留部で気化したガスを圧縮機で圧縮した
後、リボイルガスとして前記高圧側精留塔の塔底部に供
給するリサイクル経路を構成すると共に、 前記低圧側精留塔より抜き出した前記流体を加圧するに
あたり、弁を介してその流体を前記リサイクル経路の圧
縮機の上流側に供給混合する請求項1記載の製造方法。
2. A bottom liquid of the high-pressure rectification column is withdrawn, decompressed, introduced into a refrigerant storage section of a condenser of the low-pressure rectification tower, and a gas vaporized in the refrigerant storage section is compressed by a compressor. After the compression, a recycle path is supplied to the bottom of the high-pressure rectification tower as reboil gas, and the fluid extracted from the low-pressure rectification tower is pressurized. 2. The production method according to claim 1, wherein the mixture is supplied to the upstream side of the compressor in the path.
【請求項3】 前記原料流体が、純度95容量%以上の
アルゴンであって、より低沸点の物質と、より高沸点の
物質とを不純物として含有するものである請求項1又は
2記載の製造方法。
3. The production method according to claim 1, wherein the raw material fluid is argon having a purity of 95% by volume or more, and contains a substance having a lower boiling point and a substance having a higher boiling point as impurities. Method.
【請求項4】 原料流体の供給部を中間に備えた精留
部、及びその精留部からのガスを液化して一部還流液と
して供給する凝縮器を有する低圧側精留塔と、その低圧
側精留塔の下方に配置され、精留部を有する高圧側精留
塔と、前記低圧側精留塔と前記高圧側精留塔との間に介
在し、超高純度製品を未液化ガスとして回収する回収部
を有するリボイルコンデンサとを備えた複式精留塔と、 前記高圧側精留塔の塔底液を抜き出して減圧し、前記低
圧側精留塔の凝縮器の冷媒貯留部に導入し、その冷媒貯
留部で気化したガスを圧縮機で圧縮した後、リボイルガ
スとして前記高圧側精留塔の塔底部に供給するリサイク
ル経路と、 前記原料流体の供給部より塔底側の流体の一部を、弁を
介して前記リサイクル経路の圧縮機の上流側に供給混合
する導出経路とを備えた超高純度ガスの製造装置。
4. A low-pressure rectification column having a rectification section having a supply section for a raw material fluid in the middle, a condenser for liquefying gas from the rectification section and supplying a part of the gas as a reflux liquid, A high-pressure rectification tower having a rectification section, which is disposed below the low-pressure rectification tower, is interposed between the low-pressure rectification tower and the high-pressure rectification tower, and liquefies ultra-high-purity products. A double rectification column equipped with a reboil condenser having a recovery section for recovering as a gas, a bottom liquid of the high-pressure rectification tower is withdrawn and depressurized, and a refrigerant storage section of a condenser of the low-pressure rectification tower And a recycle path for supplying gas as a reboil gas to the bottom of the high-pressure rectification column after compressing the gas vaporized in the refrigerant storage section with a compressor, and a fluid on the bottom side from the supply section of the raw material fluid. To supply and mix a part of the gas to the upstream side of the compressor in the recycle path via a valve Apparatus for producing ultra-high purity gas and a road.
JP11561199A 1999-04-23 1999-04-23 Method and apparatus for producing ultra high purity gas Expired - Lifetime JP4072841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11561199A JP4072841B2 (en) 1999-04-23 1999-04-23 Method and apparatus for producing ultra high purity gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11561199A JP4072841B2 (en) 1999-04-23 1999-04-23 Method and apparatus for producing ultra high purity gas

Publications (2)

Publication Number Publication Date
JP2000304438A true JP2000304438A (en) 2000-11-02
JP4072841B2 JP4072841B2 (en) 2008-04-09

Family

ID=14666944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11561199A Expired - Lifetime JP4072841B2 (en) 1999-04-23 1999-04-23 Method and apparatus for producing ultra high purity gas

Country Status (1)

Country Link
JP (1) JP4072841B2 (en)

Also Published As

Publication number Publication date
JP4072841B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR100291684B1 (en) How to separate air
JPH0140271B2 (en)
JPH04222381A (en) Manufacture of high-purity argon
JP3020842B2 (en) Argon purification method and apparatus
JP2597521B2 (en) Air separation by cryogenic distillation for crude argon product production
JPH05296651A (en) Apparatus for producing nitrogen/oxygen of ultrahigh purity
JPH06210162A (en) Ultralow temperature fractionation system with thermally unified argon column
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP2776461B2 (en) Air separation method by cryogenic distillation to produce ultra-high purity oxygen
JPH09264667A (en) Manufacturing device for extra-high purity nitrogen and oxygen
JPH04295587A (en) Production system of rough neon
JP2636949B2 (en) Improved nitrogen generator
JPH11316080A (en) Cryogenic purification method and device for producing ultra-high purity nitrogen and ultra-high purity oxygen
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP2585955B2 (en) Air separation equipment
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
JPH11228116A (en) Recovering and purifying method of argon and device therefor
RU2069293C1 (en) Cryogenic method of producing nitrogen from air
US20140165648A1 (en) Purification of inert gases to remove trace impurities
JPH05312469A (en) Apparatus and method for liquefying and separating air
JPH07133982A (en) Method and apparatus for preparing high purity argon
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP3424101B2 (en) High purity argon separation equipment
JP4072841B2 (en) Method and apparatus for producing ultra high purity gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term