JP2000302537A - Corrosion resistant alumina sintered compact - Google Patents

Corrosion resistant alumina sintered compact

Info

Publication number
JP2000302537A
JP2000302537A JP11105118A JP10511899A JP2000302537A JP 2000302537 A JP2000302537 A JP 2000302537A JP 11105118 A JP11105118 A JP 11105118A JP 10511899 A JP10511899 A JP 10511899A JP 2000302537 A JP2000302537 A JP 2000302537A
Authority
JP
Japan
Prior art keywords
intercrystalline
domain
plasma
atomic ratio
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11105118A
Other languages
Japanese (ja)
Inventor
Mutsuhisa Nagahama
睦久 永浜
Moriyoshi Kanamaru
守賀 金丸
Atsushi Hisamoto
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11105118A priority Critical patent/JP2000302537A/en
Publication of JP2000302537A publication Critical patent/JP2000302537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve plasma resistance by adjusting Si/Al atomic ratio of alumina ceramic intercrystalline domain to below the specified value. SOLUTION: The Si/Al atomic ratio of alumina ceramic intercrystalline domain is adjusted to below 0.2 and the width of the intercrystalline domain is preferably made less than 10 Angstroms. A silica glass phase existing in the intercrystalline domain is corroded by fluorine plasma having high chemical activity and subsequently the formed pit-shaped corrosion holes physically damage the alumina ceramic as the starting points. Therefore the improvement of the chemical corrosion property is indispensable for improving the fluorine plasma resistance of the alumina ceramic. It is necessary that the state of the silica glass phase existing in the intercrystalline domain is changed so that the phase is hardly volatile and corroded chemically even when irradiated by fluorine plasma. The Si/Al atomic ratio of the intercrystalline domain can be changed by adjusting the particle size, the purity, etc., of alumina powder of the raw material. When the Si/Al atomic ratio is low, the plasma resistance is improved. This sintered compact is obtained by sintering under a nitrogen atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐食性アルミナ焼結
体に関し、特に半導体製造装置や液晶ディスプレイ製造
装置等においてフッ素系などの高腐食性のプラズマにさ
らされる環境下で用いられる部品等の構成材料として好
適な耐食性アルミナ焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant alumina sintered body, and more particularly to a constituent material such as a part used in an environment exposed to highly corrosive plasma such as fluorine in a semiconductor manufacturing apparatus or a liquid crystal display manufacturing apparatus. The present invention relates to a corrosion-resistant alumina sintered body that is suitable as a material.

【0002】[0002]

【従来の技術】近年の半導体製造プロセスや液晶ディス
プレイ製造プロセスにおいては、腐食性ガスや高密度プ
ラズマが多用されている。特にエッチング装置ではフッ
素系などの高腐食性プラズマが使用されていることか
ら、エッチング装置内の各部位には高い耐食性が要求さ
れる。そのためAl、AlN、SiCなどといっ
たセラミックス材料を部品として適用した技術(例えば
特開平7−183277号公報など)も多く提案されて
いるが、腐食性ガスに対する耐食性は有しているものの
耐プラズマ性は充分でなく、特にフッ素系プラズマは非
常に低い圧力及び低エネルギー状態で高いイオン密度を
有することから、フッ素系プラズマには十分な抵抗性を
有するものではなかった。
2. Description of the Related Art In recent semiconductor manufacturing processes and liquid crystal display manufacturing processes, corrosive gases and high-density plasma are frequently used. In particular, since highly corrosive plasma such as fluorine is used in the etching apparatus, high corrosion resistance is required for each part in the etching apparatus. For this reason, many techniques (for example, Japanese Patent Application Laid-Open No. 7-183277) have been proposed in which a ceramic material such as Al 2 O 3 , AlN, or SiC is used as a component. The plasma properties are not sufficient, and especially fluorine-based plasma has a high ion density under a very low pressure and low energy state, and thus has no sufficient resistance to fluorine-based plasma.

【0003】特開平8−231266号公報には、アル
ミナセラミックスの粒径分布を制御することにより、上
記フッ素系プラズマに対する耐プラズマ性の向上を図る
技術が開示されている。しかしながら、この方法では従
来例と比較して初期エッチング速度を若干低減するもの
の、アルミナ以外にSiO、CaO、MgOからなる
混合物を焼結助剤として約0.2〜0.5wt%含むた
め、半導体製造プロセスといった異物のコンタミネーシ
ョンを嫌うプロセスには不向きであった。また、特開平
10−279349号公報には、純度99.99%以上
の耐プラズマ性を有するアルミナセラミックスが開示さ
れている。この方法によれば、上記のような異物のコン
タミネーションは防止でき、CF系のプラズマに対して
十分な耐食性を示しているが、シリカガラス相を含む幅
数十Åの粒界を含んでいるため、さらに高エネルギー
な、例えばNF系プラズマに対する耐食性は十分とはい
えなかった。なお、耐プラズマ性に優れる材料として単
結晶アルミナが知られているが(特開平7−29959
号公報)、単結晶アルミナを得るには、溶融物からの単
結晶引き上げ法という長時間の生産工程を必要とし、し
かも生産性が低いという問題がある。
[0003] Japanese Patent Application Laid-Open No. Hei 8-231266 discloses a technique for controlling the particle size distribution of alumina ceramics to improve the plasma resistance against the fluorine-based plasma. However, although this method slightly reduces the initial etching rate as compared with the conventional example, it contains about 0.2 to 0.5 wt% of a mixture of SiO 2 , CaO, and MgO as a sintering aid in addition to alumina. It is not suitable for a process such as a semiconductor manufacturing process which rejects contamination of foreign matter. Japanese Patent Application Laid-Open No. Hei 10-279349 discloses an alumina ceramic having a plasma resistance of 99.99% or more in purity. According to this method, the contamination of the foreign matter as described above can be prevented, and it shows sufficient corrosion resistance to CF-based plasma, but contains a grain boundary having a width of several tens of mm including a silica glass phase. Therefore, the corrosion resistance to higher energy, for example, NF-based plasma was not sufficient. As a material having excellent plasma resistance, single crystal alumina is known (Japanese Patent Application Laid-Open No. 7-29959).
In order to obtain single-crystal alumina, there is a problem that a long-term production step called a single crystal pulling method from a melt is required, and the productivity is low.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点に
着目してなされたものであって、単結晶引き上げ法のよ
うな特殊な方法ではなく一般的な焼結法によって得るこ
とができ、フッ素などハロゲン系を含むプラズマに対し
て十分な耐食性を発揮するアルミナセラミックスを提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and can be obtained by a general sintering method instead of a special method such as a single crystal pulling method. It is an object of the present invention to provide an alumina ceramic exhibiting sufficient corrosion resistance to a plasma containing a halogen system such as fluorine.

【0005】[0005]

【課題を解決するための手段】本発明に係る耐食性アル
ミナ焼結体は、粒界のSi/Al原子比が0.2以下で
あることを特徴とする。このとき幅10Å未満の粒界が
観察されるようになれば、さらにプラズマ耐食性が向上
する。
The corrosion-resistant alumina sintered body according to the present invention is characterized in that the grain boundary has an Si / Al atomic ratio of 0.2 or less. At this time, if a grain boundary having a width of less than 10 ° is observed, the plasma corrosion resistance is further improved.

【0006】[0006]

【発明の実施の形態】アルミナセラミックスをプラズマ
で照射した時の損傷機構は、物理的損傷と化学的損傷に
大別される。物理的損傷は、プラズマ中の荷電粒子がア
ルミナセラミックス部位にかかるバイアス電位で加速さ
れ、アルミナセラミックスをスパッタリングすることで
進行する損傷機構であり、アルミナセラミックス表面に
くぼみや穴が存在するとそのくぼみ等を起点にして損傷
がクレータ上に拡がっていく。すなわち、密度が低く組
織中に気孔(ポア)を有するアルミナセラミックスは、
表面のポアを起点に損傷が進行する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Damage mechanisms when plasma is applied to alumina ceramics are roughly classified into physical damage and chemical damage. Physical damage is a damage mechanism in which charged particles in the plasma are accelerated by a bias potential applied to the alumina ceramics part and are sputtered by alumina ceramics. From the starting point, the damage spreads on the crater. In other words, alumina ceramics with low density and pores in the structure are
Damage progresses from the pores on the surface.

【0007】一方、プラズマによるアルミナセラミック
スの化学的損傷は、アルミナセラミックス粒界相で生じ
るものである。例えば化学的活性の高いフッ素系プラズ
マがアルミナセラミックスに照射されると、アルミナセ
ラミックス粒界に存在するシリカガラス相を腐食し、シ
リカガラス相がSiFというガス成分として揮発し、
三重点粒界にピット状の腐食孔が形成される。このよう
に化学的損傷によりピット状の腐食孔が形成されると、
この腐食孔を起点にして前記物理的損傷を受け、プラズ
マによる損傷が一段と進行する。このような化学的損傷
はフッ素系プラズマに限らず、粒界のシリカガラス相を
腐食し得る他のハロゲン系プラズマ(例えば塩素系)中
においても、同様のメカニズムで発生しているものと考
えられる。
On the other hand, chemical damage of alumina ceramics caused by plasma occurs in the alumina ceramic grain boundary phase. For example, when fluorinated plasma having high chemical activity is irradiated on alumina ceramics, the silica glass phase present at the alumina ceramic grain boundaries is corroded, and the silica glass phase is volatilized as a gas component called SiF 4 ,
Pit-shaped corrosion holes are formed at the triple point grain boundaries. When pit-like corrosion holes are formed due to chemical damage in this way,
The physical damage is caused from the corrosion hole as a starting point, and the damage by plasma further progresses. It is considered that such chemical damage occurs not only in the fluorine-based plasma but also in other halogen-based plasmas (for example, chlorine-based) that can corrode the silica glass phase at the grain boundary by the same mechanism. .

【0008】そこで、本発明者らはフッ素系プラズマの
耐食性向上を目指し、化学的損傷の改善に取り組んだ。
上述したようにセラミックス粒界にはシリカガラス相が
存在し、それが化学的活性の高いフッ素系のプラズマに
腐食される。その結果、形成されたピット状の腐食孔を
起点に激しい物理的損傷を受ける。従って、アルミナセ
ラミックスの耐フッ素系プラズマ性の飛躍的向上にはこ
の化学的腐食性に対する改善が不可欠である。
Accordingly, the present inventors have worked on improvement of chemical damage with the aim of improving the corrosion resistance of fluorine-based plasma.
As described above, the silica glass phase exists at the ceramic grain boundaries, and is corroded by fluorine-based plasma having high chemical activity. As a result, severe physical damage is caused from the formed pit-shaped corrosion holes. Therefore, it is indispensable to improve the chemical corrosion property in order to dramatically improve the fluorine plasma resistance of alumina ceramics.

【0009】化学的腐食性を改善するためには、粒界に
存在するシリカガラス相の状態を、フッ素系プラズマで
照射しても揮発並びに化学的腐食を受けない性質に変え
る必要がある。そのためには、フッ化しても揮発しない
元素をシリカガラス相の中に溶解する方法が考えられ
る。例えばNaやCaといったアルカリ(土類)金属や
重金属などの金属元素を予めシリカガラスなどに溶解さ
せれば、シリカガラスがフッ化しても気体とはならず固
体として残存することから、ピットが形成されることは
ない。しかし、半導体プロセスの高純度化ニーズから、
前記金属元素の添加は不適切である。
In order to improve the chemical corrosivity, it is necessary to change the state of the silica glass phase present at the grain boundaries to a property that does not undergo volatilization and chemical corrosion even when irradiated with fluorine-based plasma. For this purpose, a method in which an element that does not volatilize even when fluorinated is dissolved in the silica glass phase can be considered. For example, if a metal element such as an alkali (earth) metal such as Na or Ca or a heavy metal is dissolved in silica glass or the like in advance, even if the silica glass is fluorinated, it does not become a gas but remains as a solid, so that pits are formed. It will not be done. However, due to the need for high purity semiconductor processes,
The addition of the metal element is inappropriate.

【0010】そこで、本発明者らは、半導体プロセス上
問題とならない元素による構成を前提とし、さらに実験
を重ねた結果、焼結時の雰囲気(主に窒素分圧)、原料
アルミナ粉末の粒径及び純度が変わることによって粒界
のSi/Al原子比が変わり、かつSi/Al原子比が
低いとき耐プラズマ性が向上することを見出し、本発明
に到達した。本発明ではSi/Al原子比を0.2以下
(望ましくは0.1以下)と規定した。Si/Al原子
比が0.2以下の粒界を有するアルミナセラミックス
は、後述する実施例に示すように、焼結を窒素を含む雰
囲気下で行うことにより得ることができる。
Therefore, the present inventors presuppose that the composition is made of an element which does not cause a problem in the semiconductor process, and as a result of repeated experiments, the atmosphere during sintering (mainly nitrogen partial pressure), the particle size of the raw alumina powder Further, the inventors have found that the Si / Al atomic ratio of the grain boundary changes due to the change in the purity and that the plasma resistance is improved when the Si / Al atomic ratio is low. In the present invention, the atomic ratio of Si / Al is specified to be 0.2 or less (preferably 0.1 or less). Alumina ceramics having a grain boundary having a Si / Al atomic ratio of 0.2 or less can be obtained by performing sintering in an atmosphere containing nitrogen, as shown in Examples described later.

【0011】ここで、窒素の作用は以下のように考えら
れる。粒界を構成しているシリカガラス(Si−O)相
中のシリコン(Si)は、焼結中に窒素(N)と以下
の反応を起こすと予想される。 Si+1/2N(g)→SiN(gas)↑・・・・(1) また粒界中に含まれるNa、Caなど他成分も、窒素と
の反応によりSiと同様に粒界から除去することができ
る。上記(1)の反応は、アルゴンなどの不活性雰囲気
下の焼結時に起こる下記(2)の反応と異なり、化学反
応によってSiを除去するため、格段に効率よく粒界中
のシリコンなど不純物を除去するのに適している。 Si+(Ar)→Si(gas)↑・・・・(2)
Here, the action of nitrogen is considered as follows. Silicon silica glass (Si-O) phase constituting the grain boundary (Si) is expected to cause the following reactions during sintering and nitrogen (N 2). Si + 1 / 2N 2 (g) → SiN (gas) ↑... (1) In addition, other components such as Na and Ca contained in the grain boundary are also removed from the grain boundary in the same manner as Si by reaction with nitrogen. Can be. The reaction of the above (1) is different from the reaction of the following (2) that occurs during sintering under an inert atmosphere such as argon, and removes Si by a chemical reaction, so that impurities such as silicon in grain boundaries can be significantly efficiently removed. Suitable for removal. Si + (Ar) → Si (gas) ↑ ・ ・ ・ ・ (2)

【0012】上記の反応(1)を利用すると、まず第一
段階としてアルミナセラミックス粒界のシリカガラス相
を構成するシリコンが減少するため、化学的活性の高い
フッ素系のプラズマ照射を受けてもピットが形成されに
くく、ピット部を起点とした激しい物理的損傷を受けな
くなり、耐プラズマ性が向上する。そして、焼結時の窒
素分圧を高めたり原料アルミナ粉末の粒径を小さくする
ことにより粒界幅は小さくなり、粒界幅が10Å未満の
粒界が全部又は大部分を占めるようになるとさらに耐プ
ラズマ腐食性が向上する。
When the above reaction (1) is used, the silicon constituting the silica glass phase at the grain boundaries of alumina ceramics is reduced as a first step, so that the pits are exposed even when irradiated with fluorine-based plasma having high chemical activity. Are not easily formed, severe physical damage starting from the pit portion is prevented, and the plasma resistance is improved. Then, by increasing the nitrogen partial pressure during sintering or reducing the particle size of the raw material alumina powder, the grain boundary width is reduced, and when the grain boundary having a grain boundary width of less than 10 ° occupies all or most of the grain boundaries, furthermore, Plasma corrosion resistance is improved.

【0013】[0013]

【実施例】アルミナ粉末A(純度99.99%;平均粒
径0.15μm)及びアルミナ粉末B(純度99.8
%;平均粒径0.6μm)をそれぞれ平板プレス成形し
たのち、表1及び下記に示す条件下で脱脂及び焼結を行
い、相対密度98%以上のアルミナセラミックス焼結体
No.1〜No.12を得た。 製造条件 脱脂条件:500℃×2時間 焼結条件:10気圧以下の焼結は粉末A〜Bとも脱脂
体を下記条件にて焼結し、10気圧を越える(100気
圧、1500気圧)焼結は、一度1気圧の窒素中130
0℃(粉末A)、1650℃(粉末B)にて予備焼結
(下記条件)した後、100気圧又は1500気圧をか
けて下記条件にて焼結した。 ・昇温速度・・・・600℃/hr ・焼結時間・・・・2時間 ・冷却速度・・・・炉内放冷 なお、上記アルミナセラミックスの相対密度は、理論密
度を3.98g/cm とし、純水を用いるアルキメデ
ス法で実際の密度を測定して下記(3)式により求め
た。ρr=ρm/ρt×100・・・・(3) ρr:相対密度(%) ρm:測定密度(g/cm) ρt:理論密度(g/cm
Example: Alumina powder A (purity 99.99%; average particle size)
Diameter 0.15 μm) and alumina powder B (purity 99.8)
%; Average particle size of 0.6 μm).
After that, degreasing and sintering were performed under the conditions shown in Table 1 and below.
Alumina ceramic sintered body with relative density of 98% or more
No. 1 to No. 12 was obtained. Manufacturing conditions Degreasing conditions: 500 ° C x 2 hours Sintering conditions: Sintering under 10 atm or less degreases both powders A and B
The body is sintered under the following conditions and exceeds 10 atmospheres (100
Pressure, 1500 atm).
Pre-sintering at 0 ° C (powder A) and 1650 ° C (powder B)
(Under the following conditions)
And sintered under the following conditions. -Heating rate: 600 ° C / hr-Sintering time-2 hours-Cooling rate-Cooling in furnace The relative density of the above alumina ceramic is theoretically high
3.98 g / cm 3Archimede using pure water
The actual density is measured by the following method and found by the following equation (3).
Was. ρr = ρm / ρt × 100 (3) ρr: relative density (%) ρm: measured density (g / cm)3) Ρt: theoretical density (g / cm3)

【0014】[0014]

【表1】 [Table 1]

【0015】また、アルミナセラミックス粒界の粒界幅
及びSi/Al原子比は、TEM像(装置=日立製作所
製HF2000)、X線マイクロアナリシス(エネルギ
ー分散型、装置=ケベックス社製SIGMA)により下
記要領で同定し、その結果を表1にあわせて記載した。 ・粒界幅;上記アルミナセラミックスから薄片の試料を
調整し、加速電圧200kV、対物絞り80μmで、電
子ビームが粒界と平行となるように試料角度を調節して
TEM写真(100万倍)を撮り、これを1.5倍に引
き延ばして粒界幅を測定した。なお、表1中で粒界幅1
0Å未満とは、上記1.5倍に引き延ばした写真におい
て粒界幅が1.5mm未満の粒界が観察されたサンプル
であり、実際には、表1で粒界幅10Å未満と示した全
てのサンプルで、図1(No.1)に示すような粒界幅
が幅として測定できないような粒界が観察された。・S
i/Al原子比;上記アルミナセラミックスから試料を
調整し、スポット径1.5nmのX線マイクロアナリシ
スを用い、粒界の中心にスポットの中心がくるようにし
て20カ所定量分析し、その値を平均した。なお、Si
のピークが検出されなかったサンプルについては、Si
(原子%)/Al(原子%)比を表1中に0と示した。
The grain boundary width and the Si / Al atomic ratio of the alumina ceramic grain boundary were determined by the TEM image (apparatus: HF2000, manufactured by Hitachi, Ltd.) and X-ray microanalysis (energy dispersive type, apparatus: SIGMA, manufactured by Quebex Corporation). Identification was performed in the same manner, and the results are shown in Table 1.・ Grain boundary width: A TEM photograph (1,000,000 times) was prepared by preparing a thin sample from the above alumina ceramic, adjusting the sample angle with an acceleration voltage of 200 kV and an objective aperture of 80 μm so that the electron beam was parallel to the grain boundary. The film was taken, stretched 1.5 times, and the grain boundary width was measured. In Table 1, the grain boundary width 1
Less than 0 ° is a sample in which a grain boundary having a grain width of less than 1.5 mm was observed in the photograph stretched to 1.5 times. In the sample No. 1, a grain boundary in which the width of the grain boundary could not be measured as the width as shown in FIG. 1 (No. 1) was observed.・ S
i / Al atomic ratio: A sample was prepared from the above alumina ceramics, and a predetermined amount was analyzed using X-ray microanalysis with a spot diameter of 1.5 nm so that the center of the spot was located at the center of the grain boundary. Averaged. Note that Si
For samples in which no peak was detected, Si
The ratio of (atomic%) / Al (atomic%) was shown as 0 in Table 1.

【0016】続いて、これらのアルミナセラミックスを
20×20×厚さ1mmの板状に切り出し、片面を3μ
mのダイヤモンド砥石で研磨し、表面粗度Ra:0.3
μmの鏡面に仕上げた。次にアセトン洗浄、酸洗浄、ア
ルカリ洗浄したのち、真空チャンバ内にセットし、以下
に示すエッチング条件にてプラズマ腐食試験を実施し
た。 「エッチング条件」 ガス:NF/Ar=15/40sccm ガス圧:55Pa Top RF:1800W(13.56MHz) Bias RF:100W,Vpp=1000V(700kHz) サセプタ温度:27℃ 照射時間:120分
Subsequently, these alumina ceramics were cut into a plate of 20 × 20 × 1 mm thick, and one side was 3 μm.
polished with a diamond grindstone of m, surface roughness Ra: 0.3
It was finished to a mirror surface of μm. Next, after acetone cleaning, acid cleaning, and alkali cleaning, they were set in a vacuum chamber, and a plasma corrosion test was performed under the following etching conditions. “Etching conditions” Gas: NF 3 / Ar = 15/40 sccm Gas pressure: 55 Pa Top RF: 1800 W (13.56 MHz) Bias RF: 100 W, Vpp = 1000 V (700 kHz) Susceptor temperature: 27 ° C. Irradiation time: 120 minutes

【0017】試料の損傷程度は腐食試験前後の重量減少
量で評価した。試料片の重量は約1.6gで、詳細な重
量変化を精密電子天秤(Sartorius製、型式R200D)で
0.01mg単位まで測定し、腐食試験による重量減少
率を下記(4)式により求めた。その結果を表1にあわ
せて示す。 R={(Wb−Wa)/Wb}/t×100・・・・(4) R:重量減少率(wt%/h) Wb:腐食試験前重量(g) Wa:腐食試験後重量(g) t:照射時間(h)
The degree of damage to the sample was evaluated by the weight loss before and after the corrosion test. The weight of the sample piece was about 1.6 g, and a detailed change in weight was measured to the nearest 0.01 mg with a precision electronic balance (manufactured by Sartorius, model R200D), and the weight loss rate by the corrosion test was determined by the following equation (4). . The results are shown in Table 1. R = {(Wb−Wa) / Wb} / t × 100 (4) R: Weight loss rate (wt% / h) Wb: Weight before corrosion test (g) Wa: Weight after corrosion test (g) T) Irradiation time (h)

【0018】図2に、表1のプラズマ照射試験結果(重
量減少率)とSi/Al比をプロットしたものを示す。
図2より、粒界中のSi/Al原子比が0.2以下とな
ったアルミナセラミックスでは、耐プラズマ性が良好で
あることがわかる。また、表1より、粒界幅が10Å未
満のアルミナセラミックスではさらに耐プラズマ性が良
好であることがわかる。
FIG. 2 shows a plot of the plasma irradiation test results (weight loss rate) and the Si / Al ratio in Table 1.
From FIG. 2, it can be seen that the alumina ceramic having the Si / Al atomic ratio in the grain boundary of 0.2 or less has good plasma resistance. Table 1 also shows that alumina ceramics having a grain boundary width of less than 10 ° have better plasma resistance.

【0019】[0019]

【発明の効果】本発明によれば、フッ素などハロゲン系
を含むプラズマに対して十分な耐食性を発揮するアルミ
ナセラミックスを、一般的な焼結法によって得ることが
できる。
According to the present invention, alumina ceramics exhibiting sufficient corrosion resistance to plasma containing halogen such as fluorine can be obtained by a general sintering method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例(試料No.1)のアルミナセラミッ
クス粒界の図(TEMによる組織写真)である。
FIG. 1 is a diagram (TEM photograph) of an alumina ceramic grain boundary of an example (sample No. 1).

【図2】 プラズマ照射試験による重量減少率とSi/
Al比をプロットした図である。
FIG. 2 shows the weight loss rate and Si /
It is the figure which plotted Al ratio.

フロントページの続き (72)発明者 久本 淳 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4G030 AA36 AA37 BA33 CA05 GA22 GA26 GA27 5F004 AA16 BB29 DA17 DA23 DB00Continued on the front page (72) Inventor Atsushi Hisamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo F-term in Kobe Steel, Ltd. Kobe Research Institute 4G030 AA36 AA37 BA33 CA05 GA22 GA26 GA27 5F004 AA16 BB29 DA17 DA23 DB00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒界のSi/Al原子比が0.2以下で
あることを特徴とする耐食性アルミナ焼結体。
1. A corrosion-resistant alumina sintered body characterized in that the grain boundary has an atomic ratio of Si / Al of 0.2 or less.
【請求項2】 幅10Å未満の粒界が観察されることを
特徴とする請求項1に記載された耐食性アルミナ焼結
体。
2. The corrosion-resistant alumina sintered body according to claim 1, wherein a grain boundary having a width of less than 10 ° is observed.
JP11105118A 1999-04-13 1999-04-13 Corrosion resistant alumina sintered compact Pending JP2000302537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105118A JP2000302537A (en) 1999-04-13 1999-04-13 Corrosion resistant alumina sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105118A JP2000302537A (en) 1999-04-13 1999-04-13 Corrosion resistant alumina sintered compact

Publications (1)

Publication Number Publication Date
JP2000302537A true JP2000302537A (en) 2000-10-31

Family

ID=14398912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105118A Pending JP2000302537A (en) 1999-04-13 1999-04-13 Corrosion resistant alumina sintered compact

Country Status (1)

Country Link
JP (1) JP2000302537A (en)

Similar Documents

Publication Publication Date Title
JP5978236B2 (en) Method for coating semiconductor processing equipment with protective film containing yttrium
US8247080B2 (en) Coating structure and method
KR101304082B1 (en) Corrosion resistant multilayer member
JP4897113B2 (en) Sputtering target with less generation of particles and method of manufacturing the target
JP3755559B2 (en) Sputtering target
CN112779488A (en) Yttrium fluoride spray coating, spray material for the same, and corrosion-resistant coating including the spray coating
JP5301531B2 (en) Sputtering target with less generation of particles
TW200524833A (en) Methods of finishing quartz glass surfaces and components made by the methods
JPH03293726A (en) Mixture gas composition
JP7560478B2 (en) Controlled Porous Yttrium Oxide for Etching Applications
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP4160224B2 (en) Oxyhalide components
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JPH10279349A (en) Alumina ceramic excellent in plasma resistance
JP4512603B2 (en) Halogen gas resistant semiconductor processing equipment components
US6524731B1 (en) Corrosion-resistant member and method of producing the same
TW202037737A (en) Plasma processing device, internal member for plasma processing device, and method for manufacturing said internal member
JP2000302537A (en) Corrosion resistant alumina sintered compact
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP2002180243A (en) Titanium sputtering target and manufacturing method therefor
JP3784180B2 (en) Corrosion resistant material
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP3971539B2 (en) Alumina plasma corrosion resistant material
JP2000327459A (en) Silicon carbide jig for low pressure cvd and its production
KR20230062621A (en) Large dimension yttrium oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407