JP2000302451A - Positive electrode active substance for lithium secondary battery - Google Patents
Positive electrode active substance for lithium secondary batteryInfo
- Publication number
- JP2000302451A JP2000302451A JP11115468A JP11546899A JP2000302451A JP 2000302451 A JP2000302451 A JP 2000302451A JP 11115468 A JP11115468 A JP 11115468A JP 11546899 A JP11546899 A JP 11546899A JP 2000302451 A JP2000302451 A JP 2000302451A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- positive electrode
- secondary battery
- electrode active
- positive number
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、充放電時における
初期効率及びサイクル特性が改良されたリチウムイオン
二次電池用正極活物質、その製造方法及び該正極活物質
を有効成分とする正極を構成成分とする非水電解液リチ
ウムイオン二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium ion secondary battery having improved initial efficiency and cycle characteristics during charge and discharge, a method for producing the same, and a positive electrode comprising the positive electrode active material as an active ingredient. The present invention relates to a non-aqueous electrolyte lithium ion secondary battery as a component.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、携帯化に伴
い、ニッケル/カドミ電池、ニッケル水素電池に代わ
り、軽量で高エネルギー密度を有するリチウムイオン二
次電池の需要が高まっている。このリチウムイオン二次
電池の正極活物質としては、リチウムイオンをインター
カレート、デインターカレートすることができる層状化
合物であるLiNiO2、LiCoO2が知られており、
その中でもLiCoO2がリチウムイオン二次電池の正
極活物質として使用されている。しかし、LiCoO 2
の原料であるコバルトは高価で且つ希少金属のため供給
量に制約がり、より安価で資源が豊富なLiNiO2へ
の代替えが検討されている。ところが、LiNiO2は
LiCoO2に比べて高電気容量であるが構造が不安定
のため、充放電が進むにつれ構造変化を起こし、充放電
サイクル性、充放電効率等に問題がある。2. Description of the Related Art In recent years, with the miniaturization and portability of electronic devices,
Instead of nickel / cadmium and nickel metal hydride batteries
Lithium ion batteries
The demand for secondary batteries is increasing. This lithium ion secondary
Lithium ion is used as the positive electrode active material of the battery.
Layering that can be calated and deintercalated
LiNiO compoundTwo, LiCoOTwoIs known,
Among them, LiCoOTwoIs positive for lithium ion secondary batteries
Used as a polar active material. However, LiCoO Two
, A raw material for coal, is expensive and rare metal is supplied
LiNiO, less expensive and resource-rich, limited in quantityTwoWhat
Alternatives are being considered. However, LiNiOTwoIs
LiCoOTwoHigher electric capacity but unstable structure
As a result, structural changes occur as charging and discharging progress,
There are problems with cyclability, charge / discharge efficiency, and the like.
【0003】その対策として、ニッケルの一部をコバル
ト、アルミニウム、硼素等で置換固溶させた下記式(I
II) Liy[Ni3+ (1 ― x)M3+ x]O2 (III) (式中、M3+はコバルト、アルミニウム、硼素である)
で表される固溶体が提案されている(特開平6−275
275号、特開平8−45509号、特開平8−780
06号)。しかし、この提案によっても、LiCoO2
以上の性能はまだ達成されていない。As a countermeasure, the following formula (I) in which a part of nickel is replaced with cobalt, aluminum, boron or the like to form a solid solution.
II) Li y [Ni 3+ (1 - x) M 3+ x ] O 2 (III) (where M 3+ is cobalt, aluminum or boron)
(Japanese Patent Laid-Open No. 6-275)
No. 275, JP-A-8-45509, JP-A-8-780
06). However, even with this proposal, LiCoO 2
The above performance has not been achieved yet.
【0004】[0004]
【発明が解決しようとする課題】本発明者らはLiNi
O2の充放電サイクル性、充放電効率等の改良を鋭意検
討した結果、ニッケルの一部をニッケルのイオン半径よ
りも小さいコバルト、又はコバルトとアルミニウムの3
価金属で置換固溶させると層間距離が固溶量に比例して
縮まり、その分構造が安定化し、且つ固溶量が少なくと
もニッケルの約20モル%以上置換すると充放電時の構
造変化がないことを見出した。その結果、このニッケル
の約20モル%以上をコバルト、又はコバルトとアルミ
ニウムで置換した固溶体はかなりLiCoO2の電池性
能に近づいて来た。しかし、それでもLiCoO2と同
等レベルには達してない。しかも、ニッケルよりもイオ
ン半径の小さい硼素(B)を、コバルト又はコバルトと
アルミを一緒にLiNiO2に添加し、固溶体を形成し
評価した結果、硼素は逆に電池性能を低下させることが
判明した。SUMMARY OF THE INVENTION The present inventors have proposed LiNi
As a result of intensive studies on the improvement of the charge / discharge cycle property and charge / discharge efficiency of O 2 , a part of nickel was changed to cobalt or cobalt and aluminum having a smaller ion radius than nickel.
When a solid solution is substituted with a valent metal, the interlayer distance is reduced in proportion to the amount of the solid solution, and the structure is stabilized accordingly, and when the amount of the solid solution is replaced by at least about 20 mol% of nickel, there is no structural change during charge and discharge. I found that. As a result, the solid solution obtained by substituting about 20 mol% or more of nickel with cobalt or cobalt and aluminum has come close to the battery performance of LiCoO 2 . However, it still does not reach the level equivalent to LiCoO 2 . In addition, boron (B) having an ionic radius smaller than that of nickel was added to LiNiO 2 together with cobalt or cobalt and aluminum, and a solid solution was formed. .
【0005】[0005]
【課題を解決するための手段】本発明者らはニッケル金
属への硼素置換ではなく、硼素の酸素酸アニオンでLi
NiO2の結晶表面に近い酸素の一部を置換固溶させた
一般式(I) LiyNi3+ (1-x)M3+ xO[2-(2a-3)b/2](BOa)(2a-3)- b (I) を用いることにより、ニッケルの一部をコバルト、又は
コバルトとアルミニウムで置換固溶した式(III)の
固溶体よりも電池性能が向上し、LiCoO2の代替が
可能になることを発見した。その理由は、硼素酸イオン
が結晶表面の酸素アニオン層の一部を硼素酸イオンで置
換する事により結晶表面の層間が広がりリチウムイオン
の挿入、脱離を容易にすることができ、従って充放電が
容易となり、その結果電池性能の改善が計れたと考えら
れる。SUMMARY OF THE INVENTION The inventors of the present invention did not substitute boron for nickel metal, but instead used a oxyacid anion of boron to form Li.
A general formula (I) Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (in which a part of oxygen near the crystal surface of NiO 2 is substituted and dissolved ) By using BO a ) (2a-3) -b (I), the battery performance is improved as compared with the solid solution of the formula (III) in which a part of nickel is substituted by cobalt or cobalt and aluminum, and LiCoO 2 Has been found to be an alternative. The reason is that the borate ion replaces a part of the oxygen anion layer on the crystal surface with borate ion, thereby expanding the interlayer on the crystal surface and facilitating the insertion and desorption of lithium ions. It is considered that the battery performance was improved as a result.
【0006】層間の広がりについては、得られた材料の
Cu−Kα線による粉末X線回折装置で測定した時Li
NiO2に相当する結晶構造を持ち、その格子定数C。
が広がることからわかる。硼素イオンはイオン半径がニ
ッケルより小さく、ニッケルに置換固溶すると層間が狭
くなるが、本発明では結晶表面の酸素アニオン層の一部
を硼素酸アニオンで置換するため、硼素酸アニオンのイ
オン半径が酸素より大きいことから層間が逆に広がる。[0006] The spread between the layers was measured by a powder X-ray diffractometer using Cu-Kα radiation of the obtained material.
It has a crystal structure equivalent to NiO 2 and its lattice constant C.
You can see from the spread. Boron ions have an ionic radius smaller than that of nickel, and the interlayer becomes narrower when substituted solid solution with nickel. However, in the present invention, since a part of the oxygen anion layer on the crystal surface is replaced with borate anions, the ionic radius of the borate anions is reduced. Since it is larger than oxygen, the layers spread in reverse.
【0007】以上の構造的特徴のため、リチウムイオン
の脱離・挿入が容易になり、充放電カーブでの充電スタ
ート時の電圧が低くなり容量がアップし、初期効率も改
善される。[0007] Because of the above structural features, the desorption / insertion of lithium ions is facilitated, the voltage at the start of charging in the charge / discharge curve is reduced, the capacity is increased, and the initial efficiency is improved.
【0008】[0008]
【発明の実施の形態】以下、本発明に係わるリチウムイ
オン二次電池用正極活物質について具体的に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a positive electrode active material for a lithium ion secondary battery according to the present invention will be specifically described.
【0009】本発明のリチウムイオン二次電池用正極活
物質は、一般式(I) LiyNi3+ (1-x)M3+ xO[2-(2a-3)b/2](BOa)(2a-3)- b (I) (式中、MはCo、Al及びMnから選択された少なく
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル系複合酸化物を有効成分として含有すること
を特徴とする非水電解液リチウムイオン二次電池用正極
活物質である。The positive electrode active material for a lithium ion secondary battery according to the present invention has a general formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] ( BO a ) (2a-3) -b (I) (wherein, M is at least one metal selected from Co, Al and Mn, and y, x, a and b are in the following ranges, respectively) , Y is 0.9 ≦ y ≦ 1.1, x is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
The positive electrode active material for a non-aqueous electrolyte lithium-ion secondary battery contains a lithium-nickel-based composite oxide represented by the following formula:
【0010】また、上記一般式(I)において、 LiyNi3+ (1-x)Co3+ xO[2-(2a-3)b/2](BOa)
(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である非水電解液リチウムイオン二
次電池用正極活物質である。In the general formula (I), Li y Ni 3+ (1-x) Co 3+ x O [2- (2a-3) b / 2] (BO a )
(2a-3) -b (where y, x, a, and b are in the following ranges, y is 0.9 ≦ y ≦ 1.1, x is 0.1 <x ≦ 0.4, a Is a positive number satisfying 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05) is a positive electrode active material for a non-aqueous electrolyte lithium ion secondary battery.
【0011】上記一般式(I)において、 LiyNi3+ (1-x)(Co、Al)3+ xO
[2-(2a-3)b/2](BOa)(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である非水電解液リチウムイオン二
次電池用正極活物質である。In the above general formula (I), Li y Ni 3+ (1-x) (Co, Al) 3+ x O
[2- (2a-3) b / 2] (BO a ) (2a-3) -b (where y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1) .1, x is 0.1 <x ≦ 0.4, a is 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05). It is a positive electrode active material for a liquid lithium ion secondary battery.
【0012】さらには、上記一般式(I)において、 LiyNi3+ (1-x)(Co、Al、Mn)3+ xO
[2-(2a-3)b/2](BOa)(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である非水電解液リチウムイオン二
次電池用正極活物質である。Further, in the general formula (I), Li y Ni 3+ (1-x) (Co, Al, Mn) 3+ x O
[2- (2a-3) b / 2] (BO a ) (2a-3) -b (where y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1) .1, x is 0.1 <x ≦ 0.4, a is 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05). It is a positive electrode active material for a liquid lithium ion secondary battery.
【0013】本発明のリチウムニッケル複合酸化物は以
下の製法で得ることができる。具体的には、一般式
(I) LiyNi3+ (1-x)M3+ xO[2-(2a-3)b/2](BOa)(2a-3)- b (I) (式中、MはCo、Al及びMnから選択された少なく
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<x≦
0.4、aは1.5<a<4、bは0.005≦b≦
0.05を満足する正の数を示す)で表されるリチウム
ニッケル複合酸化物において、一般式(II) Ni2+ (1-x)MP+ x(OH)(2-2x+px-nz)(An-)z・mH2O (II) (式中、pはMの価数であり、An-はn価(n=1〜
3)のアニオン、z及びmはそれぞれ0.03≦z≦
0.3、0≦m<2の範囲を満足する正の数を示す)で
示される塩基性金属塩に一般式(1)のbで示すホウ素
原子モル数に相当する量のホウ素化合物を水媒体中で添
加し、さらにyで示すリチウム原子モル数に相当する量
のリチウム化合物を水媒体中で添加し、得られたスラリ
ーを噴霧又は凍結乾燥後、酸化雰囲気下で約600〜9
00℃、約4時間以上焼成することにより製造すること
ができる。The lithium nickel composite oxide of the present invention can be obtained by the following production method. Specifically, the general formula (I) Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I (Wherein, M is at least one metal selected from Co, Al and Mn, y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1.1, x Is 0.1 <x ≦
0.4, a is 1.5 <a <4, b is 0.005 ≦ b ≦
In the lithium nickel composite oxide represented by a positive indicates the number of) that satisfies the 0.05, the general formula (II) Ni 2+ (1- x) M P + x (OH) (2-2x + px-nz ) (a n-) z · mH 2 O (II) ( wherein, p is the valence of M, a n-n-valent (n =. 1 to
3) The anion, z and m are each 0.03 ≦ z ≦
0.3, a positive number that satisfies the range of 0 ≦ m <2) to a basic metal salt represented by the formula (1): In a water medium, an amount of a lithium compound corresponding to the number of moles of lithium atom represented by y is further added in an aqueous medium.
It can be manufactured by firing at 00 ° C. for about 4 hours or more.
【0014】また、一般式(II)で示される塩基性金
属塩に一般式(I)のyで示すリチウム原子モル数に相
当する量のリチウム化合物を水媒体中で添加し、得られ
たスラリーを噴霧又は凍結乾燥後、さらに一般式(I)
のbで示すホウ素原子モル数に相当する量のホウ素化合
物を乾式混合し、酸化雰囲気下で約600〜900℃、
約4時間以上焼成することにより製造することができ
る。Further, an amount of a lithium compound corresponding to the number of moles of lithium atom represented by y in the general formula (I) is added to the basic metal salt represented by the general formula (II) in an aqueous medium to obtain a slurry. After spraying or freeze-drying, is further treated with the general formula (I)
B) dry mixing a boron compound in an amount corresponding to the number of moles of boron atoms shown in b, and under an oxidizing atmosphere at about 600 to 900 ° C.
It can be manufactured by firing for about 4 hours or more.
【0015】さらに、一般式(II)で示される塩基性
金属塩に一般式(I)のyで示すリチウム原子モル数に
相当する量のリチウム化合物を水媒体中で添加し、得ら
れたスラリーを噴霧又は凍結乾燥後、酸化雰囲気下で約
600〜900℃、約4時間以上焼成し、粉砕又は解砕
後一般式(I)のbで示すホウ素原子モル数に相当する
量のホウ素化合物を乾式混合し、再び酸化雰囲気下で約
600〜900℃、約2時間以上焼成することにより製
造することができる。Further, an amount of a lithium compound corresponding to the number of moles of lithium atom represented by y in the general formula (I) is added to the basic metal salt represented by the general formula (II) in an aqueous medium, and the resulting slurry is obtained. Is sprayed or freeze-dried, and then calcined in an oxidizing atmosphere at about 600 to 900 ° C. for about 4 hours or more. After pulverization or pulverization, an amount of boron compound corresponding to the number of moles of boron atoms represented by b in the general formula (I) is obtained. It can be manufactured by dry mixing and firing again at about 600 to 900 ° C. for about 2 hours or more in an oxidizing atmosphere.
【0016】上記製造プロセスの特徴は、予めニッケル
にMを固溶した塩基性金属塩に後から硼酸塩を加えると
ころにある。そのため、ニッケル層への硼素置換は起こ
らなず、焼成反応後は硼素酸アニオンとして結晶表面の
酸素アニオンの一部を硼素酸アニオンで置換することに
なる。A feature of the above manufacturing process is that a borate is added later to a basic metal salt in which M is dissolved in nickel in advance. Therefore, boron substitution does not occur in the nickel layer, and after the firing reaction, a part of the oxygen anion on the crystal surface is substituted with a borate anion as a borate anion.
【0017】塩基性金属塩の製法におけるAn-として
は、焼成時に揮散する、例えば、NO3 -、Cl-、B
r-、CH3COO-、CO3 2-等で示されるアニオンから
選択することができる。In the method for producing a basic metal salt, A n- is, for example, NO 3 − , Cl − , B
r -, CH 3 COO -, it can be selected from anions represented by CO 3 2- or the like.
【0018】ここで用いる塩基性金属塩は、Ni2+
(1-x)MP+ x塩の水溶液に対して、約0.7〜1.0当
量、好ましくは約0.8〜0.95当量のアルカリを約
80℃以下の反応条件下で加えて反応させることによ
り、製造することができる。ここで用いるアルカリとし
ては、例えば水酸化ナトリウム等のアルカリ金属類の水
酸化物、水酸化カルシウム等のアルカリ土類金属類の水
酸化物、アミン類等である。なお、この塩基性金属塩は
合成後20〜70℃で0.1〜10時間熟成すると更に
好ましい。次いで、水洗により副生成物を取り除き、塩
基性金属塩スラリーを得ることができる。The basic metal salt used here is Ni 2+
About 0.7 to 1.0 equivalent, preferably about 0.8 to 0.95 equivalent of an alkali is added to the aqueous solution of (1-x) MP + x salt under a reaction condition of about 80 ° C. or less. It can be produced by reacting. Examples of the alkali used here include hydroxides of alkali metals such as sodium hydroxide, hydroxides of alkaline earth metals such as calcium hydroxide, and amines. It is more preferable that the basic metal salt is aged at 20 to 70 ° C. for 0.1 to 10 hours after the synthesis. Next, by-products are removed by washing with water to obtain a basic metal salt slurry.
【0019】リチウム化合物としては、例えば、LiO
H、LiNO3、Li2CO3又はこれらの水和物等の中
から1種又は2種以上を選択することができる。As the lithium compound, for example, LiO
One or more of H, LiNO 3 , Li 2 CO 3, or a hydrate thereof can be selected.
【0020】ホウ素化合物としては、H3BO3、Li2
B4O7等が好適に使用できる。As the boron compound, H 3 BO 3 , Li 2
B 4 O 7 and the like can be suitably used.
【0021】この様な反応によって得られたスラリーの
乾燥は、好ましくは噴霧又は凍結乾燥法が望ましい。The slurry obtained by such a reaction is preferably dried by spraying or freeze-drying.
【0022】瞬時に乾燥でき且つ球状物を得ることがで
きる噴霧乾燥法は、球状造粒性、組成物の均一性(乾燥
時間のかかる乾燥法では、表面にリチウムが移行し、不
均一な組成物となる。)の観点から好適であり、実用的
である。The spray drying method, which can be dried instantaneously and can obtain a spherical product, has a spherical granulation property and a uniform composition (in a drying method requiring a long drying time, lithium is transferred to the surface, resulting in an uneven composition). This is preferable from the viewpoint of the product and is practical.
【0023】焼成は、600〜900℃、好ましくは7
50〜800℃の温度範囲で行い、酸素雰囲気下、約4
時間以上、好ましくは4〜72時間行う。焼成時間が7
2時間以上であればコストアップとなるばかりでなく、
リチウムの揮散に伴い、純度の悪い物となる。The calcination is carried out at 600 to 900 ° C., preferably at 7 ° C.
Performed in a temperature range of 50 to 800 ° C. under an oxygen atmosphere for about 4
It is carried out for more than an hour, preferably for 4 to 72 hours. Firing time 7
If it is more than 2 hours, it will not only increase the cost,
With the volatilization of lithium, it becomes poor in purity.
【0024】この焼成に関する技術では、乾式法等の既
知の技術では2価から3価になりがたいニッケルに対し
て、少なくとも20時間以上の焼成が要求されていたこ
とからみると、本発明の化合物は簡便な製法により極め
て経済的に得ることができる。According to the technique relating to the calcination, it is considered that the calcination for at least 20 hours or more is required for nickel, which is difficult to become divalent to trivalent by a known technique such as a dry method. The compound can be obtained very economically by a simple production method.
【0025】嵩密度を大きくする場合にはプレス成形法
が有利である。プレス成型法は上記本発明の製造工程で
得られるスラリーを噴霧又は凍結乾燥した物をプレス成
型後、酸化雰囲気下で約600〜900℃、約4時間以
上焼成し、一般式(I)で示されるリチウムニッケル系
複合酸化物を製造する方法である。In order to increase the bulk density, a press molding method is advantageous. In the press molding method, after spraying or freeze-drying the slurry obtained in the above-mentioned production process of the present invention, the slurry is press-molded, and calcined in an oxidizing atmosphere at about 600 to 900 ° C. for about 4 hours or more, and represented by the general formula (I). This is a method for producing a lithium nickel-based composite oxide.
【0026】例えば、上記噴霧乾燥法で得た均一に少量
固溶された噴霧乾燥品をプレス成形することにより、嵩
密度が大きく、且つ結晶化度と純度が高い複合酸化物を
得ることができる。For example, a composite oxide having a high bulk density, a high crystallinity and a high purity can be obtained by press-molding a spray-dried product obtained by the above-mentioned spray-drying method and in which a small amount of the solid solution is uniformly dissolved. .
【0027】噴霧乾燥品である球状物は、流動性、成形
性、充填性に優れた粉体であり、そのまま常法に従いプ
レス成形することができる。The spherical product, which is a spray-dried product, is a powder having excellent fluidity, moldability, and filling properties, and can be directly press-molded according to a conventional method.
【0028】成形圧は、プレス機、仕込み量等により異
なり、特に限定されるものではないが、通常500〜3
000kg/cm2程度が好適である。プレス成形機
は、打錠機、ブリケットマシン、ローラコンパクター等
好適に使用できるがプレスできるものであればよく、特
に制限はない。The molding pressure varies depending on the press, the charged amount and the like, and is not particularly limited.
About 000 kg / cm 2 is preferable. The press molding machine can be suitably used, such as a tableting machine, a briquette machine, and a roller compactor, but is not particularly limited as long as it can be pressed.
【0029】プレス品の密度は、1〜4g/cc、好ま
しくは2〜3g/cc程度が好適である。The density of the pressed product is preferably 1 to 4 g / cc, more preferably about 2 to 3 g / cc.
【0030】プレス成形は、結晶粒子間移動距離が短く
なり、焼成時の結晶成長を促進するという点では極めて
有用である。従って、プレス成型に供する材料は必ずし
も噴霧乾燥品の球状物である必要はなく、凍結乾燥品で
も同様に使用することができる。[0030] Press molding is extremely useful in that the distance of movement between crystal grains is reduced and crystal growth during firing is promoted. Therefore, the material to be subjected to press molding does not necessarily need to be a spray-dried spherical product, and a freeze-dried product can also be used.
【0031】このプレス成形品は、そのまま焼成され
る。焼成温度は、通常600〜900℃、好ましくは7
50〜800℃で、酸素気流下、4時間以上で行う。焼
成時間が長い程一次粒子は大きくなるので、焼成時間は
所望の一次粒子の大きさによって決まる。This press-formed product is fired as it is. The firing temperature is usually 600 to 900 ° C., preferably 7
The reaction is performed at 50 to 800 ° C. in an oxygen stream for 4 hours or more. The longer the firing time, the larger the primary particles, so the firing time is determined by the desired size of the primary particles.
【0032】本発明の非水電解液リチウムイオン二次電
池は、正極活物質を含む正極とリチウムをドープ及び脱
ドープ可能である負極と、リチウム塩を非水媒体に溶解
又は分散してなる非水電解質からなる非水電解液リチウ
ムイオン二次電池において上記正極活物質が一般式
(I)、 LiyNi3+ (1-x)M3+ xO[2-(2a-3)b/2](BOa)(2a-3)- b (I) (式中、MはCo、Al及びMnから選択された少なく
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル複合酸化物であることを特徴とする。The non-aqueous electrolyte lithium ion secondary battery of the present invention comprises a positive electrode containing a positive electrode active material, a negative electrode capable of doping and undoping lithium, and a non-aqueous solution obtained by dissolving or dispersing a lithium salt in a non-aqueous medium. In a non-aqueous electrolyte lithium ion secondary battery comprising an aqueous electrolyte, the positive electrode active material is represented by the general formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I) (wherein, M is at least one metal selected from Co, Al and Mn, and y, x, a and b are each In the following range, y is 0.9 ≦ y ≦ 1.1 and x is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
A positive number satisfying ≦ 0.05).
【0033】正極活物質を用いて正極を作製する方法と
しては、常法に従って、例えば、正極活物質の粉末と、
例えば、カーボンブラックやグラファイト等の導電材料
と、ポリフッ化ビニリデン等のバインダー樹脂とを均一
に混合して正極合剤組成物を調製し、圧縮成型すること
によりコイン型二次電池用のペレット形状の正極を作製
することができる。As a method for producing a positive electrode using the positive electrode active material, for example, powder of the positive electrode active material,
For example, a conductive material such as carbon black or graphite, and a binder resin such as polyvinylidene fluoride are uniformly mixed to prepare a positive electrode mixture composition, and compression-molded to form a pellet shape for a coin-type secondary battery. A positive electrode can be manufactured.
【0034】また、正極活物質の粉末と導電材料とバイ
ンダー樹脂とに加えて、さらに公知の溶媒、例えば、ホ
ルムアミドやN−メチルピロリドン等の溶媒を添加して
ぺースト状の正極合剤を調整し、それを正極集電体に塗
布し乾燥することにより、筒型又は角型二次電池用の正
極を作製することができる。Further, in addition to the powder of the positive electrode active material, the conductive material and the binder resin, a known solvent, for example, a solvent such as formamide or N-methylpyrrolidone is added to prepare a paste-like positive electrode mixture. Then, by applying it to a positive electrode current collector and drying it, a positive electrode for a cylindrical or prismatic secondary battery can be manufactured.
【0035】上記正極は、リチウムをドープ及び脱ドー
プ可能である材料、例えば炭素質材料、リチウム合金か
らなる負極と、リチウム塩を溶解してなる非水電解液か
ら構成される非水電解液二次電池において好適に使用す
ることができる。このリチウムをドープ及び脱ドープ可
能な材料としては、例えば、熱分解炭素類、ピッチコー
クス、石油コークス、ニードルコークス等のコークス
類、グラファイト類、ガラス状炭素類、フェノール樹
脂、フラン樹脂等を適当な温度で焼成した有機高分子化
合物焼成体、炭素繊維、活性炭等の炭素質材料、あるい
はポリアセチレン、ポリピロール等のポリマー等を使用
することができる。リチウム合金としては、例えばリチ
ウム−アルミニウム合金等を使用することができる。The positive electrode comprises a negative electrode made of a material capable of doping and undoping lithium, for example, a carbonaceous material or a lithium alloy, and a nonaqueous electrolyte solution made of a nonaqueous electrolyte solution in which a lithium salt is dissolved. It can be suitably used in a secondary battery. Examples of the material capable of doping and undoping lithium include, for example, pyrolytic carbons, pitch coke, petroleum coke, cokes such as needle coke, graphites, glassy carbons, phenol resins, and furan resins. An organic polymer compound fired body fired at a temperature, a carbonaceous material such as carbon fiber or activated carbon, or a polymer such as polyacetylene or polypyrrole can be used. As the lithium alloy, for example, a lithium-aluminum alloy or the like can be used.
【0036】上記製法で得られた、本発明の正極活物質
を有効成分とする正極を構成成分とする非水電解液リチ
ウムイオン二次電池は、以下に示す負極、非水電解液、
非水溶媒、電解質等と適宜に組み合わせることにより作
製することができる。The non-aqueous electrolyte lithium-ion secondary battery comprising the positive electrode containing the positive electrode active material of the present invention as an active ingredient and obtained by the above-mentioned production method, comprises the following negative electrode, non-aqueous electrolyte,
It can be produced by appropriately combining with a non-aqueous solvent, an electrolyte and the like.
【0037】負極としては、例えば、炭素質材料を使用
する場合には、正極を作製する場合と同様に処理し、例
えば、炭素質材料の粉末とポリフッ化ビニリデン等のバ
インダー樹脂とを均一に混合して負極合剤組成物を調整
し、それを圧縮成型することによりコイン型二次電池用
のペレット形状の負極を作製することができる。金属リ
チウムやリチウム合金を負極材料として使用する場合に
は、板状の金属リチウム又はリチウム合金を所定の形状
(例えばペレット形状)に機械的に打ち抜くことにより負
極を作製することができる。For example, when a carbonaceous material is used as the negative electrode, the same treatment as in the case of producing the positive electrode is performed. For example, a powder of the carbonaceous material and a binder resin such as polyvinylidene fluoride are uniformly mixed. Thus, a negative electrode mixture composition is prepared, and the resultant is compression-molded, whereby a pellet-shaped negative electrode for a coin-type secondary battery can be produced. When using metallic lithium or lithium alloy as the negative electrode material, plate-shaped metallic lithium or lithium alloy must be
A negative electrode can be produced by mechanically punching (for example, a pellet shape).
【0038】非水電解液としては、公知の非水媒体(非
水溶媒又はイオン導電性ポリマー等)にリチウム塩電解
質を溶解又は分散してなる非水電解液や固体電解質を使
用することができる。As the non-aqueous electrolyte, a non-aqueous electrolyte or a solid electrolyte obtained by dissolving or dispersing a lithium salt electrolyte in a known non-aqueous medium (such as a non-aqueous solvent or an ionic conductive polymer) can be used. .
【0039】非水電解液の非水溶媒としては、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ビニレンカーボネート、γ−ブチルラクト
ン、スルホラン、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、2−メチルテトラヒドロフラン、3
−メチル−1,3−ジオキソラン、プロピオン酸メチ
ル、酪酸メチル、ジメチノレカーボネート、ジエチルカ
ーボネート、ジプロピルカーボネート等を使用すること
ができる。上記溶媒は、1種又は2種類以上を組み合わ
せて使用するもできる。The non-aqueous solvent of the non-aqueous electrolyte includes propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2-
Diethoxyethane, 2-methyltetrahydrofuran, 3
-Methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethinolecarbonate, diethyl carbonate, dipropyl carbonate and the like can be used. The above solvents may be used alone or in combination of two or more.
【0040】電解質としては、例えば、LiClO4、
LiPF6、LiAsF6、LiBF4、LiCF3S
O3、LiN(CF3SO2)等を使用できる。非水電解
液二次電池の他の構成、例えばセパレータ、電池缶等に
ついては、従来の非水電解液二次電池と同様にすること
ができ、特に限定されるものではない。また、電池の形
状についても特に限定されるものではなく、円筒型、角
型、コイン型、ボタン型等任意の形状にすることができ
る。As the electrolyte, for example, LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 S
O 3 and LiN (CF 3 SO 2 ) can be used. Other configurations of the non-aqueous electrolyte secondary battery, for example, a separator, a battery can, and the like can be the same as the conventional non-aqueous electrolyte secondary battery, and are not particularly limited. Also, the shape of the battery is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, a coin shape, and a button shape.
【0041】以下、本発明の詳細について、実施例をも
って説明するがこれにより本発明が限定されるものでは
ない。Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
【0042】[0042]
【0043】実施例1 Ni:Coモル比=80:20となるように硝酸ニッケ
ル及び硝酸コバルトを用いて(Ni+Co)の全モル数
が4.0Mとなる混合水溶液を調製した。さらに4.0
Mの水酸化ナトリウム溶液を調製し、定量ポンプを用い
て両水溶液を撹拌下、反応糟にpH9.5となるように同
時添加を行い、反応温度25℃、滞留時間15分で連続
反応を行った。得られた反応生成物を濾過、水洗し(な
お、一部乾燥したものの組成はNi2+ 0.8Co2+ 0.2(O
H)1.843(NO3)0.157・0.16H2Oであった)、水に
懸濁させた後、Li/(Ni+Co)=1.02のモル
比に相当する量の3.0Mの水酸化リチウム水溶液を添
加し、さらに(Ni+Co):Bモル比=100:1に
相当する量の四ホウ酸リチウム水溶液を添加しスラリー
とし、噴霧乾燥を行った。得られた乾燥ゲルをアルミナ
製ボートに入れ管状炉(山田電気製 TF−630型)
にて酸素流通下、750〜800℃の範囲で15時間焼
成を行ない、リチウムニッケル複合酸化物を得た。次い
で、このリチウムニッケル複合酸化物に対して導電剤で
あるアセチレンブラック及び結合剤としてテフロンを重
量比で70:20:10となるように混合し、この正極
剤75mgを3トン/cm2で直径18mmのペレット状に
加圧成型し、直径16mmに打ち抜き、充分に乾燥した
後、正極電極とした。以上のように作成した電極を用い
て製造した電池の断面図を図1に示す。前記正極7をア
ルゴン雰囲気のグローブボックス中で2032型コイン
電池に組み立てた。負極2には直径15mm、厚さ1mmの
リチウム金属を用い、電解液には1モルのLiPF6を
支持塩とするエチレンカーボネート(EC)とジメチル
カーボネート(DMC)の1:2混合溶液を用いた。以
上の様にして作成した電池について、3.0V〜4.3V
の電池範囲で0.4mA/cm2の電流密度で充放電試験
を行った。Example 1 A mixed aqueous solution having a total molar number of (Ni + Co) of 4.0 M was prepared using nickel nitrate and cobalt nitrate so that the molar ratio of Ni: Co was 80:20. Further 4.0
M sodium hydroxide solution was prepared, and both aqueous solutions were simultaneously added to a reaction vessel with stirring using a metering pump so as to have a pH of 9.5, and a continuous reaction was performed at a reaction temperature of 25 ° C. and a residence time of 15 minutes. Was. The obtained reaction product was filtered and washed with water (the composition of a partially dried product was Ni 2+ 0.8 Co 2+ 0.2 (O 2
H) 1.843 (NO 3 ) 0.157 · 0.16 H 2 O), after suspending in water, an amount of 3.0 M lithium hydroxide corresponding to a molar ratio of Li / (Ni + Co) = 1.02 An aqueous solution was added, and an aqueous solution of lithium tetraborate in an amount corresponding to (Ni + Co): B molar ratio = 100: 1 was added to form a slurry, and spray drying was performed. The obtained dried gel is put in an alumina boat and a tubular furnace (TF-630 type manufactured by Yamada Denki)
For 15 hours in the range of 750 to 800 ° C. in an oxygen flow to obtain a lithium nickel composite oxide. Then, Teflon were mixed so as to 70:20:10 at a weight ratio of acetylene black and a binder as a conductive agent with respect to the lithium nickel composite oxide, the diameter of this Seikyokuzai 75mg at 3 t / cm 2 It was pressed into a pellet of 18 mm, punched out to a diameter of 16 mm, dried sufficiently, and used as a positive electrode. FIG. 1 is a cross-sectional view of a battery manufactured using the electrodes prepared as described above. The positive electrode 7 was assembled into a 2032 type coin battery in a glove box under an argon atmosphere. A lithium metal having a diameter of 15 mm and a thickness of 1 mm was used for the negative electrode 2, and a 1: 2 mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) using 1 mol of LiPF 6 as a supporting salt was used for the electrolyte. . For the battery prepared as described above, 3.0V to 4.3V
A charge / discharge test was performed at a current density of 0.4 mA / cm 2 in the battery range of No. 1.
【0044】比較例1 Ni:Co:Bモル比=80:20:1となるように硝
酸ニッケル、硝酸コバルト及び硼酸を用いて(Ni+C
o+B)の全モル数が4.0Mとなる混合水溶液を調製
した。さらに4.0Mの水酸化ナトリウム溶液を調製
し、定量ポンプを用いて両水溶液を撹拌下、反応糟にpH
9.5となるように同時添加を行い、反応温度25℃、
滞留時間15分で連続反応を行った。得られた反応生成
物を濾過、水洗し、水に懸濁させた後、Li/(Ni+
Co+B)=1.03のモル比に相当する量の3.0M
の水酸化リチウム水溶液を添加しスラリーとし、噴霧乾
燥を行った。得られた乾燥ゲルをアルミナ製ボートに入
れ管状炉(山田電気製 TF−630型)にて酸素流通
下、750〜800℃の範囲で15時間焼成を行ない、
リチウムニッケル複合酸化物を得た。COMPARATIVE EXAMPLE 1 Nickel nitrate, cobalt nitrate and boric acid were used so that the molar ratio of Ni: Co: B = 80: 20: 1 (Ni + C
A mixed aqueous solution in which the total number of moles of o + B) was 4.0 M was prepared. Further, a 4.0 M sodium hydroxide solution was prepared, and both aqueous solutions were stirred with a metering pump, and the pH was added to the reaction vessel.
Simultaneous addition was carried out to 9.5, and the reaction temperature was 25 ° C.
A continuous reaction was performed with a residence time of 15 minutes. The obtained reaction product was filtered, washed with water, suspended in water, and then Li / (Ni +
Co + B) = 3.0 M in an amount corresponding to a molar ratio of 1.03
Of lithium hydroxide was added to form a slurry, and spray drying was performed. The obtained dried gel is placed in an alumina boat, and calcined in a tubular furnace (TF-630 type manufactured by Yamada Electric Co., Ltd.) at 750 to 800 ° C. for 15 hours under an oxygen flow.
A lithium nickel composite oxide was obtained.
【0045】実施例2 Ni:Co:Alモル比=80:15:5となるように硝
酸ニッケル、硝酸コバルト及び硝酸 アルミニウムを用
いて(Ni+Co+Al)の全モル数が4.0Mとなる
混合水溶液を調製し、以下実施例1と同様に操作し、焼
成物を得た。なお、途中で得られた反応生成物の一部乾
燥した物の組成はNi2+ 0.8Co2+ 0.15Al3+ 0.05(O
H)1.852(NO3)0.198・0.19H2Oであった。さ
らに、実施例1と同様の方法で電池を作製し、同条件で
充放電試験を行った。Example 2 A mixed aqueous solution in which the total number of moles of (Ni + Co + Al) was 4.0 M using nickel nitrate, cobalt nitrate and aluminum nitrate so that the molar ratio of Ni: Co: Al was 80: 15: 5. It was prepared and operated in the same manner as in Example 1 to obtain a fired product. The composition of the partially dried product of the reaction product obtained on the way was Ni 2+ 0.8 Co 2+ 0.15 Al 3+ 0.05 (O
H) 1.852 (NO 3 ) 0.198 · 0.19 H 2 O. Further, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions.
【0046】比較例2 Ni:Co:Al:Bモル比=80:15:5:1となる
ように硝酸ニッケル、硝酸コバルト、硝酸アルミニウム
及び硼酸を用いて(Ni+Co+Al+B)の全モル数
が4.0Mとなる混合水溶液を調製し、以下比較例1と
同様に操作し、焼成物を得た。さらに、実施例1と同様
の方法で電池を作製し、同条件で充放電試験を行った。Comparative Example 2 The total number of moles of (Ni + Co + Al + B) was 4. using nickel nitrate, cobalt nitrate, aluminum nitrate and boric acid so that the molar ratio of Ni: Co: Al: B = 80: 15: 5: 1. A mixed aqueous solution of 0 M was prepared, and the operation was performed in the same manner as in Comparative Example 1 to obtain a fired product. Further, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions.
【0047】実施例3 Ni:Co:Al:Mnモル比=80:10:5:5とな
るように硝酸ニッケル、硝酸コバルト、硝酸アルミニウ
ム及び硝酸マンガンを用いて(Ni+Co+Al+M
n)の全モル数が4.0Mとなる混合水溶液を調製し、
以下実施例1と同様に操作し、焼成物を得た。なお、途
中で得られた反応生成物の一部乾燥した物の組成はNi
2+ 0.8Co2+ 0.1Al3+ 0.05Mn2+ 0.05(OH)
1.815(NO3)0.235・0.22H2であった。さらに、
実施例1と同様の方法で電池を作製し、同条件で充放電
試験を行った。Example 3 Using nickel nitrate, cobalt nitrate, aluminum nitrate and manganese nitrate so that the molar ratio of Ni: Co: Al: Mn = 80: 10: 5: 5 (Ni + Co + Al + M)
preparing a mixed aqueous solution in which the total number of moles of n) is 4.0 M;
Thereafter, the same operation as in Example 1 was performed to obtain a fired product. The partially dried product of the reaction product obtained on the way had a composition of Ni
2+ 0.8 Co 2+ 0.1 Al 3+ 0.05 Mn 2+ 0.05 (OH)
1.815 (NO 3 ) 0.235 · 0.22 H 2 . further,
A battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions.
【0048】比較例3 Ni:Co:Al:Mn:Bモル比=80:10:5:
5:1となるように硝酸ニッケル、硝酸コバルト、硝酸
アルミニウム、硝酸マンガン及び硼酸を用いて(Ni+
Co+Al+Mn+B)の全モル数が4.0Mとなる混
合水溶液を調製し、以下比較例1と同様に操作し、焼成
物を得た。さらに、実施例1と同様の方法で電池を作製
し、同条件で充放電試験を行った。Comparative Example 3 Ni: Co: Al: Mn: B molar ratio = 80: 10: 5:
Using nickel nitrate, cobalt nitrate, aluminum nitrate, manganese nitrate and boric acid so that the ratio becomes 5: 1 (Ni +
A mixed aqueous solution in which the total number of moles of (Co + Al + Mn + B) was 4.0 M was prepared, and the operation was performed in the same manner as in Comparative Example 1 to obtain a fired product. Further, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions.
【0049】各実施例及び比較例で得られた焼成物を用
いてX線回折測定を行った。その結果は図2に示す。そ
れぞれ得られたX線回折パターンはJoint com
mittee onpowder diffracti
on standards (以下JCPDSとする)
の09−0063に登録されたLiNiO2と同様の結
晶構造を持つことが確認できた。X-ray diffraction measurements were performed on the fired products obtained in each of the examples and comparative examples. The result is shown in FIG. The obtained X-ray diffraction patterns were obtained from Joint com.
mittee onpowder diffracti
on standards (hereinafter referred to as JCPDS)
Has the same crystal structure as LiNiO 2 registered in No. 09-0063.
【0050】次いで、得られたX線回折パターンより格
子定数を計算し、その結果を表1に示す。Next, the lattice constant was calculated from the obtained X-ray diffraction pattern, and the results are shown in Table 1.
【表1】 [Table 1]
【0051】結晶表面の酸素アニオン層の一部を硼素酸
アニオンで置換した実施例1,2及び3は対応する比較
例にくらべ格子定数C。が大きくなり、層間が広がって
いることがわかる。In Examples 1, 2, and 3 in which part of the oxygen anion layer on the crystal surface was replaced with borate anion, the lattice constant C was higher than that of the corresponding comparative example. It can be seen that the size of the layer increases and the interlayer spreads.
【0052】次いで、充放電試験による初期充放電曲線
を調べた結果(図3、4及び5)、硼素酸アニオンで置
換した実施例の方が比較例に比べ、充電スタート時の開
回路電圧が低くなっており、リチウムイオンの挿入・脱
離が容易となっていることがわかる。Next, as a result of examining the initial charge / discharge curve by the charge / discharge test (FIGS. 3, 4 and 5), the open circuit voltage at the start of the charge was higher in the example substituted with the borate anion than in the comparative example. This shows that the insertion and desorption of lithium ions are easy.
【0053】その時の初期放電容量、初期効率及び30
サイクル保持率を以下に示す式で求め、表2に示す。な
お、初期効率=初期放電容量/初期充電容量、30サイ
クル保持率=30サイクル目の放電容量/初期放電容量
で示される。The initial discharge capacity, initial efficiency, and 30
The cycle retention was determined by the following equation and is shown in Table 2. In addition, initial efficiency = initial discharge capacity / initial charge capacity, and 30-cycle retention = discharge capacity at 30th cycle / initial discharge capacity.
【表2】 [Table 2]
【0054】以上の結果より、結晶表面の酸素アニオン
層の一部を硼素酸アニオンで置換する事により大幅に電
池性能の改善が計れることがわかる。From the above results, it can be understood that the performance of the battery can be greatly improved by substituting a part of the oxygen anion layer on the crystal surface with the borate anion.
【0055】[0055]
【発明の効果】本発明によりLiNiO2よりも充放電
サイクル性、充電効率の改善された非水電解液リチウム
イオン二次電池用正極活物質を提供することができた。According to the present invention, it is possible to provide a positive electrode active material for a non-aqueous electrolyte lithium ion secondary battery having improved charge / discharge cycle characteristics and charge efficiency as compared with LiNiO 2 .
【図1】 本発明の実施例におけるリチウム二次電池の
縦断面図。FIG. 1 is a longitudinal sectional view of a lithium secondary battery according to an embodiment of the present invention.
【図2】 実施例1〜3、比較例1〜3の化合物のXR
D。FIG. 2 shows the XR of the compounds of Examples 1 to 3 and Comparative Examples 1 to 3.
D.
【図3】 実施例1と比較例1の化合物の充放電曲線。FIG. 3 is a charge / discharge curve of the compounds of Example 1 and Comparative Example 1.
【図4】 実施例2と比較例2の化合物の充放電曲線。FIG. 4 is a charge / discharge curve of the compounds of Example 2 and Comparative Example 2.
【図5】 実施例3と比較例3の化合物の充放電曲線。FIG. 5 is a charge / discharge curve of the compounds of Example 3 and Comparative Example 3.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 茂男 福岡県北九州市八幡西区下畑町16番11号 株式会社海水化学研究所内 Fターム(参考) 4G048 AA04 AB05 AC06 AE05 5H003 AA02 AA04 BA00 BA01 BA03 BA04 BB05 BC01 BD00 BD01 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ00 CJ02 CJ08 CJ28 DJ16 HJ00 HJ02 HJ14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeo Miyata 16-11 Shimohata-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka F-term in Seawater Chemical Laboratory Co., Ltd. 4G048 AA04 AB05 AC06 AE05 5H003 AA02 AA04 BA00 BA01 BA03 BA04 BB05 BC01 BD00 BD01 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ00 CJ02 CJ08 CJ28 DJ16 HJ00 HJ02 HJ14
Claims (9)
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル系複合酸化物を有効成分として含有すること
を特徴とする非水電解液リチウムイオン二次電池用正極
活物質。1. The formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I (Wherein, M is at least one metal selected from Co, Al and Mn, y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1.1) , X is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
A positive electrode active material for a non-aqueous electrolyte lithium-ion secondary battery, characterized by containing a lithium-nickel-based composite oxide represented by the following formula:
(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である請求項1記載の非水電解液リ
チウムイオン二次電池用正極活物質。2. In the above formula (I), Li y Ni 3+ (1-x) Co 3+ x O [2- (2a-3) b / 2] (BO a )
(2a-3) -b (where y, x, a, and b are in the following ranges, y is 0.9 ≦ y ≦ 1.1, x is 0.1 <x ≦ 0.4, a Is a positive number satisfying 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05.) The positive electrode active material for a non-aqueous electrolyte lithium ion secondary battery according to claim 1.
[2-(2a-3)b/2](BOa)(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である請求項1記載の非水電解液リ
チウムイオン二次電池用正極活物質。3. The method according to claim 1, wherein Li y Ni 3+ (1-x) (Co, Al) 3+ x O
[2- (2a-3) b / 2] (BO a ) (2a-3) -b (where y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1) .1, x is 0.1 <x ≦ 0.4, a is 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05). The positive electrode active material for a non-aqueous electrolyte lithium ion secondary battery according to the above.
[2-(2a-3)b/2](BOa)(2a-3)- b (式中、y、x、a及びbは、それぞれ次の範囲、yは
0.9≦y≦1.1、xは0.1<x≦0.4、aは
1.5<a<4、bは0.005≦b≦0.05を満足
する正の数を示す)である請求項1記載の非水電解液リ
チウムイオン二次電池用正極活物質。4. In the above general formula (I), Li y Ni 3+ (1-x) (Co, Al, Mn) 3+ x O
[2- (2a-3) b / 2] (BO a ) (2a-3) -b (where y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1) .1, x is 0.1 <x ≦ 0.4, a is 1.5 <a <4, and b is a positive number satisfying 0.005 ≦ b ≦ 0.05). The positive electrode active material for a non-aqueous electrolyte lithium ion secondary battery according to the above.
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル系複合酸化物において、一般式(II) Ni2+ (1-x)MP+ x(OH)(2-2x+px-nz)(An-)z・mH2O (II) (式中、pはMの価数であり、An-はn価(n=1〜
3)のアニオン、z及びmはそれぞれ0.03≦z≦
0.3、0≦m<2の範囲を満足する正の数を示す)で
示される塩基性金属塩に一般式(I)のyで示すリチウ
ム原子モル数に相当する量のリチウム化合物を水媒体中
で添加し、さらにbで示すホウ素原子モル数に相当する
量のホウ素化合物を水媒体中で添加し、得られたスラリ
ーを噴霧又は凍結乾燥後、酸化雰囲気下で約600〜9
00℃、約4時間以上焼成することを特徴とする製造方
法。5. The formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I (Wherein, M is at least one metal selected from Co, Al and Mn, y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1.1) , X is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
In the lithium nickel composite oxide represented by ≦ 0.05 indicates a positive number satisfying), general formula (II) Ni 2+ (1- x) M P + x (OH) (2-2x + px -nz) (a n-) z · mH 2 O (II) ( wherein, p is the valence of M, a n-n-valent (n =. 1 to
3) The anion, z and m are each 0.03 ≦ z ≦
0.3, a positive number that satisfies the range of 0 ≦ m <2) to a basic metal salt represented by the formula (I): In a water medium, an amount of boron compound corresponding to the number of moles of boron atoms shown in b is further added in an aqueous medium.
A production method characterized by firing at 00 ° C. for about 4 hours or more.
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル系複合酸化物において、一般式(II) Ni2+ (1-x)MP+ x(OH)(2-2x+px-nz)(An-)z・mH2O (II) (式中、pはMの価数であり、An-はn価(n=1〜
3)のアニオン、z及びmはそれぞれ0.03≦z≦
0.3、0≦m<2の範囲を満足する正の数を示す)で
示される塩基性金属塩に一般式(I)のyで示すリチウ
ム原子モル数に相当する量のリチウム化合物を水媒体中
で添加し、得られたスラリーを噴霧又は凍結乾燥後、さ
らに一般式(I)のbで示すホウ素原子モル数に相当す
る量のホウ素化合物を乾式混合し、酸化雰囲気下で約6
00〜900℃、約4時間以上焼成することにより製造
することを特徴とする製造方法。6. The formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I (Wherein, M is at least one metal selected from Co, Al and Mn, y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1.1) , X is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
In the lithium nickel composite oxide represented by ≦ 0.05 indicates a positive number satisfying), general formula (II) Ni 2+ (1- x) M P + x (OH) (2-2x + px -nz) (a n-) z · mH 2 O (II) ( wherein, p is the valence of M, a n-n-valent (n =. 1 to
3) The anion, z and m are each 0.03 ≦ z ≦
0.3, a positive number that satisfies the range of 0 ≦ m <2) to a basic metal salt represented by the formula (I): The resulting slurry was sprayed or freeze-dried, and then dry-mixed with a boron compound in an amount corresponding to the number of moles of boron atom represented by b in the general formula (I).
A manufacturing method characterized by manufacturing by baking at 00 to 900 ° C. for about 4 hours or more.
とも1種以上の金属であり、y、x、a及びbは、それ
ぞれ次の範囲、yは0.9≦y≦1.1、xは0.1<
x≦0.4、aは1.5<a<4、bは0.005≦b
≦0.05を満足する正の数を示す)で表されるリチウ
ムニッケル系複合酸化物において、一般式(II) Ni2+ (1-x)MP+ x(OH)(2-2x+px-nz)(An-)z・mH2O (II) (式中、pはMの価数であり、An-はn価(n=1〜
3)のアニオン、z及びmはそれぞれ0.03≦z≦
0.3、0≦m<2の範囲を満足する正の数を示す)で
示される塩基性金属塩に一般式(I)のyで示すリチウ
ム原子モル数に相当する量のリチウム化合物を水媒体中
で添加し、得られたスラリーを噴霧又は凍結乾燥後、酸
化雰囲気下で約600〜900℃、約4時間以上焼成
し、粉砕又は解砕後一般式(I)のbで示すホウ素原子
モル数に相当する量のホウ素化合物を乾式混合し、再び
酸化雰囲気下で約600〜900℃、約2時間以上焼成
することを特徴とする製造方法。7. The formula (I): Li y Ni 3+ (1-x) M 3+ x O [2- (2a-3) b / 2] (BO a ) (2a-3) -b (I (Wherein, M is at least one metal selected from Co, Al and Mn, y, x, a and b are in the following ranges, respectively, and y is 0.9 ≦ y ≦ 1.1) , X is 0.1 <
x ≦ 0.4, a is 1.5 <a <4, b is 0.005 ≦ b
In the lithium nickel composite oxide represented by ≦ 0.05 indicates a positive number satisfying), general formula (II) Ni 2+ (1- x) M P + x (OH) (2-2x + px -nz) (a n-) z · mH 2 O (II) ( wherein, p is the valence of M, a n-n-valent (n =. 1 to
3) The anion, z and m are each 0.03 ≦ z ≦
0.3, a positive number that satisfies the range of 0 ≦ m <2) to a basic metal salt represented by the formula (I): It is added in a medium, and the obtained slurry is sprayed or freeze-dried, and then calcined in an oxidizing atmosphere at about 600 to 900 ° C. for about 4 hours or more. A production method characterized in that a boron compound in an amount corresponding to the number of moles is dry-mixed and calcined again in an oxidizing atmosphere at about 600 to 900 ° C for about 2 hours or more.
噴霧又は凍結乾燥した物をプレス成型後、酸化雰囲気下
で約600〜900℃、約4時間以上焼成することを特
徴とする製造方法。8. The method according to claim 5, wherein the slurry obtained by spraying or freeze-drying the slurry obtained in claims 5, 6 and 7 is press-molded, and then calcined in an oxidizing atmosphere at about 600 to 900 ° C. for about 4 hours or more. Production method.
を有効成分とする正極を構成成分とする非水電解液リチ
ウムイオン二次電池。9. A non-aqueous electrolyte lithium ion secondary battery comprising a positive electrode comprising the positive electrode active material according to claim 1, 2, 3 or 4 as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11115468A JP2000302451A (en) | 1999-04-22 | 1999-04-22 | Positive electrode active substance for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11115468A JP2000302451A (en) | 1999-04-22 | 1999-04-22 | Positive electrode active substance for lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000302451A true JP2000302451A (en) | 2000-10-31 |
Family
ID=14663296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11115468A Pending JP2000302451A (en) | 1999-04-22 | 1999-04-22 | Positive electrode active substance for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000302451A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002338250A (en) * | 2001-05-17 | 2002-11-27 | Mitsubishi Chemicals Corp | Method for producing layered lithium-nickel-manganese composite oxide |
JP2005336000A (en) * | 2004-05-26 | 2005-12-08 | Toyota Motor Corp | Lithium multiple oxide material and its utilization |
JP2014197552A (en) * | 2014-06-18 | 2014-10-16 | 三菱化学株式会社 | Lamellar lithium nickel manganese complex oxide |
CN112204777A (en) * | 2018-06-20 | 2021-01-08 | 株式会社Lg化学 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
-
1999
- 1999-04-22 JP JP11115468A patent/JP2000302451A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002338250A (en) * | 2001-05-17 | 2002-11-27 | Mitsubishi Chemicals Corp | Method for producing layered lithium-nickel-manganese composite oxide |
JP2005336000A (en) * | 2004-05-26 | 2005-12-08 | Toyota Motor Corp | Lithium multiple oxide material and its utilization |
JP4608946B2 (en) * | 2004-05-26 | 2011-01-12 | トヨタ自動車株式会社 | Lithium composite oxide material and use thereof |
JP2014197552A (en) * | 2014-06-18 | 2014-10-16 | 三菱化学株式会社 | Lamellar lithium nickel manganese complex oxide |
CN112204777A (en) * | 2018-06-20 | 2021-01-08 | 株式会社Lg化学 | Positive electrode active material for lithium secondary battery and lithium secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4110435B2 (en) | Positive electrode active material for lithium ion secondary battery | |
KR101958038B1 (en) | Method for manufacturing positive-electrode active material for lithium ion secondary cell | |
JP4823275B2 (en) | Nonaqueous electrolyte secondary battery | |
KR101369658B1 (en) | Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE | |
KR101382386B1 (en) | Preparation method of lithium-metal composite oxides | |
KR100694567B1 (en) | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these | |
KR101309150B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP6587740B2 (en) | Lithium-nickel-manganese transition metal oxide particles, their production and their use as electrode materials | |
EP3214673B1 (en) | Positive active material for rechargeable lithium battery, method of prearing the same and rechargeable lithium battery including the same | |
JP4496150B2 (en) | Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide | |
JP2007091502A (en) | Method for producing lithium-containing multiple oxide for positive electrode of lithium secondary battery | |
JP2022174094A (en) | Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold | |
JP2022174097A (en) | Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold | |
JP2000173599A (en) | Manufacture of active material for lithium secondary battery positive electrode and lithium secondary battery | |
JP2006114408A (en) | Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery | |
US6589695B2 (en) | Positive active material for rechargeable lithium battery and method of preparing same | |
KR101298719B1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP2002117831A (en) | Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery | |
JP2000302451A (en) | Positive electrode active substance for lithium secondary battery | |
JP2001122626A (en) | Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery | |
KR20100125127A (en) | Method of preparing positive active material for lithium secondary battery and rechargeable lithium battery | |
JP7159588B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact | |
JP4472430B2 (en) | Method for producing lithium composite oxide for positive electrode of lithium secondary battery | |
JP3355644B2 (en) | Non-aqueous electrolyte secondary battery | |
KR100575555B1 (en) | method of forming cathode material of lithium secondary battery |