JP2000297393A - Production of high-purity gaseous nitrogen trifluoride - Google Patents

Production of high-purity gaseous nitrogen trifluoride

Info

Publication number
JP2000297393A
JP2000297393A JP2000029044A JP2000029044A JP2000297393A JP 2000297393 A JP2000297393 A JP 2000297393A JP 2000029044 A JP2000029044 A JP 2000029044A JP 2000029044 A JP2000029044 A JP 2000029044A JP 2000297393 A JP2000297393 A JP 2000297393A
Authority
JP
Japan
Prior art keywords
gas
purity
mass
anode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000029044A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
明男 吉川
Tatsuma Morokuma
辰馬 諸隈
Hiromi Hayashida
博巳 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000029044A priority Critical patent/JP2000297393A/en
Publication of JP2000297393A publication Critical patent/JP2000297393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To greatly decrease the gaseous impurities to be formed and to enhance the purity of formed gases by controlling the quantity of carbon which is the gaseous impurity component to be entrained in crude gases among the impurities in a nickel electrode used for an anode. SOLUTION: The gaseous trifluoride is produced by a fused salt electrolysis method using the nickel electrode for the anode and acidic ammonium fluoride as an electrolyte. The quantity of the carbon among the impurity elements included in the nickel used for the anode is limited to <=400 mass ppm, more preferably <=200 mass ppm and further preferably <=100 mass ppm, by which the formation of the gaseous impurities occurring in the carbon element is suppressed. The purity of the nickel is preferably >=98.5 mass %. The restriction of the sulfur component in the nickel to <=20 mass ppm is preferable for the purpose of suppressing the formation of gaseous SF6. The total of C, B, Si, P, As, Mo, Ge and W which are the impurity components is preferably <=400 mass ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度三フッ化窒
素(NF3)ガスの製造方法に関する。詳しくは、工業
的に高純度三フッ化窒素ガスを安価に提供する製造方法
に関する。
The present invention relates to a method for producing high-purity nitrogen trifluoride (NF 3 ) gas. More specifically, the present invention relates to a manufacturing method for industrially providing high-purity nitrogen trifluoride gas at low cost.

【0002】[0002]

【従来の技術】三フッ化窒素ガスは、電子材料向け用
途、特に半導体装置製造時のドライエッチング用ガスと
して、或いはプラズマCVD装置のドライクリーニング
用ガス、更にはTFTを用いた液晶表示装置製造分野に
おける枚葉式装置のクリーニング用として、近年注目さ
れ、その生産量は著しくのびている。これらの用途に使
用されるNF3ガスは、近年、ますます高純度のものが
要求されている。
2. Description of the Related Art Nitrogen trifluoride gas is used for electronic materials, in particular, as a dry etching gas in the manufacture of semiconductor devices, or a dry cleaning gas in a plasma CVD device, and in the field of liquid crystal display device manufacturing using TFTs. In recent years, attention has been paid to the cleaning of single-wafer type apparatuses, and the production amount has been remarkably growing. In recent years, NF 3 gas used for these applications has been required to have higher and higher purity.

【0003】従来、NF3の溶融塩電解による製造方法
としては、種々の方法が提案されており、例えば、用い
る電極については、工業的には陽極にニッケルを使用す
る方法が不純物分、例えば、CF4をほとんど生成しな
いことで広く用いられている。
Hitherto, various methods have been proposed as a method for producing NF 3 by molten salt electrolysis. For example, for an electrode to be used, a method using nickel as an anode is industrially used for impurities, for example, It is widely used because it hardly produces CF 4 .

【0004】また、溶融塩電解を行う際に用いる原料と
しては、酸性フッ化アンモニウムが使用されるが、試薬
として市販される酸性フッ化アンモニウムは不純物とし
てヘキサフルオロケイ酸アンモニウムを多く含んでお
り、特開平4−56789号公報記載のもの、すなわ
ち、フッ化水素酸とアンモニアより調製された酸性フッ
化アンモニウムを原料としたものが、不純物分が少ない
点で好ましい。しかしながら、近年、技術の進歩に伴
い、より高純度のNF3ガスの需要が高まっており、更
なる製品ガスの高純度化が必要となってきている。
As a raw material used for performing molten salt electrolysis, ammonium acid fluoride is used, but ammonium acid fluoride commercially available as a reagent contains a large amount of ammonium hexafluorosilicate as an impurity. The one described in JP-A-4-56789, that is, one using an ammonium ammonium fluoride prepared from hydrofluoric acid and ammonia as a raw material is preferable in that it has a small amount of impurities. However, in recent years, with the advance of technology, demand for higher purity NF 3 gas has been increasing, and it is necessary to further purify product gas.

【0005】その高純度化を行う方法としては、溶融塩
電解して得られる粗ガス(以下、粗ガスと記す)を、キ
ャリアガスと共に精製装置、例えば、ゼオライト、活性
アルミナ、シリカゲル等による吸着、薬液洗浄処理、プ
ラズマ分解、深冷分離、ガスの液化精留等を行う装置の
一つに導き精製する方法、又はこれらの装置を複数組み
合わせて精製する方法がある。
[0005] As a method for performing the purification, a crude gas obtained by molten salt electrolysis (hereinafter, referred to as a crude gas) is adsorbed by a purifying apparatus such as zeolite, activated alumina, silica gel, etc. together with a carrier gas. There is a method of conducting purification by introducing it to one of apparatuses for performing chemical cleaning treatment, plasma decomposition, cryogenic separation, liquefaction rectification of gas, or a method of purifying by combining a plurality of these apparatuses.

【0006】粗ガス中の不純物分としては、キャリアガ
ス成分及び水分(H2O)を除いては、亜酸化窒素(N2
O)、二酸化炭素(CO2)、一酸化炭素(CO)、二
フッ化二窒素(N22)、二フッ化酸素(F2O)、六
フッ化硫黄(SF6)、四フッ化炭素(CF4)などが挙
げられ、これらの不純物分を多く含んでいるため、精製
が必要であり、前述の精製装置により、粗ガスの精製を
実施している。
The impurities in the crude gas include nitrous oxide (N 2 ) except for the carrier gas component and water (H 2 O).
O), carbon dioxide (CO 2 ), carbon monoxide (CO), dinitrogen difluoride (N 2 F 2 ), oxygen difluoride (F 2 O), sulfur hexafluoride (SF 6 ), tetrafluoride Carbonized (CF 4 ), etc., which contain a large amount of these impurities, so that purification is necessary, and the above-described purification apparatus is used to purify the crude gas.

【0007】これらの精製装置を用いる場合、不純物分
の含有量やばらつきによって性能をコントロールする必
要があり、例えば、吸着処理を行う装置では、吸着速
度、吸着剤の更新・再生頻度の変更等、種々の条件のパ
ラメータを変化させる必要があり、その分労力を要する
と共に、得られた精製ガスについても、かなりの頻度で
製品の純度のばらつきを調査する必要がある等、品質管
理の面でも煩雑であり、そのため、コストの増大を招い
ている。
In the case of using these refining devices, it is necessary to control the performance based on the content and dispersion of impurities. For example, in a device for performing an adsorption treatment, the adsorption speed, the renewal of the adsorbent and the frequency of regeneration are changed. It is necessary to change the parameters of various conditions, which requires labor, and the obtained purified gas also requires considerable frequency to investigate variations in product purity. Therefore, the cost is increased.

【0008】ところで、4N(純度99.99容量
%)、5N(純度99.999容量%)或いはそれ以上
の高純度のNF3ガスを工業的に製造しようとした場
合、粗ガス中の不純物レベル、すなわち、不純物含有量
が問題となってくる。不純物を多く含む粗ガスを精製
し、純度を高め、高純度化を図ることは、装置的にも経
済的にも限界があり、高純度のガスを経済的に製造する
ことは実質的に困難である。
When industrially producing high purity NF 3 gas of 4N (purity: 99.99% by volume), 5N (purity: 99.999% by volume) or more, the impurity level in the crude gas is reduced. That is, the impurity content becomes a problem. Purifying a crude gas containing many impurities to increase its purity and purify it is limited in terms of equipment and economy, and it is practically difficult to produce high-purity gas economically. It is.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、粗ガ
ス中の不純物分の低減を図り、従来公知の精製方法、生
成装置により、4N以上の高純度の三フッ化窒素ガスを
簡便に得る方法を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce impurities in a crude gas and to easily produce a high-purity nitrogen trifluoride gas of 4N or more by a conventionally known purification method and production apparatus. It provides a way to gain.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記問題
点に鑑み、不純物の発生原因について検討を行い、三フ
ッ化窒素ガス中の不純物成分発生の主な原因が、電極と
して使用されるNi中に含まれる微量成分に由来するこ
とを見出し、所定の純度の電極を用い、不純物含有量を
制御することにより、生成する不純物ガスを大幅に低減
でき、高純度のNF3ガスを容易に製造せしめることが
可能であることを見出した。
In view of the above problems, the present inventors have studied the causes of the generation of impurities and found that the main cause of the generation of impurity components in nitrogen trifluoride gas is used as an electrode. By controlling the impurity content by using electrodes of a predetermined purity and by controlling the impurity content, it is possible to greatly reduce the generated impurity gas and easily produce high-purity NF 3 gas. It was found that it was possible to manufacture the product.

【0011】すなわち本発明は、ニッケル電極を用い
て、酸性フッ化アンモニウムを電解液とする溶融塩電解
法により三フッ化窒素ガスを製造する方法において、陽
極に用いるニッケル電極中の不純物成分のうち、粗ガス
中に同伴される不純物ガス成分となる炭素量を400質
量ppm以下、好ましくは、200質量ppm以下、更
に好ましくは100質量ppm以下の含有量としたこと
を特徴とする高純度三フッ化窒素ガスの製造方法に関す
る。
That is, the present invention provides a method for producing nitrogen trifluoride gas by a molten salt electrolysis method using ammonium acid fluoride as an electrolytic solution by using a nickel electrode. A high-purity trifluoride, characterized in that the amount of carbon as an impurity gas component entrained in the crude gas is set to a content of 400 mass ppm or less, preferably 200 mass ppm or less, more preferably 100 mass ppm or less. The present invention relates to a method for producing nitrogen iodide gas.

【0012】[0012]

【発明の実施の形態】NF3製造に用いる電極材料であ
るニッケルは、通常、多くの不純物元素を微量含んでい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Nickel, which is an electrode material used for producing NF 3 , usually contains trace amounts of many impurity elements.

【0013】本出願人は、先に、特開平8−13467
5号公報において、ニッケル電極中の硫黄分を20質量
ppm以下に規定して、粗ガス中のSF6の生成を抑制
した高純度NF3ガスの製造方法を提案している。又、
特開平8−120475号公報においては、酸性フッ化
アンモニウムを調製するための原料であるフッ酸とアン
モニアガスとをそれぞれ高純度の原料を使用し、純度9
8.5質量%以上のニッケル電極を用いて溶融塩電解す
る方法を提案している。
[0013] The applicant of the present invention has previously described Japanese Patent Application Laid-Open No. 8-134467.
No. 5 proposes a method for producing a high-purity NF 3 gas in which the sulfur content in a nickel electrode is regulated to 20 ppm by mass or less to suppress the generation of SF 6 in a crude gas. or,
JP-A-8-120475 discloses that hydrofluoric acid and ammonia gas, which are raw materials for preparing ammonium acid fluoride, are each made of a high-purity raw material and have a purity of 9%.
A method of performing molten salt electrolysis using a nickel electrode of 8.5% by mass or more has been proposed.

【0014】更に検討を進めた結果、上記ニッケル中に
含まれる不純物元素のうち、炭素量を400質量ppm
以下に制限することにより、炭素元素に起因する不純物
ガスの生成が抑制できることを見出した。好ましくは、
炭素量は200質量ppm以下であり、更に好ましくは
100質量ppm以下である。
As a result of further study, of the impurity elements contained in the nickel, the carbon content was reduced to 400 ppm by mass.
It has been found that by limiting to the following, generation of an impurity gas due to a carbon element can be suppressed. Preferably,
The carbon content is 200 ppm by mass or less, more preferably 100 ppm by mass or less.

【0015】又、陽極に用いる電極のニッケル純度とし
ては、98.5質量%以上が好ましい。ニッケル純度が
98.5質量%未満では、純度が4N以上の高純度NF
3ガスを得ることが困難になる。もちろん、特開平8−
134675号公報に開示したように、ニッケル中の硫
黄分を20質量ppm以下にすることは、SF6ガスの
生成を抑制する点で望ましい。不純物成分C、B、S
i、P、As、Mo、Ge及びWの合計が400質量p
pm以下のニッケル電極を用いることは好ましい態様で
ある。
[0015] The nickel purity of the electrode used for the anode is preferably 98.5% by mass or more. When the nickel purity is less than 98.5% by mass, the high purity NF having a purity of 4N or more
3 It becomes difficult to obtain gas. Of course,
As disclosed in Japanese Patent Publication No. 134675, it is desirable to reduce the sulfur content in nickel to 20 ppm by mass or less in terms of suppressing the generation of SF 6 gas. Impurity components C, B, S
The total of i, P, As, Mo, Ge and W is 400 mass p.
It is a preferred embodiment to use a nickel electrode of pm or less.

【0016】原料の酸性フッ化アンモニウムは特に限定
されるものではないが、フッ酸ガスとアンモニアガスよ
り得られたものが経済的であり、工業的には好ましい。
特に、特開平8−120475号公報に開示されるよう
に、純度99.8質量%以上のフッ酸ガスと純度99.
5質量%以上のアンモニアガスとを反応させて得られる
酸性フッ化アンモニウムを使用することで、原料由来の
不純物ガスの生成を抑制できるので望ましい。フッ酸ガ
スとしては、一般向けの工業グレードの無水フッ酸をガ
ス化することで上記純度のものが得られ、又、アンモニ
アガスとしては、一般向けの工業グレードの液化アンモ
ニアをガス化することで上記純度のものが得られる。
The raw material ammonium ammonium fluoride is not particularly limited, but one obtained from hydrofluoric acid gas and ammonia gas is economical and industrially preferable.
Particularly, as disclosed in JP-A-8-120475, a hydrofluoric acid gas having a purity of 99.8 mass% or more and a purity of 99.
It is desirable to use ammonium acid fluoride obtained by reacting with 5% by mass or more of ammonia gas because generation of impurity gas derived from raw materials can be suppressed. As the hydrofluoric acid gas, the above-mentioned purity can be obtained by gasifying general industrial grade hydrofluoric anhydride, and as the ammonia gas, the general industrial grade liquefied ammonia is gasified. A product of the above purity is obtained.

【0017】以下、本発明の好適な実施方法を、図面を
参照して説明する。
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

【0018】図1は、本発明の実施に好適な製造工程の
フローシートである。同図において、所定量のフッ酸ガ
ス(HF)及びアンモニアガス(NH3)を原料調合槽
へ供給し、酸性フッ化アンモニウムを生成させ、該酸性
フッ化アンモニウムを電解槽へ供給し、溶融塩電解法に
よって陽極側にNF3ガスを生成せしめる。尚、原料調
製槽は、適量の窒素ガス、アルゴンガス、ヘリウムガス
等にて外気の影響を受けないようにシールすることが好
ましい。
FIG. 1 is a flow sheet of a manufacturing process suitable for carrying out the present invention. In the figure, predetermined amounts of hydrofluoric acid gas (HF) and ammonia gas (NH 3 ) are supplied to a raw material preparation tank to generate ammonium acid fluoride, and the ammonium acid fluoride is supplied to an electrolytic tank to supply molten salt. An NF 3 gas is generated on the anode side by an electrolytic method. The raw material preparation tank is preferably sealed with an appropriate amount of nitrogen gas, argon gas, helium gas or the like so as not to be affected by the outside air.

【0019】フッ酸ガスとアンモニアガスとの反応は、
極めて速やかに進むため、特に十分な攪拌等も不要で、
原料調合槽としては、フッ酸ガスとアンモニアガスと
を、これらと反応することなく、接触せしめ得るもので
あれば特に限定されない。好ましくは、ETFEやPF
A等のフッ素樹脂で内部をライニングした金属製の槽が
好ましい。フッ酸ガスとアンモニアガスとの反応条件と
しては、HF/NH4Fモル比として1.5〜2.0の
範囲となるように反応させるのが好ましい。
The reaction between hydrofluoric acid gas and ammonia gas is as follows:
Because it proceeds very quickly, there is no need for particularly sufficient stirring, etc.
The raw material preparation tank is not particularly limited as long as it can contact hydrofluoric acid gas and ammonia gas without reacting them. Preferably, ETFE or PF
A metal tank lined with a fluororesin such as A is preferable. The reaction between the hydrofluoric acid gas and the ammonia gas is preferably performed so that the molar ratio of HF / NH 4 F is in the range of 1.5 to 2.0.

【0020】図2は、本発明に適した電解槽の一例を示
す概念図である。同図において、原料調合槽で調製され
た酸性フッ化アンモニウムを電解槽本体1に導き、電解
液2とする。電解液の供給は、連続式或いは回分式のい
ずれでもかまわないが、連続的に一定量のNF3ガスを
得ようとした場合は連続式が好ましい。電解を開始する
と、陽極4ではNF3ガスが、陰極6ではH2ガスが発生
する。尚、これらのガスが混合すると爆発を引き起こす
危険があるため、電解槽本体1は、陽極室3と陰極室5
に隔板7で仕切られている。陽極4は上記規定されたニ
ッケル電極であり、陰極6としては同様のニッケル電極
が取り付けられている。尚同図においては、陽極4及び
陰極6がそれぞれ1個ずつの構成を示しているが、これ
ら陽極及び陰極は一つの電解槽内にそれぞれ複数個設け
ても良く、工業的には、生産効率等の観点から複数個設
けるのが一般的である。又、陽極を挟んで陰極を両側に
配する構成としても良い。
FIG. 2 is a conceptual diagram showing an example of an electrolytic cell suitable for the present invention. In the figure, ammonium acid fluoride prepared in a raw material preparation tank is led to an electrolytic tank main body 1 to be used as an electrolytic solution 2. The supply of the electrolytic solution may be either a continuous type or a batch type, but a continuous type is preferable when a constant amount of NF 3 gas is to be obtained continuously. When the electrolysis is started, NF 3 gas is generated at the anode 4 and H 2 gas is generated at the cathode 6. Since there is a danger of explosion when these gases are mixed, the electrolytic cell main body 1 is composed of the anode chamber 3 and the cathode chamber 5.
Are separated by a partition plate 7. The anode 4 is a nickel electrode as defined above, and a similar nickel electrode is attached as the cathode 6. Although FIG. 1 shows a configuration in which one anode 4 and one cathode 6 are provided, a plurality of these anodes and cathodes may be provided in one electrolytic cell. It is general to provide a plurality from the viewpoint of the above. Further, the cathode may be arranged on both sides of the anode.

【0021】電解槽本体1は、前記原料調合槽と同様に
内部をフッ素樹脂でライニングしたものを使用するのが
望ましい。又、該本体1には、加熱や冷却を行う不図示
の温度調整機構が設けられており、溶融塩電解時の電解
液の温度が調整される。又、ニッケル陽極の溶解により
電解槽内部にニッケル錯塩スラッジが生成し、電解液の
交換頻度が多くなる場合もあり、これに対して、例え
ば、特開平8−176872号公報に開示されているよ
うに、電解液を強制的に対流させる方法を適用しても良
く、電解槽本体1にそのような対流機構を設けても良
い。
As for the electrolytic cell main body 1, it is desirable to use the one whose inside is lined with a fluororesin similarly to the raw material mixing tank. Further, the main body 1 is provided with a temperature adjusting mechanism (not shown) for performing heating and cooling, and adjusts the temperature of the electrolytic solution at the time of molten salt electrolysis. In addition, the dissolution of the nickel anode generates nickel complex salt sludge inside the electrolytic cell, and the exchange frequency of the electrolytic solution may increase. For example, as disclosed in Japanese Patent Application Laid-Open No. 8-176873. Alternatively, a method of forcibly convection of the electrolytic solution may be applied, and such a convection mechanism may be provided in the electrolytic cell main body 1.

【0022】電解時の条件としては、電解液の温度を1
10〜140℃程度に保持し、電解槽本体1にある陽極
4及び陰極6に直流の電流を通電して溶融塩電解を行
う。電解電圧としては、5〜10V、電流密度としては
1〜15A/dm2程度が好ましい。
The conditions for the electrolysis are as follows.
While maintaining the temperature at about 10 to 140 ° C., a direct current is applied to the anode 4 and the cathode 6 in the electrolytic cell main body 1 to perform molten salt electrolysis. The electrolysis voltage is preferably 5 to 10 V, and the current density is preferably about 1 to 15 A / dm 2 .

【0023】尚、電解に際して、電解反応をマイルドに
進行させるためと、陽極室3と陰極室5の圧力を極力均
一に維持する目的で、窒素ガス、アルゴンガス、ヘリウ
ムガスなどの不活性ガスをキャリアガスとして、それぞ
れ適量、陽極室3と陰極室5へそれぞれ導管10及び1
1を通じて導いておく。尚、キャリアガスの純度として
は、NF3の純度に影響を与えない純度が好ましく、本
発明者らの研究では、純度4N以上が好ましく、6N以
上が最適である。該キャリアガスとしては、工業的には
安価であり、且つ高純度品を容易に入手可能な窒素ガス
の使用が好ましい。
During the electrolysis, an inert gas such as a nitrogen gas, an argon gas, a helium gas or the like is used in order to make the electrolysis reaction proceed mildly and to maintain the pressure in the anode chamber 3 and the cathode chamber 5 as uniform as possible. As carrier gas, conduits 10 and 1 to anode chamber 3 and cathode chamber 5 respectively
Guide through 1. The purity of the carrier gas is preferably a purity that does not affect the purity of NF 3. According to the study of the present inventors, the purity is preferably 4 N or more, and most preferably 6 N or more. As the carrier gas, it is preferable to use nitrogen gas which is industrially inexpensive and can easily obtain a high-purity product.

【0024】電極で発生したNF3ガスとH2ガスは、混
合しないように、それぞれ個別の導管8及び9からキャ
リアガスと共に取り出される。導管8にて取り出された
粗NF3ガスは、精製装置へと導かれる。一方、導管9
から取り出されたH2ガスは、除害装置等を経て、大気
中に放出される。
The NF 3 gas and the H 2 gas generated at the electrodes are taken out together with the carrier gas from the individual conduits 8 and 9 so as not to mix. The crude NF 3 gas taken out in the conduit 8 is led to a purification device. On the other hand, conduit 9
The H 2 gas taken out of the system is released into the atmosphere via a detoxification device or the like.

【0025】精製装置へ導かれた粗NF3ガスは、微量
の不純物を除去せしめることで高純度のNF3ガスが得
られる。精製装置、精製方法としては、従来より一般に
使用されている薬液洗浄によるガス洗浄装置、吸着剤を
用いた吸着塔及び精留塔等からなる精製装置でよい。
High purity NF 3 gas can be obtained by removing a trace amount of impurities from the crude NF 3 gas led to the purification device. The purifying apparatus and the purifying method may be a purifying apparatus including a gas cleaning apparatus using a chemical liquid cleaning, an adsorption tower using an adsorbent, a rectification tower, and the like, which have been generally used.

【0026】[0026]

【実施例】以下、実施例により本発明をより具体的に説
明するが、本発明はこれらの実施例のみに限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0027】実施例1 図1、図2に示すフローシート及び電解槽を用いて、溶
融塩電解法によりNF 3ガスの製造を行った。
Example 1 Using a flow sheet and an electrolytic cell shown in FIGS.
NF by molten salt electrolysis ThreeGas production was carried out.

【0028】まず、工業用の無水フッ酸(純度99.8
質量%以上)をガス化させフッ酸ガスとし、工業用液化
アンモニア(純度99.5質量%以上)をガス化しアン
モニアガスとし、これらフッ酸ガスとアンモニアガスを
それぞれ、2.00kg/hと0.71kg/hでSS
−400にフッ素樹脂(ETFE)をライニングした5
00Lの原料調合槽に導き、純度99.9999容量%
のN2ガスのシール下で反応させ、HF/NH4Fモル比
が1.7モルの酸性フッ化アンモニウムを得た。
First, industrial hydrofluoric anhydride (purity 99.8)
Mass% or more) is gasified to obtain hydrofluoric acid gas, and industrial liquefied ammonia (purity of 99.5 mass% or more) is gasified to obtain ammonia gas. These hydrofluoric acid gas and ammonia gas are respectively 2.00 kg / h and 0%. SS at 71 kg / h
-400 lined with fluororesin (ETFE) 5
Guided to a 00L raw material mixing tank, purity 99.9999% by volume
Under an N 2 gas seal to obtain ammonium acid fluoride having a HF / NH 4 F molar ratio of 1.7 mol.

【0029】次に、SUS−304にフッ素樹脂(PF
A)をライニングした容量450Lの電解槽(電極が3
セットあり)に上記調合槽で得られた酸性フッ化アンモ
ニウムを連続的に供給しながら、122℃の温度に調整
した。次に、陽極室3に純度99.9999容量%のN
2ガスをキャリアガスとして0.1L/minの流量で
導入しながら、陽−陰極間に電圧7.0V、200Aの
電流を印加し電解を行った。この時、陽極4及び陰極6
として純度99.0質量%の低炭素Ni(JIS H4
551)板を用いた。該ニッケル電極は不純物として炭
素(C)分350質量ppmであった。この電解を10
00時間連続して実施した。
Next, a fluororesin (PF) is added to SUS-304.
A) 450L electrolytic cell (lined with 3)
The temperature was adjusted to 122 ° C. while continuously supplying the ammonium acid fluoride obtained in the mixing tank to the above (with set). Next, N 9 having a purity of 99.9999% by volume is placed in the anode chamber 3.
While introducing two gases as a carrier gas at a flow rate of 0.1 L / min, a voltage of 7.0 V and a current of 200 A were applied between the positive electrode and the negative electrode to perform electrolysis. At this time, the anode 4 and the cathode 6
Low-carbon Ni (JIS H4
551) A plate was used. The nickel electrode had a carbon (C) content of 350 mass ppm as an impurity. This electrolysis is
It was performed continuously for 00 hours.

【0030】陽極から発生した粗ガスは、導管8を介し
て取り出し、水、亜硫酸ソーダ及び水酸化カリウムの薬
液洗浄によるガス洗浄装置、天然ゼオライトを充填した
吸着塔及び精留塔とからなる精製装置に送り、該装置出
口にガスメーターを設置して生成ガス量を測定した。そ
の結果、生成ガス量は平均10〜11L/minであっ
た。又、出口ガスの純度を、オンラインのガスクロマト
グラフィーを用いて分析したところ、得られたNF3
スの純度及び炭素化合物含有量は表−1に示す通りであ
った。
The crude gas generated from the anode is taken out through a conduit 8, and is subjected to a chemical cleaning of water, sodium sulfite, and potassium hydroxide, a gas cleaning apparatus, an adsorption tower filled with natural zeolite, and a purification apparatus comprising a rectification tower. And a gas meter was installed at the outlet of the apparatus to measure the amount of generated gas. As a result, the generated gas amount was 10 to 11 L / min on average. The purity of the outlet gas was analyzed by using online gas chromatography. The purity and carbon compound content of the obtained NF 3 gas were as shown in Table 1.

【0031】実施例2 電極に供する低炭素Ni中の炭素(C)分を190質量
ppmとした以外は実施例1と同一の装置及び条件にて
溶融塩電解を実施し、同様にガス洗浄及び精製を実施し
た。得られたNF3ガスの純度及び炭素化合物含有量は
表−1に示す通りであった。
Example 2 Molten salt electrolysis was carried out in the same apparatus and under the same conditions as in Example 1 except that the carbon (C) content in low-carbon Ni used for the electrode was changed to 190 ppm by mass. Purification was performed. The purity and carbon compound content of the obtained NF 3 gas were as shown in Table 1.

【0032】実施例3 電極に供する低炭素Ni中の炭素(C)分を90質量p
pmとした以外は実施例1と同一の装置及び条件にて溶
融塩電解を実施し、同様にガス洗浄及び精製を実施し
た。得られたNF3ガスの純度及び炭素化合物含有量は
表−1に示す通りであった。
Example 3 The carbon (C) content in low-carbon Ni used for the electrode was 90 mass p.
Except that the pressure was set to pm, the molten salt electrolysis was performed under the same apparatus and conditions as in Example 1, and gas cleaning and purification were performed in the same manner. The purity and carbon compound content of the obtained NF 3 gas were as shown in Table 1.

【0033】比較例1 電極に供するニッケル電極をNi純度99.5質量%、
炭素(C)分を800質量ppmとした以外は実施例1
と同一の装置及び条件にて溶融塩電解を実施し、同様に
ガス洗浄及び精製を実施した。得られたNF3ガスの純
度及び炭素化合物含有量は表−1に示すように、炭素化
合物含有量が多く、NF3ガスの純度は4Nを下回っ
た。尚、得られた製品純度が低いため、製造は約700
時間で停止した。
COMPARATIVE EXAMPLE 1 A nickel electrode to be used as an electrode was made to have a Ni purity of 99.5% by mass.
Example 1 except that the carbon (C) content was 800 ppm by mass.
Molten salt electrolysis was carried out under the same apparatus and conditions as described above, and gas cleaning and purification were carried out similarly. As shown in Table 1, the purity of the obtained NF 3 gas and the content of the carbon compound were large, and the purity of the NF 3 gas was lower than 4N. In addition, since the obtained product purity is low, the production is about 700
Stopped in time.

【0034】参考例 陽極として炭素電極を使用した以外は実施例1と同一の
装置及び条件にて溶融塩電解を実施し、同様にガス洗浄
及び精製を実施した。その結果、炭素化合物含有量が極
めて多く、又、NF3ガス純度も劣悪であった。
Reference Example Molten salt electrolysis was carried out under the same apparatus and conditions as in Example 1 except that a carbon electrode was used as the anode, and gas cleaning and purification were carried out in the same manner. As a result, the content of the carbon compound was extremely high, and the purity of the NF 3 gas was poor.

【0035】[0035]

【表1】 [Table 1]

【0036】以上の通り、本発明によれば、4N以上の
高純度のNF3ガスの製造が可能となる。
As described above, according to the present invention, it is possible to produce NF 3 gas having a high purity of 4N or more.

【0037】[0037]

【発明の効果】本発明では、工業的に高純度の三フッ化
窒素ガスを安価に製造する方法において、電極、特に陽
極材料として所定のニッケル電極を用い、溶融塩電解法
によって電解を行うという極めて簡単な方法である。こ
のニッケル電極に含まれる不純物量、特に炭素量を制御
することで、従来達成することが困難であった高純度の
三フッ化窒素ガスの製造を可能ならしめている。
According to the present invention, in a method for industrially producing high-purity nitrogen trifluoride gas at low cost, an electrode, in particular, a predetermined nickel electrode is used as an anode material, and electrolysis is performed by a molten salt electrolysis method. This is a very simple method. By controlling the amount of impurities, particularly the amount of carbon, contained in the nickel electrode, it is possible to produce high-purity nitrogen trifluoride gas which has been difficult to achieve conventionally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するに適した製造フローシートの
一例である。
FIG. 1 is an example of a manufacturing flow sheet suitable for carrying out the present invention.

【図2】本発明を実施するに適した電解槽の一例であ
る。
FIG. 2 is an example of an electrolytic cell suitable for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽本体 2 電解液 3 陽極室 4 陽極 5 陰極室 6 陰極 7 隔板 8 導管 9 導管 10 導管 11 導管 DESCRIPTION OF SYMBOLS 1 Electrolyzer main body 2 Electrolyte 3 Anode chamber 4 Anode 5 Cathode chamber 6 Cathode 7 Separator 8 Pipe 9 Pipe 10 Pipe 11 Pipe

フロントページの続き (72)発明者 林田 博巳 山口県下関市彦島迫町七丁目1番1号 三 井化学株式会社内 Fターム(参考) 4K011 AA17 DA09 4K021 AB09 BA01 BB01 BB05 CA09 DA13 DB19 DB40 Continued on the front page (72) Inventor Hiromi Hayashida 7-1-1, Hikoshimasako-cho, Shimonoseki-shi, Yamaguchi F-term (reference) in Mitsui Chemicals, Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル電極を用いて、酸性フッ化アン
モニウムを電解液とする溶融塩電解法により三フッ化窒
素ガスを製造する方法において、陽極に用いるニッケル
電極中の不純物成分のうち、粗ガス中に同伴される不純
物ガス成分となる炭素量を400質量ppm以下とした
ことを特徴とする高純度三フッ化窒素ガスの製造方法。
1. A method for producing a nitrogen trifluoride gas by a molten salt electrolysis method using ammonium acid fluoride as an electrolytic solution by using a nickel electrode, wherein a crude gas among impurity components in the nickel electrode used for the anode is used. A method for producing a high-purity nitrogen trifluoride gas, characterized in that the amount of carbon serving as an impurity gas component entrained therein is set to 400 ppm by mass or less.
【請求項2】 前記炭素量を200質量ppm以下とし
たニッケル電極を陽極として用いることを特徴とする請
求項1の高純度三フッ化窒素ガスの製造方法。
2. The method for producing high-purity nitrogen trifluoride gas according to claim 1, wherein a nickel electrode having a carbon content of 200 mass ppm or less is used as an anode.
【請求項3】 前記炭素量を100質量ppm以下とし
たニッケル電極を陽極として用いることを特徴とする請
求項2の高純度三フッ化窒素ガスの製造方法。
3. The method for producing high-purity nitrogen trifluoride gas according to claim 2, wherein a nickel electrode having a carbon content of 100 mass ppm or less is used as an anode.
【請求項4】 ニッケル電極中の不純物成分C、B、S
i、P、As、Mo、Ge及びWの合計が400質量p
pm以下である請求項1の高純度三フッ化窒素ガスの製
造方法。
4. An impurity component C, B, S in a nickel electrode.
The total of i, P, As, Mo, Ge and W is 400 mass p.
2. The method for producing high-purity nitrogen trifluoride gas according to claim 1, which is not more than pm.
【請求項5】 ニッケル電極中のニッケル純度が98.
5質量%以上である請求項1の高純度三フッ化窒素ガス
の製造方法。
5. The nickel electrode has a nickel purity of 98.
The method for producing high-purity nitrogen trifluoride gas according to claim 1, wherein the content is 5% by mass or more.
【請求項6】 電解液である酸性フッ化アンモニウムの
HF/NH4Fモル比が1.5〜2.0である請求項1
の高純度三フッ化窒素ガスの製造方法。
6. The HF / NH 4 F molar ratio of the ammonium acid fluoride as an electrolytic solution is 1.5 to 2.0.
For producing high-purity nitrogen trifluoride gas.
JP2000029044A 1999-02-10 2000-02-07 Production of high-purity gaseous nitrogen trifluoride Pending JP2000297393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000029044A JP2000297393A (en) 1999-02-10 2000-02-07 Production of high-purity gaseous nitrogen trifluoride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-32476 1999-02-10
JP3247699 1999-02-10
JP2000029044A JP2000297393A (en) 1999-02-10 2000-02-07 Production of high-purity gaseous nitrogen trifluoride

Publications (1)

Publication Number Publication Date
JP2000297393A true JP2000297393A (en) 2000-10-24

Family

ID=26371061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000029044A Pending JP2000297393A (en) 1999-02-10 2000-02-07 Production of high-purity gaseous nitrogen trifluoride

Country Status (1)

Country Link
JP (1) JP2000297393A (en)

Similar Documents

Publication Publication Date Title
KR100641603B1 (en) Preparation of high purity fluorine gas
KR940001383B1 (en) Method of liquefying and condensing nitrogen trifluoride and a method of purifying nitrogen trifluoride
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
TWI415973B (en) Method of electrolytically synthesizing nitrogen trifluoride
JP3844849B2 (en) Method for producing polycrystalline silicon and zinc chloride
TW201831729A (en) Method of producing ammonium persulfate
JP3162588B2 (en) Method for producing high-purity nitrogen trifluoride gas
US6361679B1 (en) Process for producing high-purity nitrogen trifluoride gas
CN1727278A (en) Equipment and technological process for preparing nitrogen trifluoride by using ammonia and hydrogen fluoride as raw material
JP3043243B2 (en) Method for producing high-purity nitrogen trifluoride gas
JPH0986909A (en) Production of high-purity nitrogen trifluoride gas
JP3569279B2 (en) F2 gas generator, F2 gas generation method, and F2 gas
JP2000297393A (en) Production of high-purity gaseous nitrogen trifluoride
EP0254361B1 (en) Process for the preparation of potassium nitrate
JPH04265203A (en) Method for purification of hydrogen fluoride anhydride
KR102704746B1 (en) Equipment and method for fabricating high purity PFTPA
KR101411662B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2007176768A (en) Method for producing fluorine gas
JP3512285B2 (en) Method for producing purified hydrogen iodide
KR101462751B1 (en) Method for the production of nitrogen trifluoride
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2000104187A (en) Electrolytic cell (1)
CN221191569U (en) Electronic grade nitrogen trifluoride purification system
JPH06239603A (en) Method of refining hydrogen fluoride
JPH02263988A (en) Production of gaseous nitrogen trifluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081203