JP2000298137A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP2000298137A
JP2000298137A JP11106521A JP10652199A JP2000298137A JP 2000298137 A JP2000298137 A JP 2000298137A JP 11106521 A JP11106521 A JP 11106521A JP 10652199 A JP10652199 A JP 10652199A JP 2000298137 A JP2000298137 A JP 2000298137A
Authority
JP
Japan
Prior art keywords
axis direction
pair
acceleration
electrodes
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11106521A
Other languages
Japanese (ja)
Other versions
JP4681701B2 (en
Inventor
Masahide Tamura
雅英 田村
Tsutomu Sawai
努 澤井
Tatsuya Nozue
達也 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP10652199A priority Critical patent/JP4681701B2/en
Publication of JP2000298137A publication Critical patent/JP2000298137A/en
Application granted granted Critical
Publication of JP4681701B2 publication Critical patent/JP4681701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PROBLEM TO BE SOLVED: To prevent an X-, Y-axis direction acceleration error caused by Z-axis direction acceleration by forming spaced annular electrode rows straddling a weight-opposed region and an intermediate region of a piezoelectric ceramic board so as to surround the weight-opposed region in each pair of X-axis and Y-axis direction acceleration detecting electrodes. SOLUTION: A stress generating region 8B has annular shape surrounding a weight-opposed region 8A, and a stress generating region 8C has annular shape surrounding the stress generating region 8B. Each pair of X-axis and Y-axis direction acceleration detecting electrodes EX1, EX2 and EY1, EY2 are in line symmetry with respect to X-axis and Y-axis imaginary lines XL, YL. These electrodes as well as Z-axis direction acceleration detecting electrodes EZ1-EZ4, are of rectangular shape straddling the weight-opposed region 8A and stress generating region 8B. Spontaneous polarization charges generated to the X-axis and Y-axis direction acceleration detecting electrodes EX1, EX2 and EY1, EY2 when Z-axis direction acceleration is applied to a weight, are equal to each other and offset each other because of reverse polarity so as to cause no error.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電セラミックス
を利用して加速度を検出する加速度センサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting acceleration using piezoelectric ceramics.

【0002】[0002]

【従来の技術】一方の面上に想定するX軸方向仮想線上
に配置された一対のX軸方向加速度検出用電極及びX軸
方向仮想線と直交するY軸方向仮想線上に配置された一
対のY軸方向加速度検出用電極を含む検出用電極パター
ンを形成し、他方の面上に検出用電極パターンと対向す
る対向電極パターンを形成した圧電セラミックス基板に
分極処理を施し、加速度を受けて圧電セラミックス内に
生じる応力により各方向の加速度検出用電極に発生する
自発分極電荷に基づいてX軸方向及びY軸方向の加速度
成分に対応した信号を出力する加速度センサが知られて
いる。この加速センサの基本原理及び基本技術は、国際
公開WO93/02342(PCT/JP92/008
82)に詳しく開示されている。この加速度センサで
は、圧電セラミックス基板の裏面にダイアフラムを介し
て重錘が接合されており、一対のX軸方向加速度検出用
電極及び一対のY軸方向加速度検出用電極は、重錘と対
向する圧電セラミックス基板の重錘対向領域と該重錘対
向領域と外周部との間に位置する中間領域とに跨がり且
つ互いに間隔をあけて重錘対向領域を囲む環状の電極列
を構成するように形成されている。そして、分極処理は
X軸方向及びY軸方向に直交するZ軸方向の加速度が重
錘に作用したときに一対のX軸方向加速度検出用電極の
それぞれの電極または一対のY軸方向加速度検出用電極
のそれぞれの電極に異なる極性の自発分極電荷が発生す
るように施されている。これにより、Z軸方向の加速度
が重錘に作用したときには、一対のX軸方向加速度検出
用電極のそれぞれの電極に発生する自発分極電荷または
一対のY軸方向加速度検出用電極のそれぞれの電極に発
生する自発分極電荷が打ち消し合うため、Z軸方向のみ
の加速度が重錘に作用したときにX軸方向またはY軸方
向に加速度が作用しているかのごとくに誤った検出がな
されることはないようになっている。
2. Description of the Related Art A pair of electrodes for detecting acceleration in an X-axis direction arranged on an imaginary line in the X-axis assumed on one surface and a pair of electrodes arranged on an imaginary line in the Y-axis direction orthogonal to the imaginary line in the X-axis direction. A piezoelectric ceramic substrate on which a detection electrode pattern including a Y-axis direction acceleration detection electrode is formed, and a counter electrode pattern facing the detection electrode pattern is formed on the other surface, is subjected to polarization processing, and is subjected to acceleration to receive the piezoelectric ceramic. 2. Description of the Related Art There is known an acceleration sensor which outputs signals corresponding to acceleration components in an X-axis direction and a Y-axis direction based on spontaneous polarization charges generated in an acceleration detecting electrode in each direction due to stress generated therein. The basic principle and technology of this acceleration sensor are described in International Publication WO93 / 02342 (PCT / JP92 / 008).
82). In this acceleration sensor, a weight is bonded to the back surface of the piezoelectric ceramic substrate via a diaphragm, and a pair of X-axis direction acceleration detecting electrodes and a pair of Y-axis direction acceleration detecting electrodes Formed so as to form a ring-shaped electrode array that straddles the weight-facing region of the ceramic substrate and the intermediate region located between the weight-facing region and the outer peripheral portion and surrounds the weight-facing region at an interval from each other Have been. When the acceleration in the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction acts on the weight, the polarization process is performed for each of the pair of X-axis acceleration detection electrodes or the pair of Y-axis acceleration detection. The electrodes are provided such that spontaneous polarization charges of different polarities are generated in each of the electrodes. Thereby, when the acceleration in the Z-axis direction acts on the weight, the spontaneously polarized charges generated at the respective electrodes of the pair of X-axis direction acceleration detection electrodes or the respective electrodes of the pair of Y-axis direction acceleration detection electrodes are applied. Since the generated spontaneous polarization charges cancel each other out, when an acceleration acting only in the Z-axis direction acts on the weight, an erroneous detection is not made as if the acceleration acts in the X-axis direction or the Y-axis direction. It has become.

【0003】[0003]

【発明が解決しようとする課題】このような効果を完全
に得られるには、X軸方向仮想線とY軸方向仮想線との
交点(以下、単に仮想線の交点という)と重錘の中心と
が完全に一致するように圧電セラミック基板をダイアフ
ラムに接合して圧電セラミック基板と重錘との相互の位
置関係を正確に設定した場合である。しかしながら、圧
電セラミック基板を重錘に対して常に正確な位置に固定
するのは、技術的に容易ではなく、また特に加工精度の
誤差からもこの固定位置に誤差が生じる。従来の加速度
センサでは、検出用電極の一対の辺が仮想線の交点から
周囲方向に向って放射状に広がるように形成されている
ため、仮想線の交点と重錘の中心とがずれると、重錘対
向領域と中間領域との境界部に仮想した境界線(以下、
単に領域境界線という)が各検出用電極を横切る長さが
異なっておく。そのため、各検出用電極に現れる自発分
極電荷のピーク値のバラツキが大きくなり、加速度の検
出精度が低下するという問題があった。また、このよう
に仮想線の交点と重錘の中心とがずれた状態でZ軸方向
のみに加速度が加わると、一対のX軸方向加速度検出用
電極または一対のY軸方向加速度検出用電極のそれぞれ
の一方の電極において大きな自発分極電荷が現れ、他方
の電極において小さな自発分極電荷が現れることにな
る。そのため、Z軸方向のみの加速度が発生していると
きでも、X軸方向にまたはY軸方向に加速度が発生して
いることを示すX軸方向加速度信号またはY軸方向加速
度信号が発生するという問題があった。
In order to obtain such an effect completely, it is necessary to intersect an imaginary line in the X-axis direction with an imaginary line in the Y-axis direction (hereinafter simply referred to as an intersection of the imaginary lines) and the center of the weight. This is the case where the piezoelectric ceramic substrate is bonded to the diaphragm so that the two completely match, and the mutual positional relationship between the piezoelectric ceramic substrate and the weight is accurately set. However, it is not technically easy to always fix the piezoelectric ceramic substrate at an accurate position with respect to the weight, and an error occurs at this fixing position due to an error in processing accuracy. In the conventional acceleration sensor, a pair of sides of the detection electrode are formed so as to radially expand from the intersection of the virtual line toward the peripheral direction. A imaginary boundary line (hereinafter, referred to as a boundary between the weight facing region and the intermediate region)
The length across which each of the detection electrodes intersects is simply different. For this reason, there is a problem that the dispersion of the peak value of the spontaneous polarization charge appearing on each detection electrode becomes large, and the accuracy of detecting the acceleration decreases. When acceleration is applied only in the Z-axis direction in a state where the intersection of the virtual line and the center of the weight are displaced in this way, a pair of X-axis direction acceleration detecting electrodes or a pair of Y-axis direction acceleration detecting electrodes A large spontaneous polarization charge appears at one of the electrodes, and a small spontaneous polarization charge appears at the other electrode. Therefore, even when acceleration occurs only in the Z-axis direction, an X-axis direction acceleration signal or a Y-axis direction acceleration signal indicating that acceleration is occurring in the X-axis direction or the Y-axis direction is generated. was there.

【0004】本発明の目的は、圧電セラミック基板の位
置決め誤差による測定精度の低下を抑制できる加速度セ
ンサ及び三軸加速度センサを提供することにある。
An object of the present invention is to provide an acceleration sensor and a three-axis acceleration sensor capable of suppressing a decrease in measurement accuracy due to a positioning error of a piezoelectric ceramic substrate.

【0005】本発明の他の目的は、Z軸方向のみに加速
度が加わった際に発生するX軸方向加速度信号またはY
軸方向加速度信号を極力小さくすることができる加速度
センサ及び三軸加速度センサを提供することにある。
Another object of the present invention is to provide an X-axis acceleration signal or Y-axis acceleration signal generated when acceleration is applied only in the Z-axis direction.
An object of the present invention is to provide an acceleration sensor and a three-axis acceleration sensor capable of minimizing an axial acceleration signal.

【0006】[0006]

【課題を解決するための手段】本発明の対象とする加速
度センサは、表面上に想定するX軸方向仮想線上に配置
された一対のX軸方向加速度検出用電極とX軸方向仮想
線と直交するY軸方向仮想線上に配置された一対のY軸
方向加速度検出用電極とを含む電極パターンが表面上に
形成され、裏面上に少なくとも各検出用電極と対向する
対向電極パターンが形成され、一対のX軸方向加速度検
出用電極及び一対のY軸方向加速度検出用電極と対向電
極パターンとの間の部分が分極処理されている圧電セラ
ミックス基板と、表面に圧電セラミックス基板の裏面が
接合されたダイアフラムと、ダイアフラムの裏面側に突
出するようにダイアフラムに対して固定された円柱状の
重錘と、重錘の変位を許容するようにダイアフラムの外
周部を支持するベースとを具備する。そして、一対のX
軸方向加速度検出用電極及び一対のY軸方向加速度検出
用電極は、重錘と対向する圧電セラミックス基板の重錘
対向領域と該重錘対向領域と外周部との間に位置する中
間領域とに跨がり且つ互いに間隔をあけて重錘対向領域
を囲む環状の電極列を構成するように形成されている。
より具体的には、一対のX軸方向加速度検出用電極のそ
れぞれは、交点を中心として対象的な位置に配置され且
つX軸方向仮想線を中心線として線対象になる形状を有
している。また一対のY軸方向加速度検出用電極のそれ
ぞれは、交点を中心として対象的な位置に配置され且つ
Y軸方向仮想線を中心線として線対象になる形状を有し
ている。
An acceleration sensor according to the present invention comprises a pair of electrodes for detecting acceleration in the X-axis direction arranged on a virtual line in the X-axis direction assumed on the surface, and a pair of electrodes for detecting acceleration in the X-axis direction. An electrode pattern including a pair of Y-axis direction acceleration detection electrodes arranged on a Y-axis direction imaginary line is formed on the front surface, and a counter electrode pattern facing at least each detection electrode is formed on the back surface. A piezoelectric ceramics substrate in which portions between the X-axis direction acceleration detecting electrode and the pair of Y-axis direction acceleration detecting electrodes and the counter electrode pattern are polarized, and a diaphragm having the front surface joined to the back surface of the piezoelectric ceramic substrate And a column-shaped weight fixed to the diaphragm so as to protrude to the rear surface side of the diaphragm, and a base for supporting an outer peripheral portion of the diaphragm so as to allow displacement of the weight. ; And a nest. And a pair of X
The axial acceleration detection electrode and the pair of Y-axis acceleration detection electrodes are provided in a weight facing region of the piezoelectric ceramic substrate facing the weight and an intermediate region located between the weight facing region and the outer peripheral portion. It is formed so as to straddle and to form a ring-shaped electrode row surrounding the weight opposing region with an interval therebetween.
More specifically, each of the pair of X-axis direction acceleration detection electrodes is arranged at a target position around the intersection and has a shape symmetrical with the X-axis direction virtual line as a center line. . Further, each of the pair of Y-axis direction acceleration detecting electrodes is arranged at a symmetrical position with the intersection point as a center, and has a shape symmetric with respect to the Y-axis direction virtual line as a center line.

【0007】本発明では、X軸方向加速度検出用電極の
環状の電極列が延びる方向に位置する一対の辺をX軸方
向仮想線の両側にほぼ等しい間隔をあけてX軸方向仮想
線とほぼ平行にし、Y軸方向加速度検出用電極の環状の
電極列が延びる方向に位置する一対の辺をY軸方向仮想
線の両側にほぼ等しい間隔をあけてY軸方向仮想線とほ
ぼ平行にする。このようにすると、重錘対向領域と中間
領域との境界部に仮想した領域境界線が各検出用電極の
平行な一対の辺上を横切ることになる。そのため、圧電
セラミック基板の固定位置が多少ずれても、領域境界線
が各検出用電極を横切る長さは大きく変わることがな
い。そのため、製造上の誤差範囲で圧電セラミック基板
の固定位置がずれても、各検出用電極に現れる自発分極
電荷のピーク値の変動またはバラツキは少なくなり、加
速度の検出精度が低下するのを抑制することができる。
また、圧電セラミック基板の固定位置がずれた状態でX
軸方向及びY軸方向と直交するZ軸方向のみに加速度が
加わっても、一対のX軸方向加速度検出用電極のそれぞ
れの電極または一対のY軸方向加速度検出用電極のそれ
ぞれの電極に現れる極性の異なる自発分極電荷の量はほ
ぼ等しくなる。そのため、Z軸方向のみに加速度が作用
したときに発生するX軸方向加速度信号またはY軸方向
加速度信号は小さくなる。
According to the present invention, a pair of sides located in the direction in which the annular electrode row of the X-axis direction acceleration detecting electrode extends is substantially equally spaced on both sides of the X-axis direction virtual line and substantially parallel to the X-axis direction virtual line. The pair of sides located in the direction in which the annular electrode row of the Y-axis direction acceleration detecting electrode extends is made substantially parallel to the Y-axis direction virtual line at substantially equal intervals on both sides of the Y-axis direction virtual line. In this way, the virtual region boundary line at the boundary between the weight-facing region and the intermediate region crosses over a pair of parallel sides of each detection electrode. Therefore, even if the fixing position of the piezoelectric ceramic substrate is slightly shifted, the length of the region boundary line crossing each detection electrode does not change significantly. Therefore, even if the fixed position of the piezoelectric ceramic substrate is displaced within the manufacturing error range, the fluctuation or variation of the peak value of the spontaneous polarization charge appearing on each detection electrode is reduced, and the accuracy of acceleration detection is prevented from deteriorating. be able to.
Further, when the fixed position of the piezoelectric ceramic substrate is shifted, X
Even if acceleration is applied only in the Z-axis direction orthogonal to the axial direction and the Y-axis direction, the polarity appearing on each electrode of the pair of X-axis acceleration detection electrodes or each electrode of the pair of Y-axis acceleration detection electrodes. Are approximately equal. Therefore, an X-axis direction acceleration signal or a Y-axis direction acceleration signal generated when an acceleration acts only in the Z-axis direction is reduced.

【0008】しかしながら、各検出用電極をこのように
形成しても、Z軸方向のみに加速度が加わった際に発生
するX軸方向加速度信号またはY軸方向加速度信号を小
さくすることには限界があった。この原因を調べた本発
明者は、加速度が作用して重錘が変位したときに圧電セ
ラミック基板の重錘対向領域内にも応力が発生する領域
(応力発生領域)があることを発見した。この応力発生
領域では、領域境界線から重錘対向領域の中心に向って
応力が徐々に減少する。このような応力発生領域が重錘
対向領域内に存在すると、重錘の中心と仮想線の交点と
がずれた場合に、一対のX軸方向加速度検出用電極また
は一対のY軸方向加速度検出用電極の重錘対向領域内の
応力発生領域上に位置する部分の面積が異なってくる。
例えば、一対の加速度検出用電極の一方の電極の内側端
部が応力発生領域の中央に位置し、他方の電極の内側端
部が応力発生領域を越えて重錘対向領域の中心部側に位
置すると、それぞれの電極が重錘対向領域内の応力発生
領域と対向する面積が異なり、それぞれの電極に発生す
る自発分極電荷または電圧が異なったものになる。その
結果、Z軸方向のみに加速度が作用した場合に、それぞ
れの電極に発生する自発分極電荷が相殺されずに、僅か
なX軸方向加速度信号またはY軸方向加速度信号が出力
される。そこで、本発明では、一対のX軸方向加速度検
出用電極及び一対のY軸方向加速度検出用電極を、圧電
セラミック基板をダイアフラムに接合する際に発生する
重錘の中心と仮想線の交点とのずれ量が最大になったと
きに、重錘のZ軸方向の変位により重錘対向領域内に応
力が発生する領域を一対のX軸方向加速度検出用電極及
び一対のY軸方向加速度検出用電極の内側端部が越える
ように形成する。言い換えるならば、一対のX軸方向加
速度検出用電極のそれぞれの電極の内側端部及び一対の
Y軸方向加速度検出用電極のそれぞれの電極の内側端部
を、重錘の中心と仮想線の交点とのずれ量が最大になっ
たときの重錘対向領域内の応力発生領域を越えた重錘対
向領域の中心部側に位置させる。このようにすると、重
錘の中心と仮想線の交点とが最大にずれても、一対のX
軸方向加速度検出用電極のそれぞれの電極または一対の
Y軸方向加速度検出用電極のそれぞれの電極は、いずれ
も重錘対向領域内の応力発生領域上に位置することにな
る。そのため、Z軸方向のみの加速度が重錘に作用して
も、一対のX軸方向加速度検出用電極のそれぞれの電極
に発生する極性の異なる自発分極電荷または一対のY軸
方向加速度検出用電極のそれぞれの電極に発生する極性
の異なる自発分極電荷がほぼ等しくなり、それぞれの電
極に発生する自発分極電荷はほぼ相殺し合う。その結
果、Z軸方向にのみ加速度が作用したときに発生するX
軸方向加速度信号またはY軸方向加速度信号を従来より
も大幅に小さくすることができ、測定精度を上げること
ができる。
However, even if each detection electrode is formed in this manner, there is a limit to reducing the X-axis or Y-axis acceleration signal generated when acceleration is applied only in the Z-axis direction. there were. The present inventor who has investigated the cause has found that there is also a region (stress generating region) in which stress is generated in the region of the piezoelectric ceramic substrate facing the weight when the weight is displaced by the acceleration. In this stress generating region, the stress gradually decreases from the region boundary line toward the center of the counterweight region. When such a stress generation region exists in the weight-facing region, when the center of the weight and the intersection of the imaginary line deviate, a pair of X-axis direction acceleration detection electrodes or a pair of Y-axis direction acceleration detection The area of the portion of the electrode located on the stress generating region in the weight facing region differs.
For example, the inner end of one electrode of the pair of acceleration detecting electrodes is located at the center of the stress generating region, and the inner end of the other electrode is located at the center of the counterweight region beyond the stress generating region. Then, the area of each electrode facing the stress generating region in the weight-facing region is different, and the spontaneous polarization charge or voltage generated at each electrode is different. As a result, when acceleration acts only in the Z-axis direction, a spontaneous polarization charge generated in each electrode is not canceled out, and a slight X-axis direction acceleration signal or a small Y-axis direction acceleration signal is output. Therefore, in the present invention, a pair of X-axis direction acceleration detecting electrodes and a pair of Y-axis direction acceleration detecting electrodes are connected to the intersection of the center of the weight and the imaginary line generated when the piezoelectric ceramic substrate is joined to the diaphragm. When the amount of displacement is maximized, a region where stress is generated in the weight-facing region due to the displacement of the weight in the Z-axis direction is defined by a pair of X-axis acceleration detection electrodes and a pair of Y-axis acceleration detection electrodes. Is formed so as to exceed the inner end. In other words, the inner end of each of the pair of X-axis direction acceleration detecting electrodes and the inner side of each of the pair of Y-axis direction acceleration detecting electrodes are defined by the intersection of the center of the weight and the virtual line. Is located on the center side of the weight opposing region beyond the stress generating region in the weight opposing region when the amount of deviation from the maximum becomes the maximum. In this way, even if the center of the weight and the intersection of the imaginary line are maximally shifted, a pair of X
Each of the electrodes for detecting the axial acceleration or each of the pair of electrodes for detecting the acceleration in the Y-axis direction is located on the stress generating region in the weight facing region. Therefore, even if the acceleration only in the Z-axis direction acts on the weight, spontaneous polarization charges having different polarities generated in the respective electrodes of the pair of X-axis direction acceleration detection electrodes or the pair of Y-axis direction acceleration detection electrodes are generated. The spontaneous polarization charges having different polarities generated at the respective electrodes are substantially equal, and the spontaneous polarization charges generated at the respective electrodes substantially cancel each other. As a result, X that occurs when acceleration acts only in the Z-axis direction
The axial acceleration signal or the Y-axis acceleration signal can be made much smaller than in the past, and the measurement accuracy can be increased.

【0009】本発明のように、重錘の中心と仮想線の交
点とのずれ量が最大になった場合においても、重錘対向
領域内の応力発生領域上に一対のX軸方向加速度検出用
電極及び一対のY軸方向加速度検出用電極を位置させる
には、X軸方向仮想線とY軸方向仮想線の交点を中心に
して重錘の半径寸法と同じ半径寸法Rで描いた仮想円を
想定したときに、一対のX軸方向加速度検出用電極の仮
想円を越えて延びる部分の長さを半径寸法Rの25%以
上とし、一対のY軸方向加速度検出用電極の仮想円を越
えて延びる部分の長さを半径寸法Rの25%以上とすれ
ばよい。そして、一対のX軸方向加速度検出用電極と一
対のY軸方向加速度検出用電極とが接触しないようにす
ればよい。
As in the present invention, even when the amount of deviation between the center of the weight and the intersection of the imaginary line is maximized, a pair of X-axis direction acceleration detection To locate the electrodes and the pair of Y-axis direction acceleration detection electrodes, a virtual circle drawn with the same radius R as the radius of the weight is set around the intersection of the X-axis virtual line and the Y-axis virtual line. Assuming that the length of the portion extending beyond the virtual circle of the pair of X-axis direction acceleration detecting electrodes is set to 25% or more of the radius dimension R and exceeding the virtual circle of the pair of Y-axis direction acceleration detecting electrodes. The length of the extending portion may be set to 25% or more of the radius dimension R. Then, the pair of X-axis direction acceleration detecting electrodes and the pair of Y-axis direction acceleration detecting electrodes may be prevented from being in contact with each other.

【0010】重錘、ダイアフラム及びベースは、種々の
形状に形成することができるが、これらを金属材料によ
り一体に成形された単体ユニットとして構成することが
できる。この場合、単体ユニットを樹脂射出成形のイン
サートとして用いることができる。また、このように単
体ユニットを用いると、重錘のダイアフラムに対する取
付け位置を一定にすることができ、加速度検出装置の組
立精度が上がるだけでなく、測定精度の低下を抑制する
ことができる。また、このようにすると加速度センサの
部品点数が少なくなり、加速度センサの製造が容易にな
る。
The weight, the diaphragm and the base can be formed in various shapes, and they can be formed as a single unit integrally formed of a metal material. In this case, the single unit can be used as an insert for resin injection molding. Further, by using the single unit as described above, the attachment position of the weight to the diaphragm can be made constant, and not only the assembling accuracy of the acceleration detecting device can be increased, but also the decrease in the measuring accuracy can be suppressed. In addition, this reduces the number of parts of the acceleration sensor, and facilitates the manufacture of the acceleration sensor.

【0011】本発明を適用した三軸加速度センサは、表
面上に想定するX軸方向仮想線上に配置された一対のX
軸方向加速度検出用電極と、X軸方向仮想線と直交する
Y軸方向仮想線上に配置された一対のY軸方向加速度検
出用電極と、一対のX軸方向加速度検出用電極及び一対
のY軸方向加速度検出用電極の隣接する2つの電極間に
配置された複数のZ軸方向加速度検出用電極を含む電極
パターンが表面上に形成され、裏面上に少なくとも各検
出用電極と対向する対向電極パターンが形成され、一対
のX軸方向加速度検出用電極、一対のY軸方向加速度検
出用電極及び複数のZ軸方向加速度検出用電極と対向電
極パターンとの間の部分が分極処理されている圧電セラ
ミックス基板と、表面に圧電セラミックス基板の裏面が
接合されたダイアフラムと、ダイアフラムの裏面側に突
出するようにダイアフラムに対して固定された円柱状の
重錘と、重錘の変位を許容するようにダイアフラムの外
周部を支持するベースとを具備している。そして、分極
処理はZ軸方向の加速度が重錘に作用したときに一対の
X軸方向加速度検出用電極のそれぞれの電極または一対
のY軸方向加速度検出用電極のそれぞれの電極に異なる
極性の自発分極電荷が発生するように行われており、一
対のX軸方向加速度検出用電極、一対のY軸方向加速度
検出用電極及び複数のZ軸方向加速度検出用電極が、重
錘と対向する圧電セラミックス基板の円形の重錘対向領
域と該重錘対向領域と外周部との間に位置する中間領域
とに跨がり且つ互いに間隔をあけて重錘対向領域を囲む
環状の電極列を構成するように形成されている。このよ
うな三軸加速度センサでは、X軸方向加速度検出用電極
の環状の電極列が延びる方向に位置する一対の辺をX軸
方向仮想線の両側にほぼ等しい間隔をあけてX軸方向仮
想線とほぼ平行にし、Y軸方向加速度検出用電極の環状
の電極列が延びる方向に位置する一対の辺をY軸方向仮
想線の両側にほぼ等しい間隔をあけてY軸方向仮想線と
ほぼ平行にする。そして、一対のX軸方向加速度検出用
電極及び一対のY軸方向加速度検出用電極は、圧電セラ
ミック基板をダイアフラムに接合する際に発生する重錘
の中心とX軸方向仮想線とY軸方向仮想線の交点とのず
れ量が最大になったときに、重錘にZ軸方向の加速度が
作用した際の一対のX軸方向加速度検出用電極のそれぞ
れの電極または一対のY軸方向加速度検出用電極のそれ
ぞれの電極に発生する異なった極性の自発分極電荷によ
る電圧の和が,複数のZ軸方向加速度検出用電極に現れ
る最大電圧の10%以下になるように形成する。このよ
うに形成すれば、重錘の中心と仮想線の交点とが最大に
ずれても、Z軸方向のみの加速度が重錘に作用しても、
一対のX軸方向加速度検出用電極のそれぞれの電極に発
生する極性の異なる自発分極電荷または一対のY軸方向
加速度検出用電極のそれぞれの電極に発生する極性の異
なる自発分極電荷がほぼ等しくなり、それぞれの電極に
発生する自発分極電荷はほぼ相殺し合う。その結果、Z
軸方向にのみ加速度が作用したときに発生するX軸方向
加速度信号またはY軸方向加速度信号を従来よりも大幅
に小さくすることができ、測定精度を上げることができ
る。
A three-axis acceleration sensor to which the present invention is applied has a pair of X-axis sensors arranged on an imaginary line in the X-axis direction assumed on the surface.
An axial acceleration detection electrode, a pair of Y-axis acceleration detection electrodes disposed on a Y-axis virtual line orthogonal to the X-axis virtual line, a pair of X-axis acceleration detection electrodes, and a pair of Y-axes. An electrode pattern including a plurality of Z-axis direction acceleration detection electrodes disposed between two adjacent electrodes of the direction acceleration detection electrode is formed on a front surface, and a counter electrode pattern facing at least each detection electrode on a back surface. Is formed, and a portion between a pair of X-axis direction acceleration detecting electrodes, a pair of Y-axis direction acceleration detecting electrodes, a plurality of Z-axis direction acceleration detecting electrodes, and a counter electrode pattern is subjected to polarization processing. A substrate, a diaphragm having a back surface joined to a piezoelectric ceramic substrate, a cylindrical weight fixed to the diaphragm so as to protrude toward the back surface of the diaphragm, and a weight change. And comprising a base for supporting the outer peripheral portion of the diaphragm to permit. In the polarization processing, when the acceleration in the Z-axis direction acts on the weight, the respective electrodes of the pair of X-axis direction acceleration detecting electrodes or the pair of Y-axis direction acceleration detecting electrodes have spontaneous spontaneous polarities different from each other. The piezoelectric ceramics are generated so that polarized charges are generated, and a pair of X-axis direction acceleration detection electrodes, a pair of Y-axis direction acceleration detection electrodes, and a plurality of Z-axis direction acceleration detection electrodes are opposed to the weight. In order to form a ring-shaped electrode array that straddles a circular counterweight region of the substrate and an intermediate region located between the counterweight region and the outer peripheral portion and surrounds the counterweight region at an interval from each other. Is formed. In such a three-axis acceleration sensor, a pair of sides located in the direction in which the annular electrode row of the X-axis direction acceleration detection electrode extends extends at substantially equal intervals on both sides of the X-axis direction virtual line, and the X-axis direction virtual line is formed. And a pair of sides positioned in a direction in which the annular electrode row of the Y-axis direction acceleration detecting electrode extends is substantially parallel to the Y-axis direction virtual line at substantially equal intervals on both sides of the Y-axis direction virtual line. I do. The pair of electrodes for detecting the acceleration in the X-axis direction and the pair of electrodes for detecting the acceleration in the Y-axis are formed by the center of the weight, the virtual line in the X-axis direction, and the virtual line in the Y-axis direction generated when the piezoelectric ceramic substrate is joined to the diaphragm. When the amount of deviation from the intersection of the lines is at a maximum, a pair of electrodes for a pair of X-axis acceleration detection or a pair of Y-axis acceleration detection is performed when acceleration in the Z-axis direction acts on the weight. The electrodes are formed such that the sum of the voltages due to the spontaneously polarized charges having different polarities generated at each of the electrodes is 10% or less of the maximum voltage appearing at the plurality of Z-axis direction acceleration detecting electrodes. With this configuration, even if the center of the weight and the intersection of the imaginary line are maximally shifted, even if the acceleration only in the Z-axis direction acts on the weight,
Spontaneous polarization charges having different polarities generated at respective electrodes of the pair of X-axis direction acceleration detection electrodes or spontaneous polarization charges having different polarities generated at respective electrodes of the pair of Y-axis direction acceleration detection electrodes are substantially equal to each other, The spontaneous polarization charges generated in the respective electrodes almost cancel each other. As a result, Z
The X-axis direction acceleration signal or the Y-axis direction acceleration signal generated when the acceleration acts only in the axial direction can be made much smaller than in the past, and the measurement accuracy can be improved.

【0012】このような構成を具体的に行うには、X軸
方向仮想線とY軸方向仮想線の交点を中心にして重錘の
半径寸法と同じ半径寸法Rで描いた仮想円を想定したと
きに、一対のX軸方向加速度検出用電極の仮想円を越え
て延びる部分の長さを半径寸法Rの25%以上とし、一
対のY軸方向加速度検出用電極の仮想円を越えて延びる
部分の長さを半径寸法Rの25%以上とする。そして、
一対のX軸方向加速度検出用電極と一対のY軸方向加速
度検出用電極と複数のZ軸方向加速度検出用電極とが接
触しないようにすればよい。
In order to concretely carry out such a configuration, an imaginary circle drawn with the same radius R as the radius of the weight is assumed around the intersection of the imaginary line in the X-axis and the imaginary line in the Y-axis. Sometimes, the length of the portion extending beyond the virtual circle of the pair of X-axis direction acceleration detecting electrodes is set to 25% or more of the radius dimension R, and the portion extending beyond the virtual circle of the pair of Y-axis direction acceleration detecting electrodes. Is 25% or more of the radius dimension R. And
It is sufficient that the pair of X-axis acceleration detection electrodes, the pair of Y-axis acceleration detection electrodes, and the plurality of Z-axis acceleration detection electrodes do not contact each other.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、三軸加速度センサに適用
した本発明の実施の形態の加速度センサの概略断面図で
ある。本図に示すように、この三軸加速度センサは、ダ
イアフラム1と、重錘3と、ベース5と、ダイアフラム
1の重錘3が取り付けられた面側とは反対側の面上に固
定されたセンサ素子7とを備えている。なお、本図で
は、理解を容易にするため、センサ素子7の各部の厚み
を誇張して描いている。そして、これらの各部材は、絶
縁樹脂製ケース9に収納されており、この絶縁樹脂製ケ
ース9には、センサ素子7内の出力電極OZ,OE0 …
に接続される端子金具25…を備えた2つの端子ユニッ
ト11,11と、金属製の蓋部材6とが取り付けられて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of an acceleration sensor according to an embodiment of the present invention applied to a three-axis acceleration sensor. As shown in the figure, the three-axis acceleration sensor is fixed on the surface of the diaphragm 1, the weight 3, the base 5, and the surface of the diaphragm 1 opposite to the surface on which the weight 3 is mounted. And a sensor element 7. In this figure, the thickness of each part of the sensor element 7 is exaggerated for easy understanding. These members are housed in a case 9 made of insulating resin, and the case 9 made of insulating resin has output electrodes OZ, OE0.
And two metal terminal members 11 having terminal fittings 25.

【0014】ダイアフラム1,重錘3及びベース5は、
図1,図2(A)及び図2(B)に示すように、真鍮か
らなる金属材料により一体に成形された単体ユニット1
0として構成されている。なお、図2(A)は単体ユニ
ット10の底面図であり、図2(B)は図2(A)のB
−B線断面図である。ダイアフラム1は、円板形状を有
しており、約0.1mmの厚みを有している。重錘3
は、直径40mmの円柱形状を有しており、その軸線の
延長部分がダイアフラム1の中心を通るようにダイアフ
ラム1と一体化されている。ベース5は円筒形状を有し
ており、ダイアフラム1の外周部を支持している。ま
た、ベース5の外周部には、周方向に連続するV字溝5
aが形成されている。本実施例では、真鍮からなる円柱
状金属材料を用意し、この円柱状金属材料に対して重錘
3を削り出すように切削加工を施して環状部分Cの空洞
部を形成し、また外周部に切削加工を施こしてV字溝5
aを形成して単体ユニット10を一体成形した。
The diaphragm 1, the weight 3 and the base 5
As shown in FIG. 1, FIG. 2 (A) and FIG. 2 (B), a single unit 1 integrally formed of a metal material made of brass.
It is configured as 0. FIG. 2A is a bottom view of the single unit 10, and FIG.
FIG. 4 is a cross-sectional view taken along line B. Diaphragm 1 has a disk shape and has a thickness of about 0.1 mm. Weight 3
Has a cylindrical shape with a diameter of 40 mm, and is integrated with the diaphragm 1 so that an extension of the axis passes through the center of the diaphragm 1. The base 5 has a cylindrical shape and supports the outer peripheral portion of the diaphragm 1. A V-shaped groove 5 continuous in the circumferential direction is provided on the outer peripheral portion of the base 5.
a is formed. In the present embodiment, a cylindrical metal material made of brass is prepared, and the cylindrical metal material is subjected to a cutting process so as to cut out the weight 3 to form a hollow portion of the annular portion C. To V-groove 5
a was formed and the single unit 10 was integrally molded.

【0015】この例では、センサ素子7として、図1及
び図3の平面図に示すように圧電セラミックス基板7a
の表面に三軸加速度の検出用電極パターンE1 が形成さ
れ、裏面に検出用電極パターンE1 の主要部と対向する
環状の対向電極パターンE0が形成されて構成された圧
電型三軸センサ素子を用いている。圧電セラミックス基
板7aの裏面及び対向電極パターンE0 がエポキシ系の
接着剤によりダイアフラム1の表面に接合されて、セン
サ素子7はダイアフラム1に取り付けられている。対向
電極パターンE0 のダイアフラム1側の表面は凹凸を有
しており、この凹凸の凹部とダイアフラム1との間に接
着剤が充填され、凸部がダイアフラム1と接触するよう
に、対向電極パターンE0 は、ダイアフラム1に接合さ
れている。このため、対向電極パターンE0 は、ダイア
フラム1を介してベース5と電気的に接続されることに
なる。圧電セラミックス基板7aは、輪郭形状が四角形
をなしており、内部に応力が加わると自発分極電荷が発
生するように電極に対応した部分に分極処理が施されて
いる。分極処理については後に詳細に説明する。
In this example, the piezoelectric ceramic substrate 7a is used as the sensor element 7 as shown in the plan views of FIGS.
A piezoelectric type three-axis sensor element having a triangular acceleration detecting electrode pattern E1 formed on the front surface and an annular counter electrode pattern E0 opposing the main part of the detecting electrode pattern E1 formed on the back surface is used. ing. The back surface of the piezoelectric ceramic substrate 7a and the counter electrode pattern E0 are joined to the surface of the diaphragm 1 with an epoxy-based adhesive, and the sensor element 7 is mounted on the diaphragm 1. The surface of the counter electrode pattern E0 on the side of the diaphragm 1 has irregularities, and an adhesive is filled between the concave part of the irregularities and the diaphragm 1 so that the convex part comes into contact with the diaphragm 1. Are joined to the diaphragm 1. Therefore, the opposing electrode pattern E0 is electrically connected to the base 5 via the diaphragm 1. The piezoelectric ceramic substrate 7a has a quadrangular contour, and a portion corresponding to the electrodes is subjected to polarization processing so that spontaneous polarization is generated when stress is applied to the inside. The polarization process will be described later in detail.

【0016】図3に示すように、圧電セラミックス基板
7aは、重錘対向領域8Aと第1の応力発生領域8Bと
第2の応力発生領域8Cとを有している。そして、重錘
対向領域8Aと第1の応力発生領域8Bとの間には領域
境界線8Dが形成されている。重錘対向領域8Aは、圧
電セラミックス基板1の中心部において円形の形状を有
している。この重錘対向領域8Aに対応する部分には、
重錘3が位置している。なお、本例では第1の応力発生
領域8Bと第2の応力発生領域8Cにより中間領域が形
成されている。
As shown in FIG. 3, the piezoelectric ceramic substrate 7a has a weight facing region 8A, a first stress generating region 8B, and a second stress generating region 8C. A region boundary line 8D is formed between the weight facing region 8A and the first stress generation region 8B. The weight facing region 8 </ b> A has a circular shape at the center of the piezoelectric ceramic substrate 1. In the portion corresponding to the weight facing region 8A,
The weight 3 is located. In this example, an intermediate region is formed by the first stress generation region 8B and the second stress generation region 8C.

【0017】第1の応力発生領域8Bは、重錘対向領域
8Aを囲む環状の形状を有している。第1の応力発生領
域8Bは、重錘3に対して圧電セラミックス基板7aと
平行な方向(X軸方向またはY軸方向)に加速度が作用
すると、重錘3の重心を中心として点対称に異なった状
態(引っ張り応力が加わった状態と、圧縮応力が加わっ
た状態と)に変形する。また、重錘3に対して圧電セラ
ミックス基板7aと直交する方向(Z軸方向)に加速度
が作用すると、第1の応力発生領域8Bの各部は同じ状
態に変形する。
The first stress generation region 8B has an annular shape surrounding the weight facing region 8A. When acceleration acts on the weight 3 in a direction parallel to the piezoelectric ceramic substrate 7a (X-axis direction or Y-axis direction), the first stress generation region 8B differs point-symmetrically about the center of gravity of the weight 3. (A state in which a tensile stress is applied and a state in which a compressive stress is applied). When acceleration acts on the weight 3 in a direction (Z-axis direction) orthogonal to the piezoelectric ceramic substrate 7a, each part of the first stress generation region 8B is deformed to the same state.

【0018】第2の応力発生領域8Cは第1の応力発生
領域8Bを囲む環状の形状を有している。重錘3に対し
て圧電セラミックス基板1と直交する方向(Z軸方向)
に加速度が作用すると、第2の応力発生領域8Cの各部
は第1の応力発生領域8Bと異なった状態に変形する。
The second stress generating region 8C has an annular shape surrounding the first stress generating region 8B. Direction perpendicular to the piezoelectric ceramic substrate 1 with respect to the weight 3 (Z-axis direction)
When an acceleration acts on each portion of the second stress generating region 8C, the respective portions are deformed in a state different from that of the first stress generating region 8B.

【0019】圧電セラミックス基板7aの表面及び裏面
に形成された検出用電極パターンE1 及び対向電極パタ
ーンE0 は、いずれもスクリーン印刷により形成されて
いる。重錘3に作用する加速度に基づいてダイアフラム
1が変形すると圧電セラミックス基板7aが撓んで検出
用電極パターンE1 と対向電極パターンE0 との間に発
生する自発分極電荷が変化して、重錘3に加わった三軸
(X軸,Y軸,Z軸)方向の加速度が電流または電圧の
変化として測定される。なお、ここでいうX軸,Y軸,
Z軸は互いに直交する方向に延びる軸である。X軸はX
軸方向仮想線XLの方向に延びており、Y軸はY軸方向
仮想線YLの方向に延びており、Z軸は圧電セラミック
ス基板7aの面方向と直交する方向に延びている。
The detection electrode pattern E1 and the counter electrode pattern E0 formed on the front and back surfaces of the piezoelectric ceramic substrate 7a are both formed by screen printing. When the diaphragm 1 is deformed based on the acceleration acting on the weight 3, the piezoelectric ceramic substrate 7a bends, and the spontaneous polarization charge generated between the detection electrode pattern E1 and the counter electrode pattern E0 changes. The applied acceleration in the directions of the three axes (X axis, Y axis, Z axis) is measured as a change in current or voltage. Note that the X axis, Y axis,
The Z axis is an axis extending in directions orthogonal to each other. X axis is X
It extends in the direction of the imaginary line XL in the axial direction, the Y axis extends in the direction of the imaginary line YL in the Y axis direction, and the Z axis extends in a direction orthogonal to the surface direction of the piezoelectric ceramic substrate 7a.

【0020】検出用電極パターンE1 はX軸方向検知電
極パターン13とY軸方向検知電極パターン15とZ軸
方向検知電極パターン17とを有している。X軸方向検
知電極パターン13は、一対のX軸方向加速度検出用電
極EX1,EX2とX軸出力電極OXとが接続線L1,
L2により直列に接続された構造を有している。一対の
X軸方向加速度検出用電極EX1,EX2は、後に説明
するY軸方向検知電極パターン15の一対のY軸方向加
速度検出用電極EY1,EY2及びZ軸方向検知電極パ
ターン17のZ軸方向加速度検出用電極EZ1〜EZ4
と共に、重錘対向領域8Aを囲む環状の列を形成してい
る。一対のX軸方向加速度検出用電極のそれぞれの電極
EX1,EX2は、X軸方向仮想線XLに対して線対象
になり且つ重錘対向領域8Aと第1の応力発生領域8B
とに跨がる(領域境界線8Dを跨がる)矩形に近い形状
を有している。また、加速度検出用電極EX1,EX2
の環状の検出用電極列が延びる方向に位置する一対の辺
EXa,EXaはそれぞれほぼ平行になっている。な
お、加速度検出用電極EX1,EX2が重錘対向領域8
A内に入り込む寸法については後に詳細に説明する。
The detection electrode pattern E1 has an X-axis direction detection electrode pattern 13, a Y-axis direction detection electrode pattern 15, and a Z-axis direction detection electrode pattern 17. The X-axis direction detecting electrode pattern 13 includes a pair of X-axis direction acceleration detecting electrodes EX1 and EX2 and an X-axis output electrode OX connected to a connection line L1.
It has a structure connected in series by L2. The pair of X-axis direction acceleration detection electrodes EX1 and EX2 are a pair of Y-axis direction acceleration detection electrodes EY1 and EY2 of the Y-axis direction detection electrode pattern 15 and the Z-axis direction acceleration of the Z-axis direction detection electrode pattern 17, which will be described later. Detection electrodes EZ1 to EZ4
At the same time, an annular row surrounding the weight facing region 8A is formed. The electrodes EX1 and EX2 of the pair of X-axis direction acceleration detecting electrodes are line-symmetric with respect to the X-axis direction virtual line XL, and the weight facing region 8A and the first stress generating region 8B
(Spans the region boundary line 8D). The acceleration detection electrodes EX1 and EX2
A pair of sides EXa, EXa located in the direction in which the annular detection electrode row extends are substantially parallel to each other. Note that the acceleration detection electrodes EX1 and EX2 are connected to the weight facing region 8.
The dimensions entering A will be described later in detail.

【0021】Y軸方向加速度検出用電極パターン15
は、2つのY軸方向加速度検出用電極EY1,EY2と
Y軸出力電極OYとが接続線L3〜L5により直列に接
続された構造を有している。一対のY軸方向加速度検出
用電極のそれぞれの加速度検出用電極EY1,EY2も
X軸方向加速度検出用電極EX1及びEX2と同様な形
状を有しており、Y軸方向仮想線YLに対して線対象に
なり且つ重錘対向領域8Aと第1の応力発生領域8Bと
に跨がる(領域境界線8Dを跨がる)矩形に近い形状を
有している。また、加速度検出用電極EY1,EY2の
環状の検出用電極列が延びる方向に位置する一対の辺E
Ya,EYaはそれぞれほぼ平行になっている。なお、
加速度検出用電極EY1,EY2が重錘対向領域8A内
に入り込む寸法については後に詳細に説明する。Y軸方
向仮想線YLとX軸方向仮想線XLとは互いに直交する
ので、X軸方向加速度検出用電極EX1,Y軸方向加速
度検出用電極EY1,X軸方向加速度検出用電極EX2
及びY軸方向加速度検出用電極EY2はそれぞれ90度
の間隔を隔てて配置されることになる。Y軸出力電極O
YはX軸出力電極OXと同様にほぼ正方形の形状を有し
ており、第2の応力発生領域8Cの外側にある圧電セラ
ミックス基板7aの外周縁部に位置するようにX軸出力
電極OXと並んで形成されている。
Electrode pattern 15 for detecting acceleration in the Y-axis direction
Has a structure in which two Y-axis direction acceleration detecting electrodes EY1 and EY2 and a Y-axis output electrode OY are connected in series by connection lines L3 to L5. Each of the acceleration detection electrodes EY1 and EY2 of the pair of Y-axis direction acceleration detection electrodes has the same shape as the X-axis direction acceleration detection electrodes EX1 and EX2, and corresponds to the Y-axis direction virtual line YL. It has a shape close to a rectangle which is an object and straddles the weight facing region 8A and the first stress generating region 8B (strides over the region boundary line 8D). Further, a pair of sides E located in a direction in which the annular detection electrode rows of the acceleration detection electrodes EY1 and EY2 extend.
Ya and EYa are substantially parallel to each other. In addition,
The dimensions of the acceleration detection electrodes EY1 and EY2 entering the weight facing region 8A will be described later in detail. Since the Y-axis direction virtual line YL and the X-axis direction virtual line XL are orthogonal to each other, the X-axis direction acceleration detection electrode EX1, the Y-axis direction acceleration detection electrode EY1, and the X-axis direction acceleration detection electrode EX2
And the Y-axis direction acceleration detecting electrode EY2 are arranged at intervals of 90 degrees. Y-axis output electrode O
Y has a substantially square shape similar to the X-axis output electrode OX, and the X-axis output electrode OX is located at the outer peripheral edge of the piezoelectric ceramic substrate 7a outside the second stress generation region 8C. They are formed side by side.

【0022】Z軸方向加速度検出用電極パターン17
は、Z軸方向加速度検出用電極EZ1,Z軸方向加速度
検出用電極EZ2,Z軸方向加速度検出用電極EZ3,
Z軸方向加速度検出用電極EZ4,Z軸出力電極OZ
が、これらの順に接続線L6〜L9によって直列に接続
された構造を有している。4つのZ軸方向加速度検出用
電極EZ1〜EZ4は、矩形に近い形状を有している。
Z軸方向加速度検出用電極EZ1〜EZ4もX軸方向加
速度検出用電極EX1及びEX2と同様に重錘対向領域
8Aと第1の応力発生領域8Bとに跨がって形成されて
いる。またZ軸方向加速度検出用電極EZ1〜EZ4
は、X軸方向加速度検出用電極EX2とY軸方向加速度
検出用電極EY1との間,Y軸方向加速度検出用電極E
Y1とX軸方向加速度検出用電極EX1との間,X軸方
向加速度検出用電極EX1とY軸方向加速度検出用電極
EY2との間,Y軸方向加速度検出用電極EY2とX軸
方向加速度検出用電極EX2との間の各中央部にそれぞ
れ配置されている。したがって、Z軸方向加速度検出用
電極EZ1〜EZ4は、それぞれ90度の間隔を隔てて
配置されることになる。Z軸出力電極OZもX軸出力電
極OXと同様にほぼ正方形の形状を有しており、第2の
応力発生領域8Cの外側にある圧電セラミックス基板7
aの外周縁部に位置するようにX軸出力電極OX及びY
軸出力電極OYと並んで形成されている。
Electrode pattern 17 for detecting acceleration in the Z-axis direction
Are Z-axis direction acceleration detecting electrode EZ1, Z-axis direction acceleration detecting electrode EZ2, Z-axis direction acceleration detecting electrode EZ3.
Z-axis direction acceleration detection electrode EZ4, Z-axis output electrode OZ
Have a structure in which they are connected in series in this order by connection lines L6 to L9. The four Z-axis direction acceleration detecting electrodes EZ1 to EZ4 have a shape close to a rectangle.
The Z-axis direction acceleration detection electrodes EZ1 to EZ4 are also formed so as to straddle the weight facing region 8A and the first stress generation region 8B, similarly to the X-axis direction acceleration detection electrodes EX1 and EX2. Also, the Z-axis direction acceleration detecting electrodes EZ1 to EZ4
Represents an electrode E2 between the X-axis direction acceleration detecting electrode EX2 and the Y-axis direction acceleration detecting electrode EY1;
Y1 and X-axis acceleration detection electrode EX1, X-axis acceleration detection electrode EX1 and Y-axis acceleration detection electrode EY2, Y-axis acceleration detection electrode EY2 and X-axis acceleration detection It is arranged at each central portion between the electrodes EX2. Therefore, the Z-axis direction acceleration detecting electrodes EZ1 to EZ4 are arranged at intervals of 90 degrees. The Z-axis output electrode OZ also has a substantially square shape similarly to the X-axis output electrode OX, and the piezoelectric ceramic substrate 7 outside the second stress generation region 8C.
X-axis output electrodes OX and Y
It is formed alongside the shaft output electrode OY.

【0023】出力電極OX,OY,OZが並ぶ外周縁部
と対称的に位置する圧電セラミックス基板7aの外周縁
部には、3つのアース電極OE0 …が出力電極OX,O
Y,OZと平行をなすように並んで形成されている。ア
ース電極OE0 は、圧電セラミックス基板7aを貫通す
るスルーホール導電部及び接続線(図示せず)を介して
対向電極パターンE0 と接続されている。なお、導電性
接着剤を用いてアース電極OE0 とベース5とを積極的
に接続してもよい。また、このようにセンサ素子7に含
まれる出力電極は、OX,OY,OZとOE0 …の2つ
のグループに分けられて配置されることになる。なお、
この例では、圧電セラミックス基板7aの外周縁部に位
置する3つの電極全てをアース電極OE0 …としたが、
3つの電極の少なくとも1つをアース電極OE0 とし、
残りの電極を端子を接続するためだけのダミー電極とし
ても構わない。
On the outer peripheral edge of the piezoelectric ceramic substrate 7a, which is located symmetrically to the outer peripheral edge where the output electrodes OX, OY, OZ are arranged, three earth electrodes OE0.
They are formed side by side so as to be parallel to Y and OZ. The ground electrode OE0 is connected to the counter electrode pattern E0 via a through-hole conductive portion penetrating the piezoelectric ceramic substrate 7a and a connection line (not shown). The ground electrode OE0 and the base 5 may be positively connected using a conductive adhesive. Further, the output electrodes included in the sensor element 7 are divided into two groups of OX, OY, OZ, OE0, and so on. In addition,
In this example, all three electrodes located on the outer peripheral edge of the piezoelectric ceramic substrate 7a are earth electrodes OE0.
At least one of the three electrodes is a ground electrode OE0,
The remaining electrodes may be used as dummy electrodes only for connecting terminals.

【0024】X軸方向加速度検出用電極EX1,EX2
に対応する圧電セラミックス基板7aの各部分には、重
錘3にZ軸方向の加速度が作用して各部分に同種類の応
力が発生したときに重錘対向領域8Aの一方の側に位置
する加速度検出用電極EX1と他方の側に位置する加速
度検出用電極EX2とにそれぞれ逆極性の自発分極電荷
が現れるように分極処理が施されている。この例では、
X軸方向加速度検出用電極EX1,EX2に対応する圧
電セラミックス基板7aの各部分に引っ張り応力が発生
したときに、一方のX軸方向加速度検出用電極EX1に
マイナスの自発分極電荷が現れ、他方のX軸方向加速度
検出用電極EX2にプラスの自発分極電荷が現れるよう
に分極処理が施されている。
X-axis direction acceleration detecting electrodes EX1, EX2
Is located on one side of the weight opposing area 8A when the same type of stress is generated in each part of the piezoelectric ceramic substrate 7a by applying acceleration in the Z-axis direction to the weight 3 at each part. The polarization processing is performed so that spontaneous polarization charges of opposite polarities appear on the acceleration detection electrode EX1 and the acceleration detection electrode EX2 located on the other side. In this example,
When a tensile stress is generated in each portion of the piezoelectric ceramic substrate 7a corresponding to the X-axis direction acceleration detecting electrodes EX1 and EX2, a negative spontaneous polarization charge appears on one X-axis direction acceleration detecting electrode EX1 and the other ends. The polarization processing is performed so that a positive spontaneous polarization charge appears on the X-axis direction acceleration detection electrode EX2.

【0025】また、Y軸方向加速度検出用電極EY1,
EY2に対応する圧電セラミックス基板7aの各部分も
X軸方向加速度検出用電極EX1,EX2に対応する圧
電セラミックス基板7aの各部分と同様に、重錘3にZ
軸方向の加速度が作用して各部分に同種類の応力が発生
したときに重錘対向領域8Aの一方の側に位置するY軸
方向加速度検出用電極EY1と他方の側に位置するY軸
方向加速度検出用電極EY2とにそれぞれ逆極性の自発
分極電荷が現れるように分極処理が施されている。この
例では、Y軸方向加速度検出用電極EY1,EY2に対
応する圧電セラミックス基板7aの各部分に引っ張り応
力が発生したときに、一方のY軸方向加速度検出用電極
EY1にマイナスの自発分極電荷が現れ、他方のY軸方
向加速度検出用電極EY2にプラスの自発分極電荷が現
れるように分極処理が施されている。
The Y-axis direction acceleration detecting electrodes EY1,
Similarly to the respective portions of the piezoelectric ceramic substrate 7a corresponding to the X-axis direction acceleration detection electrodes EX1 and EX2, the weight 3 has a Z portion on the piezoelectric ceramic substrate 7a corresponding to the EY2.
When the same type of stress is generated in each part by the acceleration in the axial direction, the Y-axis direction acceleration detection electrode EY1 located on one side of the weight facing region 8A and the Y-axis direction located on the other side Polarization processing is performed so that spontaneous polarization charges of opposite polarities appear on the acceleration detection electrode EY2. In this example, when a tensile stress is generated in each portion of the piezoelectric ceramic substrate 7a corresponding to the Y-axis direction acceleration detection electrodes EY1 and EY2, a negative spontaneous polarization charge is applied to one Y-axis direction acceleration detection electrode EY1. The polarization processing is performed so that the positive spontaneous polarization charge appears on the other Y-axis direction acceleration detection electrode EY2.

【0026】また、Z軸方向加速度検出用電極EZ1〜
EZ4に対応する圧電セラミックス基板7aの各部分
は、重錘3にZ軸方向の加速度が作用して各部分に同種
類の応力が発生したときにすべてのZ軸方向加速度検出
用電極EZ1〜EZ4に同じ極性の自発分極電荷が現れ
るように分極処理が施されている。この例では、Z軸方
向加速度検出用電極EZ1〜EZ4に対応する圧電セラ
ミックス基板7aの部分に引っ張り応力が生じた際にZ
軸方向加速度検出用電極EZ1〜EZ4にプラスの自発
分極電荷が現れるように分極処理が施されている。これ
らの分極処理は、検出用電極パターンE1 及び対向電極
パターンE0 を形成する前の圧電セラミックス基板7a
に直流電圧を印加することにより行った。
The Z-axis direction acceleration detecting electrodes EZ1 to EZ1
Each part of the piezoelectric ceramic substrate 7a corresponding to the EZ4 is provided with all the Z-axis direction acceleration detecting electrodes EZ1 to EZ4 when the same type of stress is generated in the respective parts by the acceleration in the Z-axis direction acting on the weight 3. Has been subjected to a polarization treatment so that spontaneous polarization charges of the same polarity appear in FIG. In this example, when a tensile stress is generated in the portion of the piezoelectric ceramic substrate 7a corresponding to the Z-axis direction acceleration detecting electrodes EZ1 to EZ4, Z
Polarization processing is performed so that positive spontaneous polarization charges appear on the axial acceleration detection electrodes EZ1 to EZ4. These polarization processes are performed on the piezoelectric ceramic substrate 7a before the detection electrode pattern E1 and the counter electrode pattern E0 are formed.
By applying a DC voltage.

【0027】本実施例では、X軸方向加速度検出用電極
EX1,EX2、Y軸方向加速度検出用電極EY1,E
Y2、Z軸方向加速度検出用電極EZ1〜EZ4を銀ペ
ーストを用いてスクリーン印刷により5μmの厚みに形
成した後に接続線L1〜L9を銀ペーストによりスクリ
ーン印刷により形成した。
In this embodiment, the electrodes EX1 and EX2 for X-axis direction acceleration detection and the electrodes EY1 and E for Y-axis direction acceleration detection are provided.
The electrodes EZ1 to EZ4 for Y2 and Z-axis direction acceleration detection were formed to a thickness of 5 μm by screen printing using a silver paste, and then the connection lines L1 to L9 were formed by screen printing using a silver paste.

【0028】図4(A)〜(C)は、ダイアフラム1,
重錘3及びベース5が一体に成形された単体ユニット1
0をインサートとして樹脂射出成形された絶縁樹脂製ケ
ース9の平面図、側面側から見た一部破断断面図、正面
側から見た半部破断断面図である。なお、図4(B)及
び(C)は、蓋部材6を取付けた状態の図を示してお
り、図4(A)は、蓋部材6を取付けない状態の図を示
している。図4(A)から分るように絶縁樹脂製ケース
9の輪郭は、ほぼ角形を呈しており、ダイアフラム1が
位置する側に凹部9aを有している。これにより絶縁樹
脂製ケース9は、凹部9aを囲むように側壁部9jを有
することになる。なお、側壁部9jは、後述する溝部分
19a,19b及び窓部9iの一部からなる切欠き状部
分を有しており、これらの切欠き状部分により分断され
た3つの側壁部分から構成されている。ダイアフラム1
は、この凹部9aの底面9a1 に露出している。凹部9
aの下側に形成される単体ユニット収納部9bの内部に
は、単体ユニット10のベース5の外周部に形成したV
字溝5aに樹脂が入り込んで突起部9b1 が形成されて
いる。また、ダイアフラム1と反対側のベース5の端面
5bと接触するように突起部9b2 が形成されている。
本例では、単体ユニット10をインサートとして射出成
形により絶縁樹脂製ケース9を一体成形しているため、
突起部9b1 及び9b2 は、抜け止めとして機能してい
る。また、凹部9aの底面9a1 には、圧電セラミック
ス基板7aの位置決め部を構成する4つの位置決め用突
起9c…と、5つの蓋部材載置用リブ9d〜9hとが一
体に形成されている。位置決め用突起9c…は、絶縁樹
脂製ケース9の凹部9a内に圧電セラミックス基板7a
を配置する際に、圧電セラミックス基板7aの隣接する
2辺と接触して、ダイアフラム1の中心または重錘の中
心と圧電セラミックス基板7aの中心を一致させる役割
を果している。本例では、圧電セラミックス基板7aの
直交する2つの辺7a1 ,7a1 (図3参照)に位置決
め用突起9cがそれぞれ2つずつ当接するように位置決
め用突起9c…が配置されている。蓋部材載置用リブ9
d〜9hは、底面9a1 から突出する高さ寸法が、位置
決め用突起9c…の底面9a1 から突出する高さ寸法を
上回るように形成されている。そして、蓋部材載置用リ
ブ9d〜9hの底面9a1 と反対側に位置する面上に蓋
部材6が載置される。蓋部材載置用リブ9d〜9hの
内、4つの蓋部材載置用リブ9d〜9gは底面9a1 の
4隅において側壁部9jと底面9a1 とにそれぞれ繋が
るするように形成され、1つの蓋部材載置用リブ9h
は、蓋部材載置用リブ9gと9dとの間において側壁部
9jと底面9a1 とにそれぞれ繋がるように形成されて
いる。また、絶縁樹脂ケース9の底面9a1 側の一部分
及び該一部分に連続する側壁部9jの部分には、ベース
5の外周面の一部(露出部分)5cを露出させる窓部9
iが形成されている。絶縁樹脂ケース9の単体ユニット
10を間に挟んで対向する一対の側壁部には、図1に示
す端子ユニット11,11の端子支持体21,21がそ
れぞれ嵌合されて固定される支持体嵌合溝19,19が
形成されている。そして、端子ユニット11のうち、一
方の端子ユニットの端子金具の端部は、一方のグループ
の出力電極OX,OY,OZとそれぞれ半田導電性接着
により接続され、他方の端子ユニットの端子金具の端部
は、他方のグループのアース電極OEO …とそれぞれ半
田導電性接着により接続される。
FIGS. 4A to 4C show diaphragms 1 and 2.
Single unit 1 in which weight 3 and base 5 are integrally formed
FIG. 5 is a plan view, a partially cutaway sectional view seen from a side, and a half cutaway sectional view seen from a front side of an insulating resin case 9 molded by resin injection molding with 0 as an insert. 4 (B) and 4 (C) show a state where the lid member 6 is attached, and FIG. 4 (A) shows a state where the lid member 6 is not attached. As can be seen from FIG. 4A, the contour of the insulating resin case 9 has a substantially rectangular shape, and has a concave portion 9a on the side where the diaphragm 1 is located. As a result, the insulating resin case 9 has the side wall 9j so as to surround the recess 9a. Note that the side wall portion 9j has a notch-shaped portion formed by a groove portion 19a, 19b and a part of the window portion 9i described later, and is constituted by three side wall portions separated by these notch-shaped portions. ing. Diaphragm 1
Are exposed on the bottom surface 9a1 of the recess 9a. Recess 9
In the inside of the single-unit storage portion 9b formed below the a, a V formed on the outer peripheral portion of the base 5 of the single unit 10 is provided.
The protrusion 9b1 is formed by the resin entering the groove 5a. A projection 9b2 is formed so as to be in contact with the end face 5b of the base 5 opposite to the diaphragm 1.
In this example, since the insulating resin case 9 is integrally formed by injection molding using the single unit 10 as an insert,
The protrusions 9b1 and 9b2 function as retaining members. On the bottom surface 9a1 of the concave portion 9a, four positioning projections 9c... Constituting a positioning portion of the piezoelectric ceramic substrate 7a and five lid member mounting ribs 9d to 9h are integrally formed. The positioning projections 9c are provided in the concave portions 9a of the insulating resin case 9 in the piezoelectric ceramic substrate 7a.
When arranging the piezoelectric ceramic substrate 7a, the center of the diaphragm 1 or the center of the weight is brought into contact with the center of the piezoelectric ceramic substrate 7a by contacting two adjacent sides of the piezoelectric ceramic substrate 7a. In this example, positioning projections 9c are arranged such that two positioning projections 9c abut on two orthogonal sides 7a1 of the piezoelectric ceramic substrate 7a (see FIG. 3). Rib 9 for placing lid member
d to 9h are formed such that the height dimension protruding from the bottom face 9a1 exceeds the height dimension protruding from the bottom face 9a1 of the positioning projections 9c. Then, the lid member 6 is placed on a surface of the lid member placing ribs 9d to 9h opposite to the bottom surface 9a1. Of the lid member mounting ribs 9d to 9h, the four lid member mounting ribs 9d to 9g are formed so as to be connected to the side wall 9j and the bottom surface 9a1 at the four corners of the bottom surface 9a1, respectively. Mounting rib 9h
Are formed so as to be connected to the side wall portion 9j and the bottom surface 9a1 between the lid member mounting ribs 9g and 9d, respectively. A window 9 for exposing a portion (exposed portion) 5c of the outer peripheral surface of the base 5 is provided on a portion of the insulating resin case 9 on the bottom surface 9a1 side and a portion of the side wall 9j continuous with the portion.
i is formed. The terminal support members 21 and 21 of the terminal units 11 and 11 shown in FIG. 1 are fitted and fixed to a pair of side wall portions of the insulating resin case 9 opposed to each other with the unit unit 10 interposed therebetween. Mating grooves 19, 19 are formed. The end of the terminal fitting of one of the terminal units 11 is connected to the output electrode OX, OY, OZ of one group by solder conductive bonding, respectively, and the end of the terminal fitting of the other terminal unit. Are connected to the ground electrodes OEO of the other group by solder conductive bonding.

【0029】次に加速度検出用電極EX1,EX2,E
Y1,EY2が重錘対向領域8A内に入り込む寸法につ
いて説明する。加速度検出用電極EX1,EX2,EY
1,EY2はいずれも同じ形状を有しており、各加速度
検出用電極の重錘対向領域8A内に入り込む寸法はいず
れも同じなので、加速度検出用電極EY1,EY2を用
いて各加速度検出用電極の説明を行う。図5(A)は、
重錘3の中心C0と仮想線の交点C1とが一致している
場合における加速度検出用電極EY1,EY2の重錘対
向領域8A内に位置する部分の状態を示している。な
お、図5(A)では、理解を容易にするために、圧電セ
ラミックス基板7a及び加速度検出用電極EY1,EY
2を除く各部材は図示を省略している。図5(A)に示
すように、X軸方向仮想線XLとY軸方向仮想線YLの
交点(仮想線の交点)C0を中心にして重錘3の半径寸
法と同じ半径寸法R(本例では2mm)で描いた第1の
仮想円30を想定したときに、一対のY軸方向加速度検
出用電極のそれぞれの加速度検出用電極EY1,EY2
の第1の仮想円30を越えて延びる延長部分の長さS0
は、半径寸法Rの25%以上(本例では29%)にな
る。そして、加速度検出用電極EY1,EY2の幅寸法
は他の加速度検出用電極EX1,EX2,EZ1〜EZ
4と接触しない寸法に設定されている。言い換えるなら
ば、加速度検出用電極EY1,EY2の内側端部EY
b,EYbは、半径寸法Rの25%の径を有する第2の
仮想円31を越えた仮想線の交点C1側に位置してい
る。なお、この例では、重錘3の中心C0と仮想線の交
点C1とが一致しているので、第1の仮想円30は、図
3に示す領域境界線8Dと重複している。図5(A)に
示した領域境界線8Dと第2の仮想円31との間に位置
する第3の仮想円32と、領域境界線8Dとに挾まれた
円環状部分が、重錘3のZ軸方向の変位により重錘対向
領域8A内に応力が発生する領域(応力発生領域)33
になっている。したがって、加速度検出用電極EY1,
EY2の内側端部EYb,EYbは、いずれもこの応力
発生領域33を越えている。
Next, the acceleration detection electrodes EX1, EX2, E
The dimension in which Y1 and EY2 enter the weight facing region 8A will be described. Acceleration detection electrodes EX1, EX2, EY
Each of the acceleration detection electrodes EY1 and EY2 has the same shape, and the dimensions of each acceleration detection electrode entering the counterweight region 8A are the same. Will be described. FIG. 5 (A)
The state of a portion of the acceleration detection electrodes EY1 and EY2 located in the weight facing region 8A when the center C0 of the weight 3 and the intersection C1 of the virtual line coincide with each other is shown. In FIG. 5A, for easy understanding, the piezoelectric ceramic substrate 7a and the acceleration detection electrodes EY1, EY are used.
The members other than 2 are not shown. As shown in FIG. 5 (A), a radius R (the present example) which is the same as the radius of the weight 3 around an intersection (intersection of the imaginary line) C0 of the imaginary line XL in the X-axis direction and the imaginary line YL in the Y-axis direction. Assuming a first virtual circle 30 drawn in 2 mm), the respective acceleration detection electrodes EY1 and EY2 of the pair of Y-axis direction acceleration detection electrodes
Of the extension S0 extending beyond the first imaginary circle 30
Is 25% or more of the radius dimension R (29% in this example). The widths of the acceleration detection electrodes EY1 and EY2 are different from those of the other acceleration detection electrodes EX1, EX2, EZ1 to EZ.
The size is set so as not to contact with No. 4. In other words, the inner ends EY of the acceleration detection electrodes EY1 and EY2
b, EYb are located on the intersection C1 side of the imaginary line beyond the second imaginary circle 31 having a diameter of 25% of the radius dimension R. In this example, since the center C0 of the weight 3 and the intersection C1 of the imaginary line coincide with each other, the first imaginary circle 30 overlaps with the area boundary line 8D shown in FIG. The third imaginary circle 32 located between the region boundary 8D and the second imaginary circle 31 shown in FIG. 5A and the annular portion sandwiched between the region boundary 8D are the weight 3 33 in which a stress is generated in the weight facing region 8A due to the displacement in the Z-axis direction (stress generating region) 33
It has become. Therefore, the acceleration detection electrodes EY1,
Both the inner ends EYb and EYb of the EY2 exceed the stress generation region 33.

【0030】これに対して図5(B)は、圧電セラミッ
ク基板7aをダイアフラム1に接合する際に発生する重
錘3の中心C0と仮想線の交点C1とのずれ量が最大に
なったときの状態を示している。なお、この図では、重
錘3の中心C0が加速度検出用電極EY2に向って最大
にずれた例を示している。このようなずれは、絶縁樹脂
製ケース9の位置決め用突起9c…または圧電セラミッ
ク基板7aの寸法精度により生じる。本例のように、加
速度検出用電極EY1,EY2の延長部分の長さを設定
すると、図5(B)に示すように、重錘の中心C0と仮
想線の交点C1とのずれ量が最大になっても、加速度検
出用電極EY1,EY2の内側端部EYb,EYbは、
いずれも応力発生領域33を越えた仮想交点C1側に位
置している。これによって、加速度検出用電極EY1,
EY2は、いずれも重錘対向領域8A内の応力発生領域
33上に位置することになる。そして、Z軸方向のみの
加速度が重錘3に作用したときに加速度検出用電極EY
1,EY2に発生する極性の異なる自発分極電荷がほぼ
等しくなり、それぞれの加速度検出用電極EY1,EY
2に発生する自発分極電荷はほぼ相殺し合うことにな
る。そのため、Z軸方向のみの加速度が重錘に作用した
ときに発生するY軸方向加速度信号を従来よりも大幅に
小さくすることができる。また、同様にしてZ軸方向の
みの加速度が重錘に作用したときに発生するX軸方向加
速度信号を従来よりも大幅に小さくすることができる。
On the other hand, FIG. 5B shows a case where the displacement between the center C0 of the weight 3 and the intersection C1 of the imaginary line, which occurs when the piezoelectric ceramic substrate 7a is joined to the diaphragm 1, is maximized. The state of is shown. Note that FIG. 3 shows an example in which the center C0 of the weight 3 is shifted to the maximum toward the acceleration detection electrode EY2. Such a shift is caused by the dimensional accuracy of the positioning projections 9c of the insulating resin case 9 or the piezoelectric ceramic substrate 7a. When the lengths of the extended portions of the acceleration detection electrodes EY1 and EY2 are set as in this example, the deviation between the center C0 of the weight and the intersection C1 of the imaginary line becomes maximum as shown in FIG. 5B. , The inner ends EYb and EYb of the acceleration detection electrodes EY1 and EY2 are
Both are located on the virtual intersection C1 side beyond the stress generation region 33. As a result, the acceleration detection electrodes EY1,
Each of the EY2s is located on the stress generating region 33 in the weight facing region 8A. When the acceleration only in the Z-axis direction acts on the weight 3, the acceleration detection electrode EY
1 and EY2 are substantially equal in spontaneous polarization charges having different polarities, and the acceleration detection electrodes EY1 and EY2
2, the spontaneous polarization charges almost cancel each other. Therefore, the Y-axis direction acceleration signal generated when the acceleration only in the Z-axis direction acts on the weight can be made much smaller than in the related art. Similarly, the acceleration signal in the X-axis direction generated when the acceleration only in the Z-axis direction acts on the weight can be made much smaller than in the related art.

【0031】なお、上記の各図では、延長部分の長さの
半径寸法Rに対する割合が29%の場合の例を示した
が、この割合が25%の場合には、図5(B)に示すよ
うに重錘の中心C0と仮想線の交点C1とがずれると、
加速度検出用電極EY1の内側端部EYbは、第2の仮
想円31(応力発生領域33の端部)と重複することに
なる。
In each of the above drawings, an example is shown in which the ratio of the length of the extended portion to the radial dimension R is 29%, but when this ratio is 25%, FIG. As shown, when the center C0 of the weight and the intersection C1 of the virtual line are shifted,
The inner end EYb of the acceleration detection electrode EY1 overlaps the second virtual circle 31 (the end of the stress generation region 33).

【0032】次に図6に示す試験電極パターンを用いて
電極の寸法を変えた複数種類の試験用三軸加速度センサ
を作成して各種の試験を行った。なお、この試験用三軸
加速度センサは、圧電セラミックス基板47a上の電極
パターンを除いて上記例の三軸加速度センサと同じ構造
を有している。下記の表1には、試験用三軸加速度セン
サ1〜10の各寸法が示されている。表1における各寸
法は図6に対応する各部の寸法である。具体的に説明す
ると、S1は加速度検出用電極Y1と加速度検出用電極
Y2との内側端部間の寸法であり、S2は加速度検出用
電極Y1と加速度検出用電極Y2との外側端部間の寸法
であり、S3はX軸方向仮想線XLと平行な方向に延び
る加速度検出用電極Y1または加速度検出用電極Y2の
幅寸法である。また、表1のS0/Rは仮想線の交点C
1を中心にして重錘の半径寸法と同じ半径寸法R(2m
m)で描いた仮想円40を加速度検出用電極Y1,Y2
が越えて延びる延長部分の長さS0の半径寸法Rに対す
る割合である。
Next, using the test electrode pattern shown in FIG. 6, a plurality of types of test three-axis acceleration sensors having different electrode dimensions were prepared and subjected to various tests. The three-axis acceleration sensor for testing has the same structure as the three-axis acceleration sensor of the above example except for the electrode pattern on the piezoelectric ceramic substrate 47a. Table 1 below shows the dimensions of the test triaxial acceleration sensors 1 to 10. Each dimension in Table 1 is a dimension of each part corresponding to FIG. More specifically, S1 is the dimension between the inner ends of the acceleration detection electrode Y1 and the acceleration detection electrode Y2, and S2 is the distance between the outer ends of the acceleration detection electrode Y1 and the acceleration detection electrode Y2. S3 is a width dimension of the acceleration detecting electrode Y1 or the acceleration detecting electrode Y2 extending in a direction parallel to the X-axis virtual line XL. S0 / R in Table 1 is the intersection C of the imaginary line.
1 with the same radius dimension R (2 m
m), the virtual circle 40 drawn by the acceleration detection electrodes Y1 and Y2
Is the ratio of the length S0 of the extension extending beyond the radius R to the radius R.

【0033】[0033]

【表1】 次に上記試験用三軸加速度センサ1〜10にZ軸方向の
加速度のみを作用させたときのZ軸方向加速度検出用電
極Z1〜Z4から得られる最大電圧Vz に対する加速度
検出用電極Y1及びY2に発生した逆極性の自発分極電
荷による電圧Vy1,Vy2の和の割合[他軸感度(%):
(Vy1+Vy2)/Vz ]と、重錘3の中心C0と仮想線
の交点C1とのずれ量(μm)との関係を調べた。図7
〜16は、試験用三軸加速度センサ1〜10のそれぞれ
のデータを示している。なお、ここでのずれ量は、重錘
の中心C0が加速度検出用電極Y2側にずれた量を正の
ずれ量とし、重錘の中心C0が加速度検出用電極Y1側
にずれた量を負のずれ量としている。図7〜図16よ
り、S0/Rが25%以上の加速度センサ5〜10(図
11〜図16)では、ずれ量に対する他軸感度の変化を
小さくすることができ、他軸感度を0%に近い値にでき
るのが分る。そのため、圧電セラミック基板をダイアフ
ラムに接合する際に発生するずれ量が最大(この例では
−300μm〜300μm)になったときにおいて、他
軸感度の絶対値を10%以下にできるのが分る。特にS
0/Rが42.5%の加速度センサ8〜10(図14〜
図16)では、ずれ量に対する他軸感度の変化を著しく
小さくできるのが分る。
[Table 1] Next, the acceleration detection electrodes Y1 and Y2 corresponding to the maximum voltage Vz obtained from the Z-axis direction acceleration detection electrodes Z1 to Z4 when only the Z-axis direction acceleration is applied to the test three-axis acceleration sensors 1 to 10 are applied. Ratio of sum of voltages Vy1 and Vy2 due to generated spontaneous polarization charges of opposite polarity [other axis sensitivity (%):
(Vy1 + Vy2) / Vz] and the deviation (μm) between the center C0 of the weight 3 and the intersection C1 of the virtual line were examined. FIG.
16 to 16 indicate data of the test triaxial acceleration sensors 1 to 10, respectively. The amount of displacement here is defined as the amount by which the center C0 of the weight is shifted toward the acceleration detection electrode Y2, and the amount by which the center C0 of the weight is shifted toward the acceleration detection electrode Y1 is negative. Is the amount of deviation. 7 to 16, in the acceleration sensors 5 to 10 (FIGS. 11 to 16) having S0 / R of 25% or more, the change in the sensitivity of the other axis with respect to the deviation amount can be reduced, and the sensitivity of the other axis is reduced to 0%. It can be seen that the value can be close to. Therefore, it can be seen that the absolute value of the sensitivity to the other axis can be reduced to 10% or less when the amount of displacement generated when the piezoelectric ceramic substrate is joined to the diaphragm becomes maximum (−300 μm to 300 μm in this example). Especially S
Acceleration sensors 8 to 10 with 0 / R of 42.5% (FIGS.
In FIG. 16), it can be seen that the change in the sensitivity of the other axis with respect to the shift amount can be significantly reduced.

【0034】次に上記試験用三軸加速度センサ1〜10
にZ軸方向の加速度のみを作用させたときの加速度検出
用電極Y1及びY2に発生した逆極性の自発分極電荷に
よる電圧Vy1,Vy2の和[出力差(mV/G):(Vy1
+Vy2)]と、重錘3の中心C0と仮想線の交点C1と
のずれ量(μm)との関係を調べた。図17〜図26
は、試験用三軸加速度センサ1〜10のそれぞれのデー
タを示している。図17〜図26より、S0/Rが25
%以上の加速度センサ5〜10(図21〜図26)で
は、ずれ量に対する出力差の変化を小さくでき、他軸感
度を0%に近い値にできるのが分る。特にS0/Rが4
2.5%の加速度センサ8〜10(図24〜図26)で
は、ずれ量に対する出力差の変化を著しく小さくできる
のが分る。
Next, the test three-axis acceleration sensors 1 to 10
Sum of the voltages Vy1 and Vy2 due to the spontaneously polarized charges of the opposite polarities generated on the acceleration detecting electrodes Y1 and Y2 when only the acceleration in the Z-axis direction is applied [output difference (mV / G): (Vy1
+ Vy2)] and the amount of deviation (μm) between the center C0 of the weight 3 and the intersection C1 of the virtual line was examined. 17 to 26
Shows data of each of the test triaxial acceleration sensors 1 to 10. 17 to 26, S0 / R is 25.
It can be seen that in the acceleration sensors 5 to 10 (FIGS. 21 to 26) of not less than%, the change of the output difference with respect to the deviation amount can be made small, and the sensitivity of the other axis can be made close to 0%. Especially S0 / R is 4
It can be seen that in the 2.5% acceleration sensors 8 to 10 (FIGS. 24 to 26), the change in the output difference with respect to the shift amount can be significantly reduced.

【0035】次に上記試験用三軸加速度センサ1〜10
にY軸方向の加速度を作用させたときの加速度検出用電
極Y1及びY2に発生した同極性の自発分極電荷による
電圧Vy1,Vy2の和[主軸感度(mV/G):(Vy1+
Vy2)]と、重錘3の中心C0と仮想線の交点C1との
ずれ量(μm)との関係を調べた。図27〜図36は、
試験用三軸加速度センサ1〜10のそれぞれのデータを
示している。図27〜図36より、S0/Rが25%以
上の加速度センサ5〜10(図31〜図36)では、ず
れ量に対する主軸感度のばらつきを小さくできるのが分
る。特にS0/Rが42.5%の加速度センサ8〜10
(図34〜図36)では、ずれ量に対する主軸感度のば
らつきを著しく小さくできるのが分る。
Next, the test three-axis acceleration sensors 1 to 10
Sum of voltages Vy1 and Vy2 due to spontaneous polarization charges of the same polarity generated on acceleration detecting electrodes Y1 and Y2 when an acceleration in the Y-axis direction is applied to the main axis [principal axis sensitivity (mV / G): (Vy1 +
Vy2)] and the amount of displacement (μm) between the center C0 of the weight 3 and the intersection C1 of the imaginary line was examined. FIG. 27 to FIG.
The data of each of the test triaxial acceleration sensors 1 to 10 is shown. 27 to 36, it can be seen that in the acceleration sensors 5 to 10 (FIGS. 31 to 36) having S0 / R of 25% or more, it is possible to reduce the variation of the spindle sensitivity to the deviation amount. In particular, acceleration sensors 8 to 10 having S0 / R of 42.5%
In FIGS. 34 and 36, it can be seen that the variation in the spindle sensitivity with respect to the amount of displacement can be significantly reduced.

【0036】なお、本例では三軸加速度センサに本発明
を適用した例を示したが、X軸方向及びY軸方向の二軸
の加速度を検出する二軸加速度センサにも本発明を適用
できるのは勿論である。
In the present embodiment, an example is shown in which the present invention is applied to a three-axis acceleration sensor. However, the present invention can also be applied to a two-axis acceleration sensor that detects two-axis accelerations in the X-axis direction and the Y-axis direction. Of course.

【0037】[0037]

【発明の効果】本発明によれば、重錘の中心と仮想線の
交点とが最大にずれても、一対のX軸方向加速度検出用
電極のそれぞれの電極または一対のY軸方向加速度検出
用電極のそれぞれの電極は、いずれも重錘対向領域内の
応力発生領域上に位置することになる。そのため、Z軸
方向のみの加速度が重錘に作用しても、一対のX軸方向
加速度検出用電極のそれぞれの電極に発生する極性の異
なる自発分極電荷または一対のY軸方向加速度検出用電
極のそれぞれの電極に発生する極性の異なる自発分極電
荷がほぼ等しくなり、それぞれの電極に発生する自発分
極電荷はほぼ相殺し合う。その結果、Z軸方向にのみ加
速度が作用したときに発生するX軸方向加速度信号また
はY軸方向加速度信号を従来よりも大幅に小さくするこ
とができ、測定精度を上げることができる。
According to the present invention, even if the center of the weight and the intersection of the imaginary line deviate to the maximum, each of the pair of electrodes for detecting the acceleration in the X-axis direction or the pair of electrodes for detecting the acceleration in the Y-axis direction. Each of the electrodes is located on the stress generating region in the weight facing region. Therefore, even if the acceleration only in the Z-axis direction acts on the weight, spontaneous polarization charges having different polarities generated in the respective electrodes of the pair of X-axis direction acceleration detection electrodes or the pair of Y-axis direction acceleration detection electrodes are generated. The spontaneous polarization charges having different polarities generated at the respective electrodes are substantially equal, and the spontaneous polarization charges generated at the respective electrodes substantially cancel each other. As a result, the X-axis direction acceleration signal or the Y-axis direction acceleration signal generated when the acceleration acts only in the Z-axis direction can be made much smaller than before, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の三軸加速度センサの概略
断面図である。
FIG. 1 is a schematic sectional view of a three-axis acceleration sensor according to an embodiment of the present invention.

【図2】(A)は本発明の実施の形態の三軸加速度セン
サに用いる単体ユニットの底面図であり、(B)は図2
(A)のB−B線断面図である。
FIG. 2A is a bottom view of a single unit used in the three-axis acceleration sensor according to the embodiment of the present invention, and FIG.
It is a BB sectional view taken on the line of (A).

【図3】本発明の実施の形態の三軸加速度センサに用い
るセンサ素子の平面図である。
FIG. 3 is a plan view of a sensor element used in the three-axis acceleration sensor according to the embodiment of the present invention.

【図4】(A)〜(C)は、単体ユニットをインサート
として樹脂射出成形された絶縁樹脂製ケースの平面図、
側面側から見た一部破断断面図、正面側から見た半部破
断断面図である。
FIGS. 4A to 4C are plan views of an insulating resin case molded by resin injection molding using a single unit as an insert,
It is the partially broken sectional view seen from the side, and the half broken sectional view seen from the front side.

【図5】(A)及び(B)は、本発明の実施の形態の三
軸加速度センサの加速度検出用電極の態様を説明するの
に用いる図である。
FIGS. 5A and 5B are diagrams used to describe aspects of an acceleration detection electrode of the three-axis acceleration sensor according to the embodiment of the present invention.

【図6】試験に用いた三軸加速度センサに用いるセンサ
素子の平面図である。
FIG. 6 is a plan view of a sensor element used in a three-axis acceleration sensor used for a test.

【図7】試験用三軸加速度センサの他軸感度[(Vy1+
Vy2)/Vz ]と、重錘の中心と仮想線の交点とのずれ
量との関係を示す図である。
FIG. 7 shows another axis sensitivity [(Vy1 +
[Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the imaginary line.

【図8】試験用三軸加速度センサの他軸感度[(Vy1+
Vy2)/Vz ]と、重錘の中心と仮想線の交点とのずれ
量との関係を示す図である。
FIG. 8 shows another axis sensitivity [(Vy1 +
[Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the imaginary line.

【図9】試験用三軸加速度センサの他軸感度[(Vy1+
Vy2)/Vz ]と、重錘の中心と仮想線の交点とのずれ
量との関係を示す図である。
FIG. 9 shows another axis sensitivity [(Vy1 +
[Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the imaginary line.

【図10】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 10 shows another axis sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図11】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 11 shows another axis sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図12】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 12 shows another axis sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図13】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 13 shows the sensitivity of another axis of the test three-axis acceleration sensor [(Vy1
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図14】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 14 shows another axis sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図15】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 15 shows another axis sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図16】試験用三軸加速度センサの他軸感度[(Vy1
+Vy2)/Vz ]と、重錘の中心と仮想線の交点とのず
れ量との関係を示す図である。
FIG. 16 shows another axis sensitivity of the test three-axis acceleration sensor [(Vy1
+ Vy2) / Vz] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図17】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 17 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図18】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 18 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図19】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 19 shows the output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図20】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 20 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図21】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 21 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図22】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 22 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図23】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 23 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図24】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 24 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図25】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 25 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図26】試験用三軸加速度センサの出力差[(Vy1+
Vy2)]と、重錘の中心と仮想線の交点とのずれ量との
関係を示す図である。
FIG. 26 shows an output difference [(Vy1 +
Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図27】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 27 shows a main axis sensitivity of a test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図28】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 28 shows a main axis sensitivity of a test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図29】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 29 shows a main axis sensitivity of a test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図30】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 30 shows a main axis sensitivity of a test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図31】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 31 shows the spindle sensitivity [(Vy1) of the test three-axis acceleration sensor.
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図32】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 32 shows the main axis sensitivity of the test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図33】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 33 shows the main axis sensitivity of the test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図34】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 34 shows the main axis sensitivity of the test three-axis acceleration sensor [(Vy1
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図35】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 35 shows a spindle sensitivity [(Vy1) of a test three-axis acceleration sensor.
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【図36】試験用三軸加速度センサの主軸感度[(Vy1
+Vy2)]と、重錘の中心と仮想線の交点とのずれ量と
の関係を示す図である。
FIG. 36 shows a spindle sensitivity [(Vy1) of a test three-axis acceleration sensor.
+ Vy2)] and the amount of deviation between the center of the weight and the intersection of the virtual line.

【符号の説明】[Explanation of symbols]

1 ダイアフラム 3 重錘 5 ベース 8A 重錘対向領域 8D 領域境界線 9 絶縁樹脂製ケース 10 単体ユニット C0 重錘の中心 C1 仮想線の交点 30 仮想円 33 重錘対向領域内の応力発生領域 EX1,EX2 一対のX軸方向加速度検出用電極 EY1,EY2 一対のY軸方向加速度検出用電極 DESCRIPTION OF SYMBOLS 1 Diaphragm 3 Weight 5 Base 8A Weight facing area 8D Area boundary line 9 Insulating resin case 10 Single unit C0 Center of weight C1 Intersection of virtual line 30 Virtual circle 33 Stress generating area in weight facing area EX1, EX2 A pair of electrodes for detecting acceleration in the X-axis direction EY1, EY2 A pair of electrodes for detecting acceleration in the Y-axis direction

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面上に想定するX軸方向仮想線上に配
置された一対のX軸方向加速度検出用電極と前記X軸方
向仮想線と直交するY軸方向仮想線上に配置された一対
のY軸方向加速度検出用電極とを含む電極パターンが表
面上に形成され、裏面上に少なくとも前記各検出用電極
と対向する対向電極パターンが形成され、前記一対のX
軸方向加速度検出用電極及び前記一対のY軸方向加速度
検出用電極と前記対向電極パターンとの間の部分が分極
処理されている圧電セラミックス基板と、 表面に前記圧電セラミックス基板の前記裏面が接合され
たダイアフラムと、前記ダイアフラムの裏面側に突出す
るように前記ダイアフラムに対して固定された円柱状の
重錘と、 前記重錘の変位を許容するように前記ダイアフラムの外
周部を支持するベースとを具備し、 前記一対のX軸方向加速度検出用電極及び前記一対のY
軸方向加速度検出用電極が、前記重錘と対向する前記圧
電セラミックス基板の重錘対向領域と該重錘対向領域と
前記外周部との間に位置する中間領域とに跨がり且つ互
いに間隔をあけて前記重錘対向領域を囲む環状の電極列
を構成するように形成されている加速度センサにおい
て、 前記X軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺が前記X軸方向仮想線の両
側にほぼ等しい間隔をあけて前記X軸方向仮想線とほぼ
平行になっており、 前記Y軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺が前記Y軸方向仮想線の両
側にほぼ等しい間隔をあけて前記Y軸方向仮想線とほぼ
平行になっており、 前記一対のX軸方向加速度検出用電極及び前記一対のY
軸方向加速度検出用電極は、前記圧電セラミック基板を
前記ダイアフラムに接合する際に発生する前記重錘の中
心と前記X軸方向仮想線と前記Y軸方向仮想線の交点と
のずれ量が最大になったときに、前記X軸方向仮想線及
び前記Y軸方向仮想線に直交する前記重錘のZ軸方向の
変位により前記重錘対向領域内に応力が発生する領域を
前記一対のX軸方向加速度検出用電極及び前記一対のY
軸方向加速度検出用電極の内側端部が越えるように形成
されていることを特徴とする加速度センサ。
1. A pair of electrodes for detecting acceleration in the X-axis direction arranged on an imaginary line in the X-axis direction assumed on the surface and a pair of Y electrodes arranged on an imaginary line in the Y-axis direction orthogonal to the imaginary line in the X-axis direction. An electrode pattern including an axial acceleration detection electrode is formed on the front surface, and a counter electrode pattern facing at least each of the detection electrodes is formed on the back surface, and the pair of Xs
A piezoelectric ceramics substrate in which a portion between the electrode for axial acceleration detection and the pair of electrodes for acceleration detection in the Y-axis direction and the counter electrode pattern is polarized, and the back surface of the piezoelectric ceramics substrate is joined to a front surface; A diaphragm, a column-shaped weight fixed to the diaphragm so as to protrude to the back side of the diaphragm, and a base supporting an outer peripheral portion of the diaphragm so as to allow displacement of the weight. The pair of X-axis direction acceleration detecting electrodes and the pair of Y
An electrode for detecting an acceleration in an axial direction extends over a weight-facing region of the piezoelectric ceramic substrate facing the weight and an intermediate region located between the weight-facing region and the outer peripheral portion and is spaced apart from each other. In the acceleration sensor formed so as to form an annular electrode row surrounding the weight-facing area, a pair of sides of the X-axis direction acceleration detecting electrode located in a direction in which the annular electrode row extends are formed by a pair of sides. A pair of the X-axis direction imaginary lines are substantially parallel to the X-axis direction imaginary line at substantially equal intervals on both sides of the X-axis direction imaginary line, and are located in a direction in which the annular electrode row of the Y-axis direction acceleration detection electrode extends. The sides are substantially parallel to the Y-axis direction virtual line at substantially equal intervals on both sides of the Y-axis direction virtual line, and the pair of X-axis direction acceleration detection electrodes and the pair of Y
The electrode for axial acceleration detection has a maximum deviation amount between the center of the weight and the intersection of the virtual line in the X-axis direction and the virtual line in the Y-axis direction generated when the piezoelectric ceramic substrate is bonded to the diaphragm. When the stress is generated in the weight-facing area by the displacement of the weight in the Z-axis direction orthogonal to the X-axis virtual line and the Y-axis virtual line, the pair of X-axis directions Acceleration detecting electrode and the pair of Y
An acceleration sensor, wherein the acceleration sensor is formed so as to extend beyond an inner end of the axial acceleration detecting electrode.
【請求項2】 前記一対のX軸方向加速度検出用電極の
それぞれは、前記交点を中心として対象的な位置に配置
され且つ前記X軸方向仮想線を中心線として線対象にな
る形状を有しており、また前記一対のY軸方向加速度検
出用電極のそれぞれは、前記交点を中心として対象的な
位置に配置され且つ前記Y軸方向仮想線を中心線として
線対象になる形状を有しており、 前記X軸方向仮想線と前記Y軸方向仮想線の交点を中心
にして前記重錘の半径寸法と同じ半径寸法Rで描いた仮
想円を想定したときに、前記一対のX軸方向加速度検出
用電極の前記仮想円を越えて延びる部分の長さは前記半
径寸法Rの25%以上であり、前記一対のY軸方向加速
度検出用電極の前記仮想円を越えて延びる部分の長さは
前記半径寸法Rの25%以上であり、しかも前記一対の
X軸方向加速度検出用電極と前記一対のY軸方向加速度
検出用電極とが接触しないことを特徴とする請求項1に
記載の加速度センサ。
2. Each of the pair of X-axis direction acceleration detection electrodes is arranged at a symmetrical position with the intersection as a center and has a shape symmetric with respect to the X-axis imaginary line as a center line. Each of the pair of Y-axis direction acceleration detecting electrodes is arranged at a symmetrical position around the intersection and has a shape that is symmetrical with the Y-axis direction virtual line as a center line. A pair of X-axis direction accelerations when assuming a virtual circle drawn with the same radius dimension R as the radius dimension of the weight around an intersection of the X-axis direction virtual line and the Y-axis direction virtual line. The length of the portion of the detection electrode extending beyond the virtual circle is at least 25% of the radius dimension R, and the length of the portion of the pair of Y-axis direction acceleration detection electrodes extending beyond the virtual circle is At least 25% of the radius dimension R; The acceleration sensor according to claim 1, characterized in that it also and the pair of X-axis direction acceleration detecting electrodes and the pair of Y-axis direction acceleration detecting electrodes are not in contact.
【請求項3】 前記重錘、前記ダイアフラム及び前記ベ
ースが金属材料により一体成形された単体ユニットとし
て構成されていることを特徴とする請求項1または2に
記載の加速度センサ。
3. The acceleration sensor according to claim 1, wherein the weight, the diaphragm, and the base are configured as a single unit integrally formed of a metal material.
【請求項4】 表面上に想定するX軸方向仮想線上に配
置された一対のX軸方向加速度検出用電極と、前記X軸
方向仮想線と直交するY軸方向仮想線上に配置された一
対のY軸方向加速度検出用電極と、前記一対のX軸方向
加速度検出用電極及び前記一対のY軸方向加速度検出用
電極の隣接する2つの電極間に配置された複数のZ軸方
向加速度検出用電極を含む電極パターンが表面上に形成
され、裏面上に少なくとも前記各検出用電極と対向する
対向電極パターンが形成され、前記一対のX軸方向加速
度検出用電極、前記一対のY軸方向加速度検出用電極及
び前記複数のZ軸方向加速度検出用電極と前記対向電極
パターンとの間の部分が分極処理されている圧電セラミ
ックス基板と、 表面に前記圧電セラミックス基板の前記裏面が接合され
たダイアフラムと、 前記ダイアフラムの裏面側に突出するように前記ダイア
フラムに対して固定された円柱状の重錘と、 前記重錘の変位を許容するように前記ダイアフラムの外
周部を支持するベースとを具備し、 前記一対のX軸方向加速度検出用電極、前記一対のY軸
方向加速度検出用電極及び前記複数のZ軸方向加速度検
出用電極が、前記重錘と対向する前記圧電セラミックス
基板の円形の重錘対向領域と該重錘対向領域と前記外周
部との間に位置する中間領域とに跨がり且つ互いに間隔
をあけて前記重錘対向領域を囲む環状の電極列を構成す
るように形成され、 前記分極処理はZ軸方向の加速度が前記重錘に作用した
ときに前記一対のX軸方向加速度検出用電極のそれぞれ
の電極または前記一対のY軸方向加速度検出用電極のそ
れぞれの電極に異なる極性の自発分極電荷が発生するよ
うに行われている三軸加速度センサにおいて、 前記X軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺が前記X軸方向仮想線の両
側にほぼ等しい間隔をあけて前記X軸方向仮想線とほぼ
平行になっており、 前記Y軸方向加速度検出用電極の前記環状の電極列が延
びる方向に位置する一対の辺が前記Y軸方向仮想線の両
側にほぼ等しい間隔をあけて前記Y軸方向仮想線とほぼ
平行になっており、 前記一対のX軸方向加速度検出用電極及び前記一対のY
軸方向加速度検出用電極は、前記圧電セラミック基板を
前記ダイアフラムに接合する際に発生する重錘の中心と
前記X軸方向仮想線と前記Y軸方向仮想線の交点とのず
れ量が最大になったときに、前記重錘に前記Z軸方向の
加速度が作用した際の前記一対のX軸方向加速度検出用
電極のそれぞれの電極及び前記一対のY軸方向加速度検
出用電極のそれぞれの電極に発生する異なった極性の自
発分極電荷による電圧の和が,複数の前記Z軸方向加速
度検出用電極に現れる最大電圧の10%以下になるよう
に形成されていることを特徴とする三軸加速度線セン
サ。
4. A pair of X-axis direction acceleration detecting electrodes arranged on a virtual X-axis direction assumed on the surface, and a pair of electrodes arranged on a Y-axis virtual line orthogonal to the X-axis virtual line. A Y-axis direction acceleration detecting electrode, and a plurality of Z-axis direction acceleration detecting electrodes disposed between two adjacent electrodes of the pair of X-axis direction acceleration detecting electrodes and the pair of Y-axis direction acceleration detecting electrodes. Are formed on the front surface, and a counter electrode pattern facing at least the respective detection electrodes is formed on the back surface, and the pair of X-axis direction acceleration detection electrodes and the pair of Y-axis direction acceleration detection A piezoelectric ceramics substrate in which electrodes and portions between the plurality of Z-axis direction acceleration detecting electrodes and the counter electrode pattern are polarized; and the back surface of the piezoelectric ceramics substrate is joined to a front surface An ear diaphragm; a column-shaped weight fixed to the diaphragm so as to protrude to the rear surface side of the diaphragm; and a base supporting an outer peripheral portion of the diaphragm so as to allow displacement of the weight. The pair of X-axis direction acceleration detecting electrodes, the pair of Y-axis direction acceleration detecting electrodes, and the plurality of Z-axis direction acceleration detecting electrodes are circular weights of the piezoelectric ceramic substrate facing the weight. Formed so as to form a ring-shaped electrode row that straddles the weight facing region and the intermediate region located between the weight facing region and the outer peripheral portion and surrounds the weight facing region at intervals. The polarization process is performed when the acceleration in the Z-axis direction acts on the weight, and the respective electrodes of the pair of X-axis direction acceleration detection electrodes or the respective pairs of the Y-axis direction acceleration detection electrodes. In a three-axis acceleration sensor in which spontaneous polarization charges having different polarities are generated at the poles, a pair of sides of the X-axis direction acceleration detection electrode, which are located in a direction in which the annular electrode row extends, are formed along the X-axis. A pair of sides located in a direction in which the annular electrode row of the Y-axis direction acceleration detecting electrode extends in a direction substantially parallel to the X-axis direction virtual line at substantially equal intervals on both sides of the direction virtual line. The pair of electrodes for detecting acceleration in the X-axis direction and the pair of Y electrodes are substantially parallel to the virtual line in the Y-axis direction at substantially equal intervals on both sides of the virtual line in the Y-axis direction.
The electrode for axial acceleration detection has a maximum deviation amount between the center of the weight and the intersection of the virtual line in the X-axis direction and the virtual line in the Y-axis direction generated when the piezoelectric ceramic substrate is bonded to the diaphragm. When the acceleration in the Z-axis direction acts on the weight, a voltage is generated on each electrode of the pair of X-axis acceleration detection electrodes and on each of the pair of Y-axis acceleration detection electrodes. Characterized in that the sum of voltages due to spontaneously polarized charges of different polarities is 10% or less of the maximum voltage appearing at the plurality of Z-axis direction acceleration detecting electrodes. .
【請求項5】 前記一対のX軸方向加速度検出用電極の
それぞれは、前記交点を中心として対象的な位置に配置
され且つ前記X軸方向仮想線を中心線として線対象にな
る形状を有しており、また前記一対のY軸方向加速度検
出用電極のそれぞれは、前記交点を中心として対象的な
位置に配置され且つ前記Y軸方向仮想線を中心線として
線対象になる形状を有しており、 前記X軸方向仮想線と前記Y軸方向仮想線の交点を中心
にして前記重錘の半径寸法と同じ半径寸法Rで描いた仮
想円を想定したときに、前記一対のX軸方向加速度検出
用電極の前記仮想円を越えて延びる部分の長さは前記半
径寸法Rの25%以上であり、前記一対のY軸方向加速
度検出用電極の前記仮想円を越えて延びる部分の長さは
前記半径寸法Rの25%以上であり、しかも前記一対の
X軸方向加速度検出用電極と前記一対のY軸方向加速度
検出用電極と前記複数のZ軸方向加速度検出用電極とが
接触しないことを特徴とする請求項4に記載の加速度セ
ンサ。
5. Each of the pair of X-axis direction acceleration detecting electrodes is arranged at a symmetrical position with respect to the intersection, and has a shape symmetric with respect to the X-axis imaginary line as a center line. Each of the pair of Y-axis direction acceleration detecting electrodes is arranged at a symmetrical position around the intersection and has a shape that is symmetrical with the Y-axis direction virtual line as a center line. A pair of X-axis direction accelerations when assuming a virtual circle drawn with the same radius dimension R as the radius dimension of the weight around an intersection of the X-axis direction virtual line and the Y-axis direction virtual line. The length of the portion of the detection electrode extending beyond the virtual circle is at least 25% of the radius dimension R, and the length of the portion of the pair of Y-axis direction acceleration detection electrodes extending beyond the virtual circle is At least 25% of the radius dimension R; 5. The acceleration sensor according to claim 4, wherein the pair of X-axis direction acceleration detection electrodes, the pair of Y-axis direction acceleration detection electrodes, and the plurality of Z-axis direction acceleration detection electrodes do not contact each other. .
JP10652199A 1999-04-14 1999-04-14 Acceleration sensor Expired - Fee Related JP4681701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10652199A JP4681701B2 (en) 1999-04-14 1999-04-14 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10652199A JP4681701B2 (en) 1999-04-14 1999-04-14 Acceleration sensor

Publications (2)

Publication Number Publication Date
JP2000298137A true JP2000298137A (en) 2000-10-24
JP4681701B2 JP4681701B2 (en) 2011-05-11

Family

ID=14435718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10652199A Expired - Fee Related JP4681701B2 (en) 1999-04-14 1999-04-14 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP4681701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051030A1 (en) 2012-09-28 2014-04-03 日本電気株式会社 Sensor device, vibration sensing system, sensor unit, information processing device, vibration sensing method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051030A1 (en) 2012-09-28 2014-04-03 日本電気株式会社 Sensor device, vibration sensing system, sensor unit, information processing device, vibration sensing method, and program
US9921097B2 (en) 2012-09-28 2018-03-20 Nec Corporation Sensor device, vibration detection system, sensor unit, information processing device, vibration detection method, and program

Also Published As

Publication number Publication date
JP4681701B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US7360455B2 (en) Force detector and acceleration detector and method of manufacturing the same
US7533582B2 (en) Force detector and acceleration detector and method of manufacturing the same
US5691471A (en) Acceleration and angular velocity detector
WO1993002342A1 (en) Sensor for force, acceleration and magnetism using piezoelectric devices
CN107305215B (en) Reducing bias in accelerometers via pole pieces
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
JP2841240B2 (en) Force / acceleration / magnetism detection device
JP2975907B2 (en) Force / acceleration / magnetism detection device
JP4681701B2 (en) Acceleration sensor
CN100422697C (en) Acceleration transducer
JPH11248737A (en) Capacitance-type multi-axial acceleration sensor
JP3171970B2 (en) Force / acceleration detector
JP4056591B2 (en) Acceleration sensor
JP4093646B2 (en) Acceleration detector
JPH06265569A (en) Acceleration sensor unit
JP4275269B2 (en) Piezoelectric three-axis acceleration sensor
JP4286407B2 (en) Piezoelectric three-axis acceleration sensor
JPH10170540A (en) Acceleration sensor
US20240027489A1 (en) Physical Quantity Sensor And Inertial Measurement Unit
JP4156111B2 (en) Acceleration detector
JP2000352567A (en) Piezoelectric accelerometer
JP4849369B2 (en) Device manufacturing method and tilt sensor using the same
JP2004347529A (en) Capacitance type sensor
JPH1010150A (en) Acceleration sensor
JPH11118822A (en) Triaxial acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees