JP4275269B2 - Piezoelectric three-axis acceleration sensor - Google Patents

Piezoelectric three-axis acceleration sensor Download PDF

Info

Publication number
JP4275269B2
JP4275269B2 JP30988899A JP30988899A JP4275269B2 JP 4275269 B2 JP4275269 B2 JP 4275269B2 JP 30988899 A JP30988899 A JP 30988899A JP 30988899 A JP30988899 A JP 30988899A JP 4275269 B2 JP4275269 B2 JP 4275269B2
Authority
JP
Japan
Prior art keywords
axis
acceleration detection
ceramic substrate
piezoelectric ceramic
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30988899A
Other languages
Japanese (ja)
Other versions
JP2001124796A (en
Inventor
雅英 田村
正人 安藤
努 澤井
尚浩 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP30988899A priority Critical patent/JP4275269B2/en
Publication of JP2001124796A publication Critical patent/JP2001124796A/en
Application granted granted Critical
Publication of JP4275269B2 publication Critical patent/JP4275269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Description

【0001】
【発明の属する技術分野】
本発明は、圧電セラミックスを利用して加速度を検出する圧電型三軸加速度センサに関するものである。
【0002】
【従来の技術】
一方の面上に加速度検出用電極パターンを形成し、他方の面上に対向電極パターンを形成した圧電セラミックス基板に分極処理を施し、加速度を受けて圧電セラミックス基板の応力発生領域に生じる応力により加速度検出用電極に発生する自発分極電荷に基づいて加速度検出信号(電圧信号または電流信号)を各出力電極から出力する加速度センサが知られている。この種の加速度センサにおいて、相互に直交する三軸方向の加速度を検出する圧電型三軸加速センサでは、加速度検出用電極パターンを一対のX軸方向加速度検出用電極、一対のY軸方向加速度検出用電極及び複数のZ軸方向加速度検出用電極と、X軸出力電極、Y軸出力電極及びZ軸出力電極とがX軸接続線、Y軸接続線及びZ軸接続線を介してそれぞれ電気的に接続させて形成する。この圧電型三軸加速センサの基本原理及び基本技術は、国際公開WO93/02342(PCT/JP92/00882)に詳しく開示されている。
【0003】
しかしながら、圧電セラミックス基板は比誘電率が高いため、圧電型三軸加速度センサでは、接続線と対向電極パターンとの間にも当然にして静電容量が発生する。接続線と対向電極パターンとの間に発生した自発分極電荷は、この静電容量にも蓄積される。そのため、出力電極から取り出される加速度検出信号の出力がある程度低下するという問題が生じる。そこで、圧電セラミックス基板の表面全体に亘って接続線と圧電セラミックス基板との間に、圧電セラミックス基板の比誘電率よりも比誘電率が十分に小さい低誘電率層を形成することが提案された。なお、対向電極パターンが接続線と対向し難くなるように、対向電極パターンを加速度検出用電極の電極群に対応した円環状に形成することも提案されている。しかしながら、このように対向電極パターンを形成しても、対向電極パターンは接続線と斜めに対向するため、斜めに対向している部分の静電容量が無くなるわけではない。そのため、この場合にも低誘電率層が必要である。
【0004】
【発明が解決しようとする課題】
従来のように、圧電セラミックス基板の表面全体に亘って低誘電率層を形成すると、圧電セラミックス基板の応力発生領域では、低誘電率層により圧電セラミックス基板の撓みが阻害されて、応力発生領域内の応力の発生量に偏りが生じる。そのため、出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルにそれぞればらつきが生じる。そこで、従来では、センサに設けた信号増幅回路によりX軸、Y軸、Z軸加速度信号のレベルのばらつきを調整していた。しかしながら、信号増幅回路によりX軸、Y軸、Z軸加速度信号のレベルのばらつきを調整すると、圧電型三軸加速度センサの製造が繁雑になるという問題があった。
【0005】
本発明の目的は、信号増幅回路によりX軸、Y軸、Z軸加速度信号のレベルのばらつきを調整する必要のない圧電型三軸加速度センサを提供することにある。
【0006】
【課題を解決するための手段】
本発明が改良の対象とする圧電型三軸加速度センサは、相互に直交するX軸方向、Y軸方向及びZ軸方向の三軸の加速度をそれぞれ検出するための一対のX軸加速度検出用電極、一対のY軸加速度検出用電極及び複数のZ軸加速度検出用電極と、X軸出力電極、Y軸出力電極及びZ軸出力電極とがX軸接続線、Y軸接続線及びZ軸接続線を介してそれぞれ電気的に接続された加速度検出電極パターンが表面上に形成され、裏面上に少なくとも一対のX軸加速度検出用電極、一対のY軸加速度検出用電極及び複数のZ軸加速度検出用電極と対向する対向電極パターンが形成され、各加速度検出用電極と対向電極パターンとの間の部分が分極処理されている圧電セラミックス基板と、表面に圧電セラミックス基板の裏面が接合されたダイアフラムと、ダイアフラムの中央部に設けられた重錘と、重錘に加速度が作用したときに重錘の周囲にある圧電セラミックス基板の部分に撓みが生じるようにダイアフラムを支持するべースとを具備している。圧電セラミックス基板は、重錘と対向する重錘対向領域と、ベースと対向するベース対向領域と、重錘対向領域とベース対向領域の間に位置し各加速度検出用電極が配置される環状の応力発生領域とを有している。また、X軸接続線、Y軸接続線及びZ軸接続線と圧電セラミックス基板との間には、圧電セラミックス基板の比誘電率よりも比誘電率が十分に小さい低誘電率層が形成されている。本発明では、応力発生領域に位置する接続線の部分と圧電セラミックス基板との間に低誘電率層を形成しない。また、対向電極パターンは、接続線とできるだけ圧電セラミックス基板を介して対向しないようにその形状を定める。本発明のように、応力発生領域に位置する接続線の部分と圧電セラミックス基板との間に低誘電率層を形成しないと、従来のように、低誘電率層により圧電セラミックス基板の応力発生領域における撓みが阻害されることがないので、応力発生領域内の応力の発生量に偏りが生じるのを防ぐことができる。
【0007】
しかしながら、このように、応力発生領域に位置する接続線の部分と圧電セラミックス基板との間に低誘電率層を形成しないと、応力発生領域内では接続線と対向電極パターンとの間に自発分極電荷が発生するという問題が生じる。そこで、本発明では、接続線とできるだけ圧電セラミックス基板を介して対向しないように対向電極パターンの形状を定めて、応力発生領域内での接続線と対向電極パターンとの間の自発分極電荷の発生を防いだ。以上により、本発明によれば、出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルにそれぞればらつきが生じるのを防ぐことができ、信号増幅回路により各加速度信号のレベルのばらつきを調整する必要がなくなる。
【0008】
対向電極パターンを接続線とできるだけ圧電セラミックス基板を介して対向しないようにするには、対向電極パターンを各加速度検出用電極により形成される電極群の輪郭に沿う形状に形成すればよい。
【0009】
応力発生領域は、重錘対向領域を囲む環状の第1の応力発生部と、第1の応力発生部を囲み第1の応力発生部に加わる応力と異なる種類の応力が発生する環状の第2の応力発生部と、第1の応力発生部及び第2の応力発生部の境界線からなる変曲線部とを有している。そこで、一対のX軸加速度検出用電極、一対のY軸加速度検出用電極及び複数のZ軸加速度検出用電極の少なくとも一つの電極は、重錘にX軸方向、Y軸方向及びZ軸方向にそれぞれ同じ大きさの加速度が作用したときに、各出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルが実質的に等しくなるように、変曲線部を越えて第1の応力発生部から第2の応力発生部上に延びる出力調整用延長電極部を有しているのが好ましい。
【0010】
このように一対のX軸加速度検出用電極、一対のY軸加速度検出用電極及び複数のZ軸加速度検出用電極の少なくとも一つの電極に、出力調整用延長電極部を設けると、出力調整用延長電極部が設けられた加速度検出用電極では、第1の応力発生部上の部分で発生した電荷の一部が出力調整用延長電極部で発生した逆極性の電荷により打ち消され、出力電極から出力する加速度検出信号のレベルが低下する。そのため、この低下量を適宜に定めることによりX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルが実質的に等しくなるように調整することができる。このようにして、X軸出力電極、Y軸出力電極及びZ軸出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルが実質的に等しくすれば、信号増幅回路を用いなくても、加速度信号の出力レベルを一致させることができる圧電型三軸加速度センサを得ることができる。また、X軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号の信号レベルを同じにできるので、増幅回路を用いるとしても、各方向の加速度検出信号に応じて増幅度を変える必要がなくなり、増幅回路の構成及び設計が簡単になる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1〜4は、本発明の実施の形態の圧電型三軸加速度センサを一部破断した状態で示す正面図、平面図、側面図及び背面図である。図2及び図3に示すように、この加速度検出装置は、ダイアフラム1と、重錘3と、ベース5と、ダイアフラム1の重錘3が取り付けられた面側とは反対側の面上に固定された加速度センサ素子7とを備えている。これらの各部材は、絶縁樹脂製ケース9内に収納されており、この絶縁樹脂製ケース9には、内部に複数の端子金具11A〜11Hが配置されると共に金属製のカバー部材13が嵌合されている。
【0012】
ダイアフラム1、重錘3及びベース5は、真鍮からなる金属材料により一体に成形された単体ユニット10として構成されている。ダイアフラム1は、円板形状を有している。重錘3は、円柱形状を有しており、その軸線の延長部分がダイアフラム1の中心を通るように配置されている。ベース5は円筒形状を有しており、ダイアフラム1の外周部を支持している。また、ベース5の外周部には、周方向に連続するV字溝5aが形成されている。この単体ユニット10は、複数の端子金具11A〜11Hと共に絶縁樹脂製ケース9を成形するときにインサートとして用いられる。
【0013】
加速度センサ素子7は、図5の平面図及び図6の裏面図に示すように圧電セラミックス基板7aの表面に三軸加速度検出用の加速度検出用電極パターンE1が形成され、裏面に対向電極パターンE0が形成されて構成されている。圧電セラミックス基板7aの裏面及び対向電極パターンE0は、エポキシ等の合成樹脂材料からなる接着剤層によってダイアフラム1の表面に接合されている。圧電セラミックス基板7aは、輪郭形状がほぼ四角形をなしており、図1及び図3に示すように、ダイアフラム1上に位置する本体部7bと、絶縁樹脂製ケース9上を本体部7bから複数の端子金具11A〜11Hの近傍まで延びる延長部7cとを有している。圧電セラミックス基板7aの対向する2つの辺部に位置する延長部7cの縁部には、図1及び図5に示すように、4つの半円状の凹部7d〜7gと4つの半円状の凹部7h〜7kとがそれぞれ等間隔に形成されている。この圧電セラミックス基板7aは、内部に応力が加わると自発分極電荷が発生するように電極に対応した部分に分極処理が施されている。分極処理については後に説明する。圧電セラミックス基板7aは、重錘対向領域8Aと、ベース対向領域8Bと、重錘対向領域8Aとベース対向領域8Bとの間に位置する応力発生領域8Cとを有している。重錘対向領域8Aに対応する部分には重錘3が位置しており、ベース対向領域8Bに対応する部分にはベース5が位置している。応力発生領域8Cは、重錘対向領域8Aを囲む環状の第1の応力発生部8C1と、第1の応力発生部8C1を囲む環状の第2の応力発生部8C2とから構成されている。第1の応力発生部8C1は、重錘3に対して圧電セラミックス基板7aの基板面と平行な方向(X軸方向またはY軸方向)に加速度が作用すると、重錘3の重心を中心として点対称に異なった状態(引っ張り応力が加わった状態と、圧縮応力が加わった状態と)に変形する。また、重錘3に対して圧電セラミックス基板7aの基板面と直交する方向(Z軸方向)に加速度が作用すると、第1の応力発生部8C1の各部は同じ状態に変形する。第2の応力発生部8C2は、第1の応力発生部8C1に加わる応力と異なる種類の応力が極めて小さく発生する領域である。なお、図5において、8Dは第1の応力発生部8C1と第2の応力発生部8C2との境界線(変曲線部)である。
【0014】
圧電セラミックス基板7aの表面及び裏面に形成された加速度検出用電極パターンE1及び対向電極パターンE0は、いずれもスクリーン印刷により形成されている。加速度検出用電極パターンE1は、図5に示すように、X軸方向検知電極パターン15とY軸方向検知電極パターン17とZ軸方向検知電極パターン19とを有している。X軸方向検知電極パターン15は、一対のX軸方向加速度検出用電極EX1,EX2とX軸出力電極OXとがX軸接続線L1〜L3により直列に接続された構造を有している。一対のX軸方向加速度検出用電極EX1,EX2は、後に説明するY軸方向検知電極パターン17の一対のY軸方向加速度検出用電極EY1,EY2及びZ軸方向検知電極パターン19の4つのZ軸方向加速度検出用電極EZ1〜EZ4と共に、重錘対向領域8Aを囲む環状の列を形成している。一対のX軸方向加速度検出用電極のそれぞれの電極EX1,EX2は、X軸方向仮想線XLに対して線対称になり且つ重錘対向領域8Aと第1の応力発生部8C1とに跨がる矩形に近い形状を有している。
【0015】
Y軸方向加速度検出用電極パターン17は、一対のY軸方向加速度検出用電極EY1,EY2とY軸出力電極OYとがY軸接続線L4により直列に接続された構造を有している。一対のY軸方向加速度検出用電極のそれぞれの電極EY1,EY2は、Y軸方向仮想線YLに対して線対称になり且つ重錘対向領域8Aと第1の応力発生部8C1と第2の応力発生部8C2とに跨がる矩形に近い形状を有している。これらの電極EY1,EY2は、いずれも重錘対向領域8A及び第1の応力発生部8C1上に位置する電荷発生電極部EY1a,EY2aと、変曲線部8Dを越えて第1の応力発生部8C1から第2の応力発生部8C2上に延びる出力調整用延長電極部EY1b,EY2bとをそれぞれ有している。前述したように、第2の応力発生部8C2は、僅かな量ではあるが、第1の応力発生部8C1に加わる応力とは異なる種類の応力が発生する。そのため、第2の応力発生部8C2上に位置する出力調整用延長電極部EY1b,EY2bには、電荷発生電極部EY1a,EY2aとは逆極性の電荷が発生する。その結果、電荷発生電極部EY1a,EY2aで発生した電荷の一部が出力調整用延長電極部EY1b,EY2bで発生した逆極性の電荷により打ち消され、Y軸出力電極OYから出力するY軸加速度検出信号のレベルは低下する。
【0016】
Z軸方向加速度検出用電極パターン19は、4つのZ軸方向加速度検出用電極EZ1〜EZ4及びZ軸出力電極OZが、これらの順にZ軸接続線L5によって直列に接続された構造を有している。Z軸方向加速度検出用電極EZ1〜EZ4は、それぞれが矩形に近い形状を有しており、一対のX軸方向加速度検出用電極EX1,EX2及び一対のY軸方向加速度検出用電極EY1,EY2の各電極の間に配置された状態で重錘対向領域8Aと第1の応力発生部8C1とに跨がって形成されている。また、Z軸方向加速度検出用電極EZ1〜EZ4の形状及び寸法は、重錘3にX軸方向、Y軸方向及びZ軸方向にそれぞれ同じ大きさの加速度が作用したときに、出力電極OZから出力されるZ軸加速度検出信号のレベルが出力電極OY及びOZから出力されるY軸加速度検出信号及びZ軸加速度検出信号のレベルと実質的に等しくなるように設定されている。
【0017】
本例の加速度センサにおいて、仮にY軸方向加速度検出用電極EY1,EY2の形状及び寸法がX軸方向加速度検出用電極EX1,EX2と同じだとすると、重錘3にX軸方向,Y軸方向及びZ軸方向にそれぞれ同じ大きさの加速度が作用したときに、出力電極OYから出力されるY軸加速度検出信号は、出力電極OXから出力されるX軸加速度検出信号、または出力電極OZから出力されるZ軸加速度検出信号より大きいものになる。これは、X軸接続線L1〜L3とY軸接続線L4との長さ寸法の違いによるものと考えられる。本例によれば、Y軸方向加速度検出電極EY1,EY2に出力調整用延長電極部EY1b,EY2bを設けることにより、Y軸出力電極OYから出力するY軸加速度検出信号のレベルを低下させ、重錘3にX軸方向,Y軸方向及びZ軸方向にそれぞれ同じ大きさの加速度が作用したときに、各出力電極OX〜OZから出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルを実質的に等しくできる。
【0018】
X軸出力電極OX、Y軸出力電極OY及びZ軸出力電極OZは、圧電セラミックス基板7aの3つの角部において、凹部7d,7h,7kをそれぞれ囲むように形成されている。また、圧電セラミックス基板7aの残りの角部には、凹部7gを囲むようにアース電極OEが形成されている。アース電極OEには、X軸方向加速度検出用電極EX1に隣接する圧電セラミックス基板7aの縁部まで延びる延長部分21が接続されている。また、アース電極OEは、圧電セラミックス基板7aの側部及び裏面上に形成された図示しない導電性接着剤層を介してベース5と電気的に接続されている。
【0019】
重錘対向領域8A及びベース対向領域8Bの一部分には、低誘電率層27〜31が接続線L1〜L5と圧電セラミックス基板7aとの間に位置するように所定のパターンで形成されている。低誘電率層27〜31は、いずれも圧電セラミックス基板7aよりも比誘電率が十分に小さいレジン(エポキシ)ペーストからなる熱硬化性樹脂(比誘電率:10)を用いてスクリーン印刷により形成されており、20μmの厚みを有している。低誘電率層は、圧電セラミックス基板7aの1/100以下の比誘電率を有する誘電物質を用いるのが好ましい。誘電物質としては、圧電セラミックス基板7aよりも比誘電率が十分に小さいものであればよく、ガラス及び熱硬化性樹脂を用いることができる。低誘電率層27は、重錘固定領域8A内において、接続線L4及びL5と、圧電セラミックス基板7aとの間に位置するように形成されており、円形の形状を有している。低誘電率層29は、ベース対向領域8Bの一方の側において、接続線L1,L2,L3,L5及び延長部分21と圧電セラミックス基板7aとの間に位置するように形成されている。低誘電率層31は、ベース対向領域8Bの他方の側において、接続線L4及びL5と圧電セラミックス基板7aとの間に位置するように形成されている。このように、低誘電率層27〜31は、応力発生領域8Cに位置する各接続線L1,L2,L4,L5の部分と圧電セラミックス基板7aとの間には形成されていない。本例のように、低誘電率層27〜31を構成すると、低誘電率層により圧電セラミックス基板7aの応力発生領域8Cにおける撓みが阻害されることがないので、応力発生領域8C内の応力の発生量に偏りが生じるのを防ぐことができる。
【0020】
圧電セラミックス基板7aの裏面上に形成された対向電極パターンE0は、図6に示すように、加速度検出用電極パターンE1の加速度検出用電極EX1〜EZ4と対向する環状の対向電極E0aと、対向電極E0aから圧電セラミックス基板7aの縁部に延びる延伸部E0bと、圧電セラミックス基板7aの4角に形成された裏面電極部E0c〜E0fとを有している。対向電極E0aは、接続線L1〜L5とできるだけ圧電セラミックス基板7aを介して対向しないように、加速度検出用電極EX1〜EZ4が形成する電極の輪郭に沿う形状を有している。前述したように、本例では、応力発生領域8Cに低誘電率層を形成しないので、応力発生領域内8Cの応力の発生量に偏りが生じるのを防ぐことができる。しかしながら、応力発生領域8C内では低誘電率層が形成されていないため、接続線L1,L2,L3,L5と対向電極E0aとの間に自発分極電荷が発生するという問題が生じる。そこで、本例では、接続線L1〜L5とできるだけ圧電セラミックス基板7aを介して対向しないように対向電極E0aの形状を定めて、応力発生領域8C内での接続線L1,L2,L3,L5と対向電極E0aとの間の自発分極電荷の発生を防いだ。延伸部E0bの一部は、加速度検出用電極パターンE1の延長部分21の端部21aと対向しており、圧電セラミックス基板7aの側部を延びる接続部23を介して延長部分21の端部21aと電気的に接続されている。これにより、対向電極パターンE0に含まれる対向電極E0aはアース電極OEと電気的に接続されることになる。裏面電極部E0c〜E0fは、アース電極OE、X軸出力電極OX、Z軸出力電極OZ及びY軸出力電極OYと対向しており、圧電セラミックス基板7aの側部を延びる接続部を介してそれぞれ対向する各電極と電気的に接続されている。
【0021】
X軸方向加速度検出用電極EX1,EX2に対応する圧電セラミックス基板7aの各部分には、重錘3にZ軸方向の加速度が作用して各部分に同種類の応力が発生したときに重錘対向領域8Aの一方の側に位置する加速度検出用電極EX1と他方の側に位置する加速度検出用電極EX2とにそれぞれ逆極性の自発分極電荷が現れるように分極処理が施されている。また、Y軸方向加速度検出用電極EY1,EY2に対応する圧電セラミックス基板7aの各部分もX軸方向加速度検出用電極EX1,EX2に対応する圧電セラミックス基板7aの各部分と同様に、重錘3にZ軸方向の加速度が作用して各部分に同種類の応力が発生したときに重錘対向領域8Aの一方の側に位置するY軸方向加速度検出用電極EY1と他方の側に位置するY軸方向加速度検出用電極EY2とにそれぞれ逆極性の自発分極電荷が現れるように分極処理が施されている。また、Z軸方向加速度検出用電極EZ1〜EZ4に対応する圧電セラミックス基板7aの各部分は、重錘3にZ軸方向の加速度が作用して各部分に同種類の応力が発生したときにすべてのZ軸方向加速度検出用電極EZ1〜EZ4に同じ極性の自発分極電荷が現れるように分極処理が施されている。このため、重錘3に作用する加速度に基づいてダイアフラム1が変形すると圧電セラミックス基板7aが撓んで加速度検出用電極パターンE1 と対向電極パターンE0 との間に発生する自発分極電荷が変化して、重錘3に加わった三軸(X軸,Y軸,Z軸)方向の加速度が電流または電圧の変化として測定される。
【0022】
本例では、加速度検出用電極EX1〜EZ4及び対向電極パターンE0をガラス−銀ペーストを用いてスクリーン印刷した後にこれを焼成して5μmの厚みに形成した後に、対向する各電極間に直流電圧を印加することにより圧電セラミックス基板7aに分極処理を行った。次に、低誘電率層27〜31をレジン(エポキシ)ペーストによりスクリーン印刷してから、接続線L1〜L9を銀ペーストによりスクリーン印刷して加速度検出用電極パターンE1 を形成した。
【0023】
絶縁樹脂製ケース9は、図1〜図3に示すように、その輪郭がほぼ直方体を呈しており、中央空洞部9aと、この中央空洞部9aと外部とに連通する側方空洞部9bとが内部に形成されている。中央空洞部9aは、図2及び図3において紙面の上下方向に絶縁樹脂製ケース9を貫通しており、ほぼ円柱形の単体ユニット収納部9cと、絶縁樹脂製ケース9の内周面に段部9dを形成するように、単体ユニット収納部9cより小さい径を有するほぼ円柱形の空隙部9eとを有している。単体ユニット10は、単体ユニット10のベース5の底面と段部9dとが当接するように単体ユニット収納部9c内に収納されている。また、単体ユニット収納部9cの内部には、単体ユニット10のベース5のV字溝5aに樹脂が入り込んで突起部9fが形成されている。本例では、単体ユニット10をインサートとして射出成形により絶縁樹脂製ケース9を一体成形しているため、段部9d及び突起部9fは、単体ユニット10の絶縁樹脂製ケース9からの抜け止めとして機能している。また、このように単体ユニット10をインサートとして絶縁樹脂製ケース9が成形されることにより、ベース5の外周面の一部5bは、絶縁樹脂製ケース9の側方空洞部9b内に露出される。また、絶縁樹脂製ケース9は、ダイアフラム1の表面と同じ側に位置してダイアフラム1の表面と面一に形成された表面9gと、表面9gの反対側に位置する裏面9hとを有している。表面9gには、前述した圧電セラミックス基板7aの延長部7cが載置されている。裏面9hには、後述する複数の端子金具11A〜11Hの他方の端部11f…が絶縁樹脂製ケース9の裏面9hから突出する方向と同じ方向に突出する複数個(この例では3個)のスペーサ9i…が形成されている。このようなスペーサ9i…を形成すれば、加速度検出装置を回路基板に取付ける際に絶縁樹脂製ケース9の裏面9hと回路基板との間にスペーサ9i…によって空隙部を形成することができる。そのため、加速度検出装置の端子金具11A〜11Hを回路基板に半田付けする際に半田に含まれるフラックスが絶縁樹脂製ケース9等を伝わって加速度検出装置の内部に侵入するのを防ぐことができる。また、図2に示すように、絶縁樹脂製ケース9の外周部には、側方空洞部9bが開口する側面9kの下方部に外側に向って開口するほぼ矩形の凹部9jが形成されている。
【0024】
複数の端子金具11A〜11Hは、図3に示すように、いずれも同じほぼ円柱形状を有しており、絶縁樹脂製ケース9内において圧電セラミックス基板7aの凹部7d〜7kと対応する位置にそれぞれ配置されている。端子金具11A〜11Hの一つの端子金具は、一方の端部11aと長手方向中央部とにそれぞれ長手方向と直交する方向に突出する円環状の鍔部11c,11dを有している。これにより、一方の端部11aの端面11eの面積は、長手方向と直交する端子金具の断面積よりも大きくなる。また、長手方向中央部の鍔部11dは、端子金具11A〜11Fの絶縁樹脂製ケース9からの抜け止めとして機能している。これら複数の端子金具11A〜11Hは、一方の端部11aの端面11eが絶縁樹脂製ケース9の表面9g上に露出し他方の端部11fが絶縁樹脂製ケース9の裏面から突出するように絶縁樹脂製ケース9内に配置されている。複数の端子金具11A〜11Hの各端面11eのほぼ半部(半円部分)は、圧電セラミックス基板7aの凹部7d〜7k内から外側に露出している。そして、図1及び図3に示すように、複数の端子金具11A〜11Hの内、圧電セラミックス基板7aの角部に位置する4つの端子金具11A,11D,11E,11Hの各一方の端面11e…は、圧電セラミックス基板7aの延長部7cに形成された電極OX,OY,OZ,OEと導電性接着剤からなる導電部25…によって電気的に接続されている。また、この例では、複数の端子金具11A〜11Hの内、他の4つの端子金具11B,11C,11F,11Gの各一方の端面11e…は、圧電セラミックス基板7aの縁部と単に接触しているが、これらの端面11e…は、接着剤によって圧電セラミックス基板7aの縁部と接続してもよい。なお、これらの端子金具11B,11C,11F,11Gは、ダミー端子を構成している。
【0025】
カバー部材13は、ほぼ矩形の上壁部13aとほぼ矩形の4つの側壁部13b〜13eとを有する一面開口の箱形状を有しており、ステンレスにより一体に形成されている。このカバー部材13は、上壁部13aが加速度センサ素子7の上方に位置し、側壁部13b〜13eが絶縁樹脂製ケース9の側面と当接するように、絶縁樹脂製ケース9に対して嵌合された状態で加速度センサ素子7を覆っている。図2及び図3に示すように、絶縁樹脂製ケース9の側面9k(絶縁樹脂製ケース9の側方空洞部9bが形成された側面)と当接するカバー部材13の側壁部13bには、接触片13f及び凸部13gがプレス加工により一体に形成されている。接触片13fは、側壁部13bの一部が開口部13hを形成してベース5側に起立するように絶縁樹脂製ケース9の側方空洞部9b内を延びており、側壁部13bの面と直交する方向に伸びる起立部13f1と、起立部13f1の端部で円弧状に曲げられた接触部13f2とを有している。接触部13f2は、ベース5のV字溝5aの一部(側方空洞部9b内に露出する部分)により構成される嵌合凹部に嵌合されており、これにより、カバー部材13は、ベース5に電気的に接続されている。前述したように、アース電極OEは、図示しない導電性接着剤層を介してベース5と電気的に接続されているので、カバー部材13は、ベース5と共にアース電極OEと電気的に接続されて接地されることになる。特に本例では、カバー部材13が絶縁樹脂製ケース9に嵌合された状態で接触部13f2が起立部13f1のバネ性でベース5に押し付けられるので、カバー部材13の取付と同時にカバー部材13とベース5との電気的な接続を完了することができ、しかもベース5とカバー部材13の接触片13fとの接触が確実になる。
【0026】
凸部13gは、カバー部材13の側壁部13bの一部が折り曲げられて形成されている。この凸部13gは、絶縁樹脂製ケース9の側面9kに形成された凹部9jに嵌合されて、カバー部材13を絶縁樹脂製ケース9に固定する役割を果たしている。このような固定方法によれば、絶縁樹脂製ケース9にバネ性を持ってカバー部材13の凸部13gを嵌合するので、カバー部材13の取付によりカバー部材13を絶縁樹脂製ケース9に簡単に固定することができる。
【0027】
なお、本例では、一対のY軸加速度検出用電極EY1,EY2のみに、出力調整用延長電極部EY1b,EY2bを設けたが、加速度センサ素子の設計に応じて他の電極に出力調整用延長電極部を設けても構わない。その場合、出力調整用延長電極部の形状、寸法を適宜に設定することにより、X軸方向,Y軸方向及びZ軸方向にそれぞれ同じ大きさの加速度が作用したときに、各出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルが実質的に等しくなるようにすればよい。
【0028】
【発明の効果】
本発明によれば、応力発生領域に位置する接続線の部分と圧電セラミックス基板との間に低誘電率層を形成しないので、応力発生領域内の応力の発生量に偏りが生じるのを防ぐことができる。しかしながら、応力発生領域内では低誘電率層が形成されていないため、接続線と対向電極パターンとの間に自発分極電荷が発生するという問題が生じる。そこで、本発明では、各接続線とできるだけ圧電セラミックス基板を介して対向しないように対向電極パターンの形状を定めた。以上により、本発明によれば、出力電極から出力されるX軸加速度検出信号、Y軸加速度検出信号及びZ軸加速度検出信号のレベルにそれぞればらつきが生じるのを防ぐことができ、信号増幅回路により各加速度信号のレベルのばらつきを調整する必要がなくなる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の圧電型三軸加速度センサを一部破断した状態で示す正面図である。
【図2】 本発明の実施の形態の圧電型三軸加速度センサを一部破断した状態で示す平面図である。
【図3】 本発明の実施の形態の圧電型三軸加速度センサを一部破断した状態で示す側面図である。
【図4】 本発明の実施の形態の圧電型三軸加速度センサの背面図である。
【図5】 本発明の実施の形態の圧電型三軸加速度センサに用いる加速度センサ素子の平面図である。
【図6】 本発明の実施の形態の圧電型三軸加速度センサに用いる加速度センサ素子の裏面図である。
【符号の説明】
1 ダイアフラム
3 重錘
5 ベース
7 加速度センサ素子
8A 重錘対向領域
8B ベース対向領域
8C 応力発生領域
8C1 第1の応力発生部
8C2 第2の応力発生部
27〜31 低誘電率層
EX1,EX2 一対のX軸方向加速度検出用電極
EY1,EY2 一対のY軸方向加速度検出用電極
EZ1〜EZ4 Z軸方向加速度検出用電極
E0 対向電極パターン
E0a 対向電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric triaxial acceleration sensor that detects acceleration using piezoelectric ceramics.
[0002]
[Prior art]
A piezoelectric ceramic substrate having an electrode pattern for acceleration detection formed on one surface and a counter electrode pattern formed on the other surface is subjected to polarization treatment, and acceleration is caused by stress generated in the stress generation region of the piezoelectric ceramic substrate upon receiving acceleration. An acceleration sensor that outputs an acceleration detection signal (voltage signal or current signal) from each output electrode based on the spontaneous polarization charge generated in the detection electrode is known. In this type of acceleration sensor, in a piezoelectric triaxial acceleration sensor that detects acceleration in three axial directions orthogonal to each other, an acceleration detection electrode pattern is composed of a pair of X axis direction acceleration detection electrodes and a pair of Y axis direction acceleration detections. Electrode, a plurality of Z-axis direction acceleration detection electrodes, an X-axis output electrode, a Y-axis output electrode, and a Z-axis output electrode are electrically connected via an X-axis connection line, a Y-axis connection line, and a Z-axis connection line, respectively. Connected to and formed. The basic principle and basic technology of this piezoelectric triaxial acceleration sensor are disclosed in detail in International Publication WO 93/02342 (PCT / JP92 / 00882).
[0003]
However, since the piezoelectric ceramic substrate has a high relative dielectric constant, the piezoelectric triaxial acceleration sensor naturally generates a capacitance between the connection line and the counter electrode pattern. Spontaneous polarization charges generated between the connection line and the counter electrode pattern are also accumulated in this capacitance. Therefore, there arises a problem that the output of the acceleration detection signal taken out from the output electrode is reduced to some extent. Therefore, it has been proposed to form a low dielectric constant layer having a dielectric constant sufficiently smaller than that of the piezoelectric ceramic substrate between the connecting line and the piezoelectric ceramic substrate over the entire surface of the piezoelectric ceramic substrate. . In addition, it has also been proposed to form the counter electrode pattern in an annular shape corresponding to the electrode group of the acceleration detection electrode so that the counter electrode pattern does not easily face the connection line. However, even if the counter electrode pattern is formed in this way, the counter electrode pattern is diagonally opposed to the connection line, and thus the capacitance of the diagonally opposed portion is not eliminated. Therefore, a low dielectric constant layer is also required in this case.
[0004]
[Problems to be solved by the invention]
When the low dielectric constant layer is formed over the entire surface of the piezoelectric ceramic substrate as in the past, in the stress generation region of the piezoelectric ceramic substrate, the low dielectric constant layer inhibits the deflection of the piezoelectric ceramic substrate, and the stress generation region The amount of stress generated is uneven. Therefore, variations occur in the levels of the X-axis acceleration detection signal, Y-axis acceleration detection signal, and Z-axis acceleration detection signal output from the output electrode. Therefore, conventionally, variations in the levels of the X-axis, Y-axis, and Z-axis acceleration signals have been adjusted by a signal amplification circuit provided in the sensor. However, when the variation in the level of the X-axis, Y-axis, and Z-axis acceleration signals is adjusted by the signal amplifier circuit, there is a problem that the manufacture of the piezoelectric triaxial acceleration sensor becomes complicated.
[0005]
An object of the present invention is to provide a piezoelectric triaxial acceleration sensor that does not require adjustment of variations in the levels of X-axis, Y-axis, and Z-axis acceleration signals by a signal amplifier circuit.
[0006]
[Means for Solving the Problems]
The piezoelectric triaxial acceleration sensor to be improved by the present invention is a pair of X axis acceleration detection electrodes for detecting triaxial accelerations in the X axis direction, the Y axis direction, and the Z axis direction orthogonal to each other. The pair of Y-axis acceleration detection electrodes and the plurality of Z-axis acceleration detection electrodes, the X-axis output electrode, the Y-axis output electrode, and the Z-axis output electrode are the X-axis connection line, the Y-axis connection line, and the Z-axis connection line. Are formed on the front surface, and at least a pair of X-axis acceleration detection electrodes, a pair of Y-axis acceleration detection electrodes, and a plurality of Z-axis acceleration detection electrodes are formed on the front surface. A piezoelectric ceramic substrate in which a counter electrode pattern facing the electrode is formed and a portion between each acceleration detecting electrode and the counter electrode pattern is polarized, and a diaphragm in which the back surface of the piezoelectric ceramic substrate is bonded to the surface A weight provided in the center of the diaphragm, and a base for supporting the diaphragm so that the portion of the piezoelectric ceramic substrate around the weight is bent when acceleration acts on the weight. ing. Piezoelectric ceramic substrate is an annular stress that is located between the weight-facing area facing the weight, the base-facing area facing the base, and each acceleration detecting electrode located between the weight-facing area and the base-facing area. Generating region. A low dielectric constant layer having a dielectric constant sufficiently smaller than that of the piezoelectric ceramic substrate is formed between the X-axis connecting line, the Y-axis connecting line, and the Z-axis connecting line and the piezoelectric ceramic substrate. Yes. In the present invention, the low dielectric constant layer is not formed between the connecting wire portion located in the stress generation region and the piezoelectric ceramic substrate. Further, the shape of the counter electrode pattern is determined so as not to oppose the connecting line through the piezoelectric ceramic substrate as much as possible. If the low dielectric constant layer is not formed between the connecting line portion located in the stress generation region and the piezoelectric ceramic substrate as in the present invention, the low dielectric constant layer causes the stress generation region of the piezoelectric ceramic substrate as in the prior art. Therefore, it is possible to prevent the generation amount of stress in the stress generation region from being biased.
[0007]
However, if a low dielectric constant layer is not formed between the portion of the connection line located in the stress generation region and the piezoelectric ceramic substrate, spontaneous polarization occurs between the connection line and the counter electrode pattern in the stress generation region. There arises a problem that electric charges are generated. Therefore, in the present invention, the shape of the counter electrode pattern is determined so as not to oppose the connection line through the piezoelectric ceramic substrate as much as possible, and the spontaneous polarization charge is generated between the connection line and the counter electrode pattern in the stress generation region. Prevented. As described above, according to the present invention, it is possible to prevent variations in the levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal output from the output electrode. There is no need to adjust the variation in the level of each acceleration signal.
[0008]
In order to prevent the counter electrode pattern from facing the connection line through the piezoelectric ceramic substrate as much as possible, the counter electrode pattern may be formed in a shape that follows the outline of the electrode group formed by each acceleration detection electrode.
[0009]
The stress generation region includes an annular first stress generation portion that surrounds the weight-facing region and an annular second stress that surrounds the first stress generation portion and generates a different type of stress from the stress applied to the first stress generation portion. And a curved line portion formed by a boundary line between the first stress generation portion and the second stress generation portion. Therefore, at least one electrode of the pair of X-axis acceleration detection electrodes, the pair of Y-axis acceleration detection electrodes, and the plurality of Z-axis acceleration detection electrodes has a weight in the X-axis direction, the Y-axis direction, and the Z-axis direction. When the same magnitude of acceleration is applied, the inflection curve portion is set so that the levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal output from each output electrode are substantially equal. It is preferable to have an output adjusting extension electrode portion extending beyond the first stress generating portion to the second stress generating portion.
[0010]
As described above, when the output adjustment extension electrode portion is provided on at least one of the pair of X-axis acceleration detection electrodes, the pair of Y-axis acceleration detection electrodes, and the plurality of Z-axis acceleration detection electrodes, the output adjustment extension is performed. In the acceleration detecting electrode provided with the electrode portion, a part of the charge generated in the portion on the first stress generating portion is canceled by the reverse polarity charge generated in the output adjusting extension electrode portion, and output from the output electrode. The level of the acceleration detection signal is reduced. Therefore, by appropriately determining the amount of decrease, the levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal can be adjusted to be substantially equal. In this way, if the levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal output from the X-axis output electrode, the Y-axis output electrode, and the Z-axis output electrode are substantially equal, A piezoelectric triaxial acceleration sensor that can match the output level of the acceleration signal can be obtained without using a signal amplifier circuit. In addition, since the signal levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal can be made the same, it is necessary to change the amplification degree according to the acceleration detection signal in each direction even if an amplification circuit is used. The configuration and design of the amplifier circuit are simplified.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are a front view, a plan view, a side view, and a rear view showing the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention in a partially broken state. As shown in FIGS. 2 and 3, the acceleration detecting device is fixed on a surface opposite to the surface of the diaphragm 1, the weight 3, the base 5, and the surface on which the weight 3 of the diaphragm 1 is attached. The acceleration sensor element 7 is provided. Each of these members is housed in an insulating resin case 9, and a plurality of terminal fittings 11A to 11H are disposed inside the insulating resin case 9, and a metal cover member 13 is fitted therein. Has been.
[0012]
The diaphragm 1, the weight 3, and the base 5 are configured as a single unit 10 that is integrally formed of a metal material made of brass. The diaphragm 1 has a disk shape. The weight 3 has a cylindrical shape, and is arranged so that an extended portion of the axis passes through the center of the diaphragm 1. The base 5 has a cylindrical shape and supports the outer periphery of the diaphragm 1. Further, a V-shaped groove 5 a that is continuous in the circumferential direction is formed on the outer peripheral portion of the base 5. The single unit 10 is used as an insert when the insulating resin case 9 is molded together with the plurality of terminal fittings 11A to 11H.
[0013]
As shown in the plan view of FIG. 5 and the back view of FIG. 6, the acceleration sensor element 7 has an acceleration detection electrode pattern E1 for triaxial acceleration detection formed on the surface of the piezoelectric ceramic substrate 7a, and a counter electrode pattern E0 on the back surface. Is formed. The back surface of the piezoelectric ceramic substrate 7a and the counter electrode pattern E0 are joined to the surface of the diaphragm 1 by an adhesive layer made of a synthetic resin material such as epoxy. The piezoelectric ceramic substrate 7a has a substantially quadrangular outline. As shown in FIGS. 1 and 3, a plurality of main body portions 7b located on the diaphragm 1 and an insulating resin case 9 are formed from the main body portion 7b. And an extension 7c extending to the vicinity of the terminal fittings 11A to 11H. As shown in FIGS. 1 and 5, four semicircular recesses 7 d to 7 g and four semicircular recesses are formed on the edge of the extension 7 c located on the two opposing sides of the piezoelectric ceramic substrate 7 a. The recesses 7h to 7k are formed at equal intervals. The piezoelectric ceramic substrate 7a is subjected to polarization treatment at a portion corresponding to the electrode so that spontaneous polarization charges are generated when stress is applied to the inside thereof. The polarization process will be described later. The piezoelectric ceramic substrate 7a has a weight facing region 8A, a base facing region 8B, and a stress generation region 8C located between the weight facing region 8A and the base facing region 8B. The weight 3 is located in the portion corresponding to the weight opposing region 8A, and the base 5 is located in the portion corresponding to the base opposing region 8B. The stress generation region 8C includes an annular first stress generation portion 8C1 surrounding the weight opposing region 8A and an annular second stress generation portion 8C2 surrounding the first stress generation portion 8C1. When acceleration acts on the weight 3 in a direction parallel to the substrate surface of the piezoelectric ceramic substrate 7a (X-axis direction or Y-axis direction), the first stress generating portion 8C1 is centered on the center of gravity of the weight 3. It is deformed into a symmetrically different state (a state where tensile stress is applied and a state where compressive stress is applied). Further, when an acceleration acts on the weight 3 in a direction (Z-axis direction) orthogonal to the substrate surface of the piezoelectric ceramic substrate 7a, each portion of the first stress generating portion 8C1 is deformed to the same state. The second stress generating portion 8C2 is a region in which a different type of stress from the stress applied to the first stress generating portion 8C1 is extremely small. In FIG. 5, 8D is a boundary line (curved line portion) between the first stress generating portion 8C1 and the second stress generating portion 8C2.
[0014]
The acceleration detecting electrode pattern E1 and the counter electrode pattern E0 formed on the front and back surfaces of the piezoelectric ceramic substrate 7a are both formed by screen printing. The acceleration detection electrode pattern E1 includes an X-axis direction detection electrode pattern 15, a Y-axis direction detection electrode pattern 17, and a Z-axis direction detection electrode pattern 19, as shown in FIG. The X-axis direction detection electrode pattern 15 has a structure in which a pair of X-axis direction acceleration detection electrodes EX1, EX2 and an X-axis output electrode OX are connected in series by X-axis connection lines L1 to L3. The pair of X-axis direction acceleration detection electrodes EX1 and EX2 includes four Z-axes of a pair of Y-axis direction acceleration detection electrodes EY1 and EY2 and a Z-axis direction detection electrode pattern 19 of a Y-axis direction detection electrode pattern 17 described later. Together with the direction acceleration detection electrodes EZ1 to EZ4, an annular row surrounding the weight opposing region 8A is formed. The electrodes EX1 and EX2 of the pair of X-axis direction acceleration detection electrodes are line-symmetric with respect to the X-axis direction virtual line XL and straddle the weight opposing region 8A and the first stress generating portion 8C1. It has a shape close to a rectangle.
[0015]
The Y-axis direction acceleration detection electrode pattern 17 has a structure in which a pair of Y-axis direction acceleration detection electrodes EY1, EY2 and a Y-axis output electrode OY are connected in series by a Y-axis connection line L4. The electrodes EY1 and EY2 of the pair of Y-axis direction acceleration detection electrodes are line-symmetric with respect to the Y-axis direction virtual line YL, and the weight opposing region 8A, the first stress generating portion 8C1, and the second stress It has a shape close to a rectangle straddling the generator 8C2. These electrodes EY1 and EY2 are both of the charge generation electrode portions EY1a and EY2a located on the weight opposing region 8A and the first stress generation portion 8C1, and the first stress generation portion 8C1 beyond the curve portion 8D. Output extension electrode portions EY1b and EY2b extending on the second stress generating portion 8C2. As described above, the second stress generating portion 8C2 generates a different type of stress from the stress applied to the first stress generating portion 8C1, although the amount is small. Therefore, charges having opposite polarity to the charge generation electrode portions EY1a and EY2a are generated in the output adjustment extension electrode portions EY1b and EY2b positioned on the second stress generation portion 8C2. As a result, some of the charges generated in the charge generation electrode portions EY1a and EY2a are canceled by the reverse polarity charges generated in the output adjustment extension electrode portions EY1b and EY2b, and output from the Y-axis output electrode OY. The signal level decreases.
[0016]
The Z-axis direction acceleration detection electrode pattern 19 has a structure in which four Z-axis direction acceleration detection electrodes EZ1 to EZ4 and a Z-axis output electrode OZ are connected in series by a Z-axis connection line L5 in this order. Yes. Each of the Z-axis direction acceleration detection electrodes EZ1 to EZ4 has a shape close to a rectangle, and includes a pair of X-axis direction acceleration detection electrodes EX1 and EX2 and a pair of Y-axis direction acceleration detection electrodes EY1 and EY2. It is formed across the weight opposing region 8A and the first stress generating portion 8C1 in a state of being disposed between the electrodes. The shape and dimensions of the Z-axis direction acceleration detection electrodes EZ1 to EZ4 are the same as those of the output electrode OZ when accelerations of the same magnitude are applied to the weight 3 in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. The level of the output Z-axis acceleration detection signal is set to be substantially equal to the levels of the Y-axis acceleration detection signal and the Z-axis acceleration detection signal output from the output electrodes OY and OZ.
[0017]
In the acceleration sensor of this example, assuming that the shape and dimensions of the Y-axis direction acceleration detection electrodes EY1, EY2 are the same as those of the X-axis direction acceleration detection electrodes EX1, EX2, the weight 3 has the X-axis direction, the Y-axis direction, and the Z-axis. When acceleration of the same magnitude is applied in the axial direction, the Y-axis acceleration detection signal output from the output electrode OY is output from the X-axis acceleration detection signal output from the output electrode OX or the output electrode OZ. It becomes larger than the Z-axis acceleration detection signal. This is considered to be due to the difference in length between the X-axis connection lines L1 to L3 and the Y-axis connection line L4. According to this example, by providing the output adjustment extension electrodes EY1b and EY2b on the Y-axis direction acceleration detection electrodes EY1 and EY2, the level of the Y-axis acceleration detection signal output from the Y-axis output electrode OY is reduced, and When acceleration of the same magnitude is applied to the weight 3 in the X-axis direction, the Y-axis direction, and the Z-axis direction, the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis output from the output electrodes OX to OZ. The level of the axial acceleration detection signal can be made substantially equal.
[0018]
The X-axis output electrode OX, the Y-axis output electrode OY, and the Z-axis output electrode OZ are formed so as to surround the recesses 7d, 7h, and 7k, respectively, at the three corners of the piezoelectric ceramic substrate 7a. In addition, an earth electrode OE is formed at the remaining corner of the piezoelectric ceramic substrate 7a so as to surround the recess 7g. An extension 21 extending to the edge of the piezoelectric ceramic substrate 7a adjacent to the X-axis direction acceleration detection electrode EX1 is connected to the ground electrode OE. The ground electrode OE is electrically connected to the base 5 via a conductive adhesive layer (not shown) formed on the side and back surface of the piezoelectric ceramic substrate 7a.
[0019]
Low dielectric constant layers 27 to 31 are formed in a predetermined pattern in a part of the weight opposing region 8A and the base opposing region 8B so as to be positioned between the connection lines L1 to L5 and the piezoelectric ceramic substrate 7a. The low dielectric constant layers 27 to 31 are all formed by screen printing using a thermosetting resin (relative dielectric constant: 10) made of a resin (epoxy) paste having a dielectric constant sufficiently smaller than that of the piezoelectric ceramic substrate 7a. And has a thickness of 20 μm. For the low dielectric constant layer, a dielectric material having a relative dielectric constant of 1/100 or less of that of the piezoelectric ceramic substrate 7a is preferably used. As the dielectric material, any material having a dielectric constant sufficiently smaller than that of the piezoelectric ceramic substrate 7a may be used, and glass and thermosetting resin can be used. The low dielectric constant layer 27 is formed between the connection lines L4 and L5 and the piezoelectric ceramic substrate 7a in the weight fixing region 8A, and has a circular shape. The low dielectric constant layer 29 is formed on one side of the base facing region 8B so as to be positioned between the connection lines L1, L2, L3, L5 and the extension portion 21 and the piezoelectric ceramic substrate 7a. The low dielectric constant layer 31 is formed on the other side of the base facing region 8B so as to be positioned between the connection lines L4 and L5 and the piezoelectric ceramic substrate 7a. Thus, the low dielectric constant layers 27 to 31 are not formed between the connection lines L1, L2, L4, and L5 located in the stress generation region 8C and the piezoelectric ceramic substrate 7a. If the low dielectric constant layers 27 to 31 are configured as in this example, the low dielectric constant layer does not hinder the bending in the stress generation region 8C of the piezoelectric ceramic substrate 7a, so that the stress in the stress generation region 8C is reduced. It is possible to prevent the generation amount from being biased.
[0020]
As shown in FIG. 6, the counter electrode pattern E0 formed on the back surface of the piezoelectric ceramic substrate 7a includes an annular counter electrode E0a facing the acceleration detection electrodes EX1 to EZ4 of the acceleration detection electrode pattern E1, and a counter electrode. It has the extending | stretching part E0b extended from E0a to the edge part of the piezoelectric ceramic substrate 7a, and the back surface electrode parts E0c-E0f formed in the four corners of the piezoelectric ceramic substrate 7a. The counter electrode E0a has a shape along the outline of the electrode group formed by the acceleration detection electrodes EX1 to EZ4 so as not to face the connection lines L1 to L5 through the piezoelectric ceramic substrate 7a as much as possible. As described above, in this example, since the low dielectric constant layer is not formed in the stress generation region 8C, it is possible to prevent the generation amount of stress in the stress generation region 8C from being biased. However, since the low dielectric constant layer is not formed in the stress generation region 8C, there arises a problem that spontaneous polarization charges are generated between the connection lines L1, L2, L3, and L5 and the counter electrode E0a. Therefore, in this example, the shape of the counter electrode E0a is determined so as not to face the connection lines L1 to L5 through the piezoelectric ceramic substrate 7a as much as possible, and the connection lines L1, L2, L3, L5 in the stress generation region 8C Generation of spontaneous polarization charge between the counter electrode E0a was prevented. A part of the extending portion E0b is opposed to the end portion 21a of the extension portion 21 of the acceleration detecting electrode pattern E1, and the end portion 21a of the extension portion 21 is connected to the end portion 21a extending through the side portion of the piezoelectric ceramic substrate 7a. And are electrically connected. Thereby, the counter electrode E0a included in the counter electrode pattern E0 is electrically connected to the ground electrode OE. The back surface electrode portions E0c to E0f are opposed to the ground electrode OE, the X-axis output electrode OX, the Z-axis output electrode OZ, and the Y-axis output electrode OY, and are respectively connected via connecting portions extending on the side portions of the piezoelectric ceramic substrate 7a. It is electrically connected to each facing electrode.
[0021]
In each part of the piezoelectric ceramic substrate 7a corresponding to the X-axis direction acceleration detection electrodes EX1 and EX2, when the same kind of stress is generated in each part due to the acceleration in the Z-axis direction acting on the weight 3 Polarization processing is performed so that spontaneous polarization charges having opposite polarities appear on the acceleration detection electrode EX1 located on one side of the facing region 8A and the acceleration detection electrode EX2 located on the other side. Similarly to the portions of the piezoelectric ceramic substrate 7a corresponding to the X-axis direction acceleration detection electrodes EX1 and EX2, the portions of the piezoelectric ceramic substrate 7a corresponding to the Y-axis direction acceleration detection electrodes EY1 and EY2 are also weights 3. When the same kind of stress is generated in each part due to the acceleration in the Z-axis direction, the Y-axis direction acceleration detection electrode EY1 located on one side of the weight opposing region 8A and the Y located on the other side Polarization processing is performed so that spontaneous polarization charges having opposite polarities appear on the axial acceleration detection electrode EY2. Further, each part of the piezoelectric ceramic substrate 7a corresponding to the Z-axis direction acceleration detection electrodes EZ1 to EZ4 is all when the same kind of stress is generated in each part due to the Z-axis direction acceleration acting on the weight 3. Polarization processing is performed so that spontaneous polarization charges having the same polarity appear on the Z-axis direction acceleration detection electrodes EZ1 to EZ4. For this reason, when the diaphragm 1 is deformed based on the acceleration acting on the weight 3, the piezoelectric ceramic substrate 7a is bent, and the spontaneous polarization charge generated between the acceleration detecting electrode pattern E1 and the counter electrode pattern E0 is changed. The acceleration in the direction of three axes (X axis, Y axis, Z axis) applied to the weight 3 is measured as a change in current or voltage.
[0022]
In this example, the acceleration detection electrodes EX1 to EZ4 and the counter electrode pattern E0 are screen-printed using a glass-silver paste and then baked to a thickness of 5 μm, and then a DC voltage is applied between the opposing electrodes. By applying, the piezoelectric ceramic substrate 7a was subjected to polarization treatment. Next, after the low dielectric constant layers 27 to 31 were screen-printed with a resin (epoxy) paste, the connection lines L1 to L9 were screen-printed with a silver paste to form an acceleration detection electrode pattern E1.
[0023]
As shown in FIG. 1 to FIG. 3, the insulating resin case 9 has a substantially rectangular parallelepiped shape, and includes a central cavity portion 9 a and side cavity portions 9 b communicating with the central cavity portion 9 a and the outside. Is formed inside. 2 and 3, the central hollow portion 9a passes through the insulating resin case 9 in the vertical direction of the drawing sheet. The central hollow portion 9a is provided on the inner peripheral surface of the substantially cylindrical unit housing portion 9c and the insulating resin case 9. In order to form the portion 9d, it has a substantially cylindrical gap portion 9e having a smaller diameter than the single unit storage portion 9c. The single unit 10 is stored in the single unit storage portion 9c so that the bottom surface of the base 5 of the single unit 10 and the stepped portion 9d come into contact with each other. Further, inside the single unit housing portion 9c, a resin portion enters the V-shaped groove 5a of the base 5 of the single unit 10 to form a protruding portion 9f. In this example, since the insulating resin case 9 is integrally formed by injection molding using the single unit 10 as an insert, the step portion 9d and the protrusion 9f function as a retainer from the insulating resin case 9 of the single unit 10. is doing. In addition, by forming the insulating resin case 9 using the single unit 10 as an insert in this way, a part 5 b of the outer peripheral surface of the base 5 is exposed in the side cavity 9 b of the insulating resin case 9. . The insulating resin case 9 has a surface 9g which is located on the same side as the surface of the diaphragm 1 and is flush with the surface of the diaphragm 1, and a back surface 9h which is located on the opposite side of the surface 9g. Yes. The extension portion 7c of the piezoelectric ceramic substrate 7a described above is placed on the surface 9g. On the back surface 9h, a plurality of (three in this example) a plurality of terminal fittings 11A to 11H, which will be described later, protrude in the same direction as the other end portions 11f of the insulating resin case 9 protrude from the back surface 9h. Spacers 9i are formed. If such spacers 9i are formed, a gap can be formed by the spacers 9i between the back surface 9h of the insulating resin case 9 and the circuit board when the acceleration detecting device is attached to the circuit board. Therefore, when soldering the terminal fittings 11A to 11H of the acceleration detecting device to the circuit board, it is possible to prevent the flux contained in the solder from entering the inside of the acceleration detecting device through the insulating resin case 9 or the like. Further, as shown in FIG. 2, a substantially rectangular recess 9j that opens outward is formed on the outer peripheral portion of the insulating resin case 9 at the lower portion of the side surface 9k where the side cavity 9b opens. .
[0024]
As shown in FIG. 3, the plurality of terminal fittings 11 </ b> A to 11 </ b> H all have the same substantially cylindrical shape, and are respectively in positions corresponding to the recesses 7 d to 7 k of the piezoelectric ceramic substrate 7 a in the insulating resin case 9. Has been placed. One terminal fitting of the terminal fittings 11A to 11H has annular flange portions 11c and 11d that protrude in a direction perpendicular to the longitudinal direction at one end portion 11a and a central portion in the longitudinal direction. Thereby, the area of the end surface 11e of one edge part 11a becomes larger than the cross-sectional area of the terminal metal fitting orthogonal to a longitudinal direction. Further, the flange portion 11d at the center portion in the longitudinal direction functions as a retaining member for the terminal fittings 11A to 11F from the insulating resin case 9. The plurality of terminal fittings 11 </ b> A to 11 </ b> H are insulated so that the end surface 11 e of one end portion 11 a is exposed on the surface 9 g of the insulating resin case 9 and the other end portion 11 f protrudes from the back surface of the insulating resin case 9. It is arranged in the resin case 9. Almost half (semicircle) of each end face 11e of the plurality of terminal fittings 11A to 11H is exposed to the outside from the inside of the recesses 7d to 7k of the piezoelectric ceramic substrate 7a. And as shown in FIG.1 and FIG.3, end surface 11e of each one of four terminal metal fittings 11A, 11D, 11E, 11H located in the corner | angular part of the piezoelectric ceramic board | substrate 7a among several terminal metal fittings 11A-11H ... Are electrically connected to the electrodes OX, OY, OZ, OE formed on the extension portion 7c of the piezoelectric ceramic substrate 7a by the conductive portions 25 made of a conductive adhesive. In this example, among the plurality of terminal fittings 11A to 11H, one end face 11e of the other four terminal fittings 11B, 11C, 11F, and 11G simply contacts the edge of the piezoelectric ceramic substrate 7a. However, these end faces 11e may be connected to the edge of the piezoelectric ceramic substrate 7a by an adhesive. The terminal fittings 11B, 11C, 11F, and 11G constitute dummy terminals.
[0025]
The cover member 13 has a one-side-opened box shape having a substantially rectangular upper wall portion 13a and four substantially rectangular side wall portions 13b to 13e, and is integrally formed of stainless steel. The cover member 13 is fitted to the insulating resin case 9 so that the upper wall portion 13a is located above the acceleration sensor element 7 and the side wall portions 13b to 13e are in contact with the side surfaces of the insulating resin case 9. In this state, the acceleration sensor element 7 is covered. As shown in FIGS. 2 and 3, the side wall portion 13b of the cover member 13 that contacts the side surface 9k of the insulating resin case 9 (the side surface where the side hollow portion 9b of the insulating resin case 9 is formed) is in contact with The piece 13f and the convex portion 13g are integrally formed by pressing. The contact piece 13f extends in the side cavity portion 9b of the insulating resin case 9 so that a part of the side wall portion 13b forms an opening 13h and stands on the base 5 side. It has an upright part 13f1 extending in a direction orthogonal to each other and a contact part 13f2 bent in an arc shape at the end of the upright part 13f1. The contact portion 13f2 is fitted into a fitting recess formed by a part of the V-shaped groove 5a of the base 5 (a portion exposed in the side cavity portion 9b), whereby the cover member 13 is 5 is electrically connected. As described above, since the ground electrode OE is electrically connected to the base 5 via the conductive adhesive layer (not shown), the cover member 13 is electrically connected to the ground electrode OE together with the base 5. It will be grounded. Particularly in this example, since the contact portion 13f2 is pressed against the base 5 by the spring property of the upright portion 13f1 in a state where the cover member 13 is fitted to the insulating resin case 9, the cover member 13 and the cover member 13 are simultaneously mounted. The electrical connection with the base 5 can be completed, and the contact between the base 5 and the contact piece 13f of the cover member 13 is ensured.
[0026]
The convex portion 13g is formed by bending a part of the side wall portion 13b of the cover member 13. The convex portion 13 g is fitted into a concave portion 9 j formed on the side surface 9 k of the insulating resin case 9 and serves to fix the cover member 13 to the insulating resin case 9. According to such a fixing method, the convex portion 13g of the cover member 13 is fitted to the insulating resin case 9 with springiness, so that the cover member 13 can be easily attached to the insulating resin case 9 by attaching the cover member 13. Can be fixed to.
[0027]
In this example, the output adjustment extension electrodes EY1b and EY2b are provided only on the pair of Y-axis acceleration detection electrodes EY1 and EY2. However, depending on the design of the acceleration sensor element, the output adjustment extension is applied to the other electrodes. An electrode part may be provided. In that case, by appropriately setting the shape and dimensions of the extension electrode part for output adjustment, when the same acceleration is applied in the X-axis direction, Y-axis direction and Z-axis direction, the output is output from each output electrode. The levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal may be made substantially equal.
[0028]
【The invention's effect】
According to the present invention, since the low dielectric constant layer is not formed between the connecting wire portion located in the stress generation region and the piezoelectric ceramic substrate, it is possible to prevent the generation of stress in the stress generation region from being biased. Can do. However, since the low dielectric constant layer is not formed in the stress generation region, there arises a problem that spontaneous polarization charges are generated between the connection line and the counter electrode pattern. Therefore, in the present invention, the shape of the counter electrode pattern is determined so as not to oppose each connecting line through the piezoelectric ceramic substrate as much as possible. As described above, according to the present invention, it is possible to prevent variations in the levels of the X-axis acceleration detection signal, the Y-axis acceleration detection signal, and the Z-axis acceleration detection signal output from the output electrode. There is no need to adjust the variation in the level of each acceleration signal.
[Brief description of the drawings]
FIG. 1 is a front view showing a piezoelectric triaxial acceleration sensor according to an embodiment of the present invention in a partially broken state.
FIG. 2 is a plan view showing the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention in a partially broken state.
FIG. 3 is a side view showing the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention in a partially broken state.
FIG. 4 is a rear view of the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention.
FIG. 5 is a plan view of an acceleration sensor element used in the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention.
FIG. 6 is a back view of an acceleration sensor element used in the piezoelectric triaxial acceleration sensor according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diaphragm 3 Weight 5 Base 7 Acceleration sensor element 8A Weight opposing area 8B Base opposing area 8C Stress generating area 8C1 1st stress generating part 8C2 2nd stress generating part 27-31 Low dielectric constant layers EX1, EX2 X-axis direction acceleration detection electrodes EY1, EY2 A pair of Y-axis direction acceleration detection electrodes EZ1 to EZ4 Z-axis direction acceleration detection electrodes E0 Counter electrode pattern E0a Counter electrode

Claims (2)

相互に直交するX軸方向、Y軸方向及びZ軸方向の三軸の加速度をそれぞれ検出するための一対のX軸加速度検出用電極、一対のY軸加速度検出用電極及び複数のZ軸加速度検出用電極と、X軸出力電極、Y軸出力電極及びZ軸出力電極とがX軸接続線、Y軸接続線及びZ軸接続線を介してそれぞれ電気的に接続された加速度検出電極パターンが表面上に形成され、裏面上に少なくとも前記一対のX軸加速度検出用電極、前記一対のY軸加速度検出用電極及び前記複数のZ軸加速度検出用電極と対向する対向電極パターンが形成され、前記各加速度検出用電極と前記対向電極パターンとの間の部分が分極処理されている圧電セラミックス基板と、
表面に前記圧電セラミックス基板の前記裏面が接合されたダイアフラムと、
前記ダイアフラムの中央部に設けられた重錘と、
前記重錘に前記加速度が作用したときに前記重錘の周囲にある前記圧電セラミックス基板の部分に撓みが生じるように前記ダイアフラムを支持するべースとを具備し、
前記圧電セラミックス基板は、前記重錘と対向する重錘対向領域と、前記ベースと対向するベース対向領域と、前記重錘対向領域と前記ベース対向領域の間に位置し前記各加速度検出用電極が配置される環状の応力発生領域とを有しており、
前記X軸接続線、前記Y軸接続線及び前記Z軸接続線と前記圧電セラミックス基板との間に、前記圧電セラミックス基板の比誘電率よりも比誘電率が小さい低誘電率層が形成されている圧電型三軸加速度センサであって、
前記応力発生領域に位置する前記各接続線の部分と前記圧電セラミックス基板との間には、前記低誘電率層は形成されておらず、
前記対向電極パターンは、前記各加速度検出用電極により形成される電極群の輪郭に沿う形状を有していることを特徴とする圧電型三軸加速度センサ。
A pair of X-axis acceleration detection electrodes, a pair of Y-axis acceleration detection electrodes, and a plurality of Z-axis acceleration detections for respectively detecting three-axis accelerations in the X-axis direction, Y-axis direction, and Z-axis direction orthogonal to each other Acceleration detection electrode pattern in which the electrode and the X-axis output electrode, the Y-axis output electrode, and the Z-axis output electrode are electrically connected via the X-axis connection line, the Y-axis connection line, and the Z-axis connection line, respectively, on the surface A counter electrode pattern that is formed on the back surface and faces at least the pair of X-axis acceleration detection electrodes, the pair of Y-axis acceleration detection electrodes, and the plurality of Z-axis acceleration detection electrodes; A piezoelectric ceramic substrate in which a portion between the acceleration detection electrode and the counter electrode pattern is polarized;
A diaphragm in which the back surface of the piezoelectric ceramic substrate is bonded to the front surface;
A weight provided in the center of the diaphragm;
A base that supports the diaphragm so that bending occurs in a portion of the piezoelectric ceramic substrate around the weight when the acceleration acts on the weight;
The piezoelectric ceramic substrate is located between a weight facing region facing the weight, a base facing region facing the base, and between the weight facing region and the base facing region. An annular stress generation region disposed;
The X-axis connecting line, wherein between the Y axis connecting line and the Z-axis connecting line between the piezoelectric ceramic substrate, the piezoelectric ceramic substrate dielectric constant dielectric constant than the small minimum dielectric constant layer is formed A piezoelectric triaxial acceleration sensor,
The low dielectric constant layer is not formed between the portion of each connection line located in the stress generation region and the piezoelectric ceramic substrate,
The piezoelectric triaxial acceleration sensor , wherein the counter electrode pattern has a shape along an outline of an electrode group formed by the acceleration detection electrodes .
前記応力発生領域は、前記重錘対向領域を囲む環状の第1の応力発生部と、前記第1の応力発生部を囲み前記第1の応力発生部に加わる応力と異なる種類の応力が発生する環状の第2の応力発生部と、前記第1の応力発生部及び前記第2の応力発生部の境界線からなる変曲線部とを有しており、
前記一対のX軸加速度検出用電極、前記一対のY軸加速度検出用電極及び前記複数のZ軸加速度検出用電極の少なくとも一つの電極は、前記重錘に前記X軸方向、前記Y軸方向及び前記Z軸方向にそれぞれ同じ大きさの加速度が作用したときに、前記各出力電極から出力される前記X軸加速度検出信号、前記Y軸加速度検出信号及び前記Z軸加速度検出信号のレベルが等しくなるように、前記変曲線部を越えて前記第1の応力発生部から前記第2の応力発生部上に延びる出力調整用延長電極部を有していることを特徴とする請求項に記載の圧電型三軸加速度センサ。
In the stress generation region, an annular first stress generation portion surrounding the weight-opposing region, and a different type of stress from the stress applied to the first stress generation portion surrounding the first stress generation portion is generated. An annular second stress generation part, and a curved line part composed of a boundary line between the first stress generation part and the second stress generation part,
At least one of the pair of X-axis acceleration detection electrodes, the pair of Y-axis acceleration detection electrodes, and the plurality of Z-axis acceleration detection electrodes is formed on the weight with the X-axis direction, the Y-axis direction, and when the acceleration of the same magnitude to each of the Z-axis direction is applied, the X-axis acceleration detection signal outputted from the respective output electrodes, the Y-axis acceleration detection signal and the level of the Z-axis acceleration detection signal is equal properly so as to, according to claim 1, characterized in that it has the inflection curve portion beyond extending the second stress portion on from the first stress portion output adjustment extension electrode portions Piezoelectric three-axis acceleration sensor.
JP30988899A 1999-10-29 1999-10-29 Piezoelectric three-axis acceleration sensor Expired - Fee Related JP4275269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30988899A JP4275269B2 (en) 1999-10-29 1999-10-29 Piezoelectric three-axis acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30988899A JP4275269B2 (en) 1999-10-29 1999-10-29 Piezoelectric three-axis acceleration sensor

Publications (2)

Publication Number Publication Date
JP2001124796A JP2001124796A (en) 2001-05-11
JP4275269B2 true JP4275269B2 (en) 2009-06-10

Family

ID=17998534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30988899A Expired - Fee Related JP4275269B2 (en) 1999-10-29 1999-10-29 Piezoelectric three-axis acceleration sensor

Country Status (1)

Country Link
JP (1) JP4275269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038958B2 (en) 2005-07-12 2011-10-18 Kobe Steel, Ltd. Method for decomposing and recovering isocyanate compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084645B2 (en) 2002-12-03 2008-04-30 富士フイルム株式会社 Photothermographic material
WO2006128033A1 (en) * 2005-05-25 2006-11-30 University Of Florida Research Foundation, Inc. Devices, systems, and methods for measuring and controlling compactive effort delivered to a soil by a compaction unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038958B2 (en) 2005-07-12 2011-10-18 Kobe Steel, Ltd. Method for decomposing and recovering isocyanate compound
US8669394B2 (en) 2005-07-12 2014-03-11 Kobe Steel, Ltd. Method for decomposing and recovering isocyanate compound

Also Published As

Publication number Publication date
JP2001124796A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
US20070000323A1 (en) Method of manufacturing a capacitive acceleration sensor, and a capacitive acceleration sensor
JP2003329444A (en) Capacitance type sensor
WO1999060413A1 (en) Acceleration sensor and acceleration apparatus using acceleration sensor
US20060156818A1 (en) Micromechanical capacitive acceleration sensor
US6321600B1 (en) Acceleration detecting device
JP2003329703A (en) Electrostatic capacity type sensor
JP4275269B2 (en) Piezoelectric three-axis acceleration sensor
JP4286407B2 (en) Piezoelectric three-axis acceleration sensor
CN110114650A (en) Pressure sensor component and the pressure sensor module for having the pressure sensor component
US6360603B1 (en) Acceleration sensor and acceleration detecting device
WO2009090841A1 (en) Electrostatic capacity type acceleration sensor
JP4245747B2 (en) Acceleration detector
JPH10300609A (en) Electrostatic capacitance type pressure sensor
US20090308160A1 (en) Vertical acceleration measuring apparatus
JP2732413B2 (en) Acceleration sensor
JPH10170540A (en) Acceleration sensor
JP2009068936A (en) Physical quantity detecting apparatus
JPH10185946A (en) Capacitance type sensor
JP2001208768A (en) Piezoelectric triaxial acceleration sensor
US11692893B2 (en) Pressure sensor including side-wall portion including shield electrode
JP2004347529A (en) Capacitance type sensor
JP4681701B2 (en) Acceleration sensor
JPH10242757A (en) Oscillator and its manufacture
JP2000221208A (en) Capacitance type acceleration sensor
JP2000193676A (en) Acceleration detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees