JP2000297315A - Method for decarburizing-refining molten stainless steel - Google Patents

Method for decarburizing-refining molten stainless steel

Info

Publication number
JP2000297315A
JP2000297315A JP2000025604A JP2000025604A JP2000297315A JP 2000297315 A JP2000297315 A JP 2000297315A JP 2000025604 A JP2000025604 A JP 2000025604A JP 2000025604 A JP2000025604 A JP 2000025604A JP 2000297315 A JP2000297315 A JP 2000297315A
Authority
JP
Japan
Prior art keywords
molten
stainless steel
refining
decarburizing
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000025604A
Other languages
Japanese (ja)
Other versions
JP3619414B2 (en
Inventor
Katsuhiko Kato
勝彦 加藤
Akio Shinkai
昭男 新飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000025604A priority Critical patent/JP3619414B2/en
Publication of JP2000297315A publication Critical patent/JP2000297315A/en
Application granted granted Critical
Publication of JP3619414B2 publication Critical patent/JP3619414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a decarburizing-refining method of molten stainless steel by which it is suppressed that the metal is spattered by splashing, the metal becomes fine grains by generating secondary burst and the fine grain metal is stucked to or deposited on a gas exhaust system and to perform stable decarburize-refining. SOLUTION: In the decarburizing-refining method of the molten stainless steel for executing the decarburizing-refining by dipping an immersion tube 13 into molten stainless steel 12 in a ladle 11, reducing the pressure in the inner part of the immersion tube 13 and blowing oxygen-containing gas from above the molten steel surface into the immersion tube 13 while supplying inert gas at 0.6-15.0 Nl/(min.ton of molten steel) from the bottom part of the ladle 11, the exhaust gas flow speed in the immersion tube 13 is regulated to 5-20 m/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ステンレス溶鋼の
脱炭精錬を行う際に、スプラッシュにより発生した地金
の細粒化を抑制し、細粒地金が排気系に付着や堆積する
のを防止するステンレス溶鋼の脱炭精錬方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for reducing the size of ingot produced by splashing during the decarburization and refining of molten stainless steel, and to prevent the ingot from adhering or accumulating on the exhaust system. The present invention relates to a method for decarburizing and refining stainless steel to be prevented.

【0002】[0002]

【従来の技術】ステンレス溶鋼の脱炭精錬においては、
容器内を減圧して吹酸することによりクロムの酸化を抑
制した脱炭が行われており、この代表的な方法としてR
H−OB法が広く知られている。このRH−OB法は、
取鍋内の溶鋼に上昇管と下降管の両方を浸漬し、上昇管
から供給するガスのガスリフト作用により溶鋼を吸い上
げ、下降管から吐出して取鍋内の溶鋼を循環させなが
ら、上昇管に設けたノズルから酸素含有ガスの吹き込み
を行って脱炭する。また、特開平8−109410号公
報には、取鍋内の溶鋼に浸漬管を浸漬して、浸漬管の内
部を排気して減圧し、取鍋の底部から0.6〜15.0
Nリットル/(分・溶鋼トン)の不活性ガスを供給しな
がら、浸漬管の上方より酸素含有ガスを吹き付けて脱炭
を行うステンレス溶鋼の脱炭精錬方法が提案されてい
る。この方法は、Cr23 (以下、クロム酸化物とい
う)の生成とクロムのロスを少なくして迅速に脱炭を行
うことができることから実用化が図られている。
2. Description of the Related Art In the decarburization and refining of molten stainless steel,
Decarburization in which oxidation of chromium is suppressed by reducing the pressure in the vessel and blowing acid is performed.
The H-OB method is widely known. This RH-OB method
Both the riser and the downcomer are immersed in the molten steel in the ladle, the molten steel is sucked up by the gas lift action of the gas supplied from the riser, and discharged from the downcomer to circulate the molten steel in the ladle to the riser. Decarburization is performed by blowing an oxygen-containing gas from the provided nozzle. Japanese Patent Application Laid-Open No. 8-109410 discloses that an immersion pipe is immersed in molten steel in a ladle, the inside of the immersion pipe is evacuated and decompressed, and 0.6 to 15.0 is poured from the bottom of the ladle.
A decarburization and refining method for molten stainless steel has been proposed in which an oxygen-containing gas is blown from above an immersion pipe to decarburize while supplying an inert gas of N liter / (minute / ton of molten steel). This method has been put to practical use because it allows rapid decarburization by reducing the generation of Cr 2 O 3 (hereinafter referred to as chromium oxide) and the loss of chromium.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
RH−OB法では、浸漬管が上昇管と下降管に分離され
ており上昇管から吸い上げたステンレス溶鋼が下降管を
経て取鍋に戻るまでの時間が短いので、ステンレス溶鋼
の吹酸脱炭精錬を行う場合には、真空槽内で一旦生成し
たクロム酸化物が、瞬時に真空槽内から流出して、攪拌
の影響が及ばない取鍋の上部に浮上する。取鍋の上部に
浮上したクロム酸化物は、ステンレス溶鋼中の炭素と殆
ど反応しないので、脱炭の効率が悪く、クロム酸化物の
増大を招き、このクロム酸化物を還元する還元剤の増加
やクロムのロスが生じる等の問題がある。更に、上昇管
に供給する不活性ガスのガスリフトの作用により溶鋼を
循環するため、上昇管から吹き込まれる気体の絶対量が
増加し、吹き込まれた酸素含有ガスの脱炭酸素効率が低
下するので、スプラッシュの発生と二次バースト(スプ
ラッシュにより生じた地金が再酸化して細粒化する)が
激しくなる。また、特開平8−109410号公報で
は、取鍋の底部から不活性ガスを吹き込んで取鍋内の溶
鋼を強く攪拌しながら、上方から酸素を溶鋼に吹き付け
て脱炭するので、酸素を吹き付ける溶鋼表面にクロム酸
化物が多量に生成する。このクロム酸化物は、炭素と急
激に反応し、その際に生成するCOガスの溶鋼表面での
破泡によりスプラッシュが発生して地金が飛散する。こ
の地金が二次バーストを生じて細粒化し、排ガスに随伴
して飛散して浸漬管内あるいは排気系に付着、堆積す
る。また、酸素を溶鋼表面に吹き付けて脱炭するので、
脱炭に有効に働く酸素効率が40〜55%と低くなり、
脱炭に作用しない酸素が浸漬管内で二次燃焼し、飛散し
た地金の二次バーストを助長するので、排気系等に付
着、堆積する細粒地金が増大する。特に、クロムを5重
量%以上含有するステンレス溶鋼では、排気系に生じた
細粒地金の付着や堆積により、エゼクターの排気抵抗が
増加して高真空度が得られない。その結果、ステンレス
溶鋼中のクロムの酸化が進行して、クロム酸化物の増加
に起因するクロムのロスあるいはクロム酸化物を還元す
るためのAl等の還元剤が増加する等の問題がある。
However, in the above-mentioned RH-OB method, the immersion pipe is separated into an ascending pipe and a descending pipe, so that the molten stainless steel sucked from the ascending pipe returns to the ladle through the descending pipe. Because the time is short, when performing leaching acid decarburization refining of molten stainless steel, the chromium oxide once generated in the vacuum tank flows out of the vacuum tank instantaneously and is not affected by stirring. Ascend to the top. Since the chromium oxide floating on the upper part of the ladle hardly reacts with the carbon in the molten stainless steel, the efficiency of decarburization is low, causing an increase in chromium oxide and an increase in the amount of a reducing agent that reduces this chromium oxide. There are problems such as loss of chromium. Furthermore, since the molten steel is circulated by the action of the gas lift of the inert gas supplied to the riser, the absolute amount of gas blown from the riser increases, and the decarboxylation efficiency of the oxygen-containing gas blown decreases. Splash generation and secondary burst (the metal generated by the splash is reoxidized and refined) become intense. In Japanese Patent Application Laid-Open No. 8-109410, the molten steel in the ladle is blown with oxygen from above while the inert gas is blown from the bottom of the ladle to vigorously agitate the molten steel. A large amount of chromium oxide is formed on the surface. This chromium oxide rapidly reacts with carbon, and the CO gas generated at that time breaks on the surface of the molten steel to generate a splash and scatter the metal. The base metal generates a secondary burst and becomes finer, scatters along with the exhaust gas, and adheres and accumulates in the immersion pipe or the exhaust system. Also, because oxygen is blown onto the molten steel surface to decarburize,
Oxygen efficiency that works effectively for decarburization is reduced to 40-55%,
Oxygen that does not act on decarburization secondary-combustes in the immersion tube and promotes secondary burst of the scattered metal, so that fine-grain metal that adheres and accumulates on the exhaust system or the like increases. In particular, in molten stainless steel containing chromium in an amount of 5% by weight or more, the exhaust resistance of the ejector increases due to the adhesion and deposition of fine-grained metal in the exhaust system, and a high degree of vacuum cannot be obtained. As a result, there is a problem that chromium in the molten stainless steel is oxidized and chromium loss due to an increase in chromium oxide or a reducing agent such as Al for reducing chromium oxide increases.

【0004】本発明はかかる事情に鑑みてなされたもの
で、ステンレス溶鋼の脱炭精錬の際に、スプラッシュに
より地金が飛散し、その地金が二次バーストを生じて細
粒になるのを抑制し、細粒地金が排気系に付着、堆積す
るのを防止し、安定した脱炭精錬を行うことができるス
テンレス溶鋼の脱炭精錬方法を提供することを目的とす
る。
[0004] The present invention has been made in view of the above circumstances, and in the decarburization and refining of molten stainless steel, the metal is scattered by splash and the secondary metal generates a secondary burst to become fine particles. It is an object of the present invention to provide a method for decarburizing and refining molten stainless steel capable of suppressing and preventing fine-grained metal from adhering and accumulating in an exhaust system, and performing stable decarburization and refining.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う第1の発
明に係るステンレス溶鋼の脱炭精錬方法は、取鍋内のス
テンレス溶鋼に浸漬管を浸漬し、該浸漬管の内部を減圧
すると共に、前記取鍋の底部から0.6〜15.0Nリ
ットル/(分・溶鋼トン)の不活性ガスを供給しつつ、
前記浸漬管内の湯面の上方より酸素含有ガスを吹き付け
て脱炭精錬を行うステンレス溶鋼の脱炭精錬方法におい
て、前記浸漬管内の排ガス流速を5〜20m/秒にす
る。この方法により、スプラッシュにより飛散する地金
が排ガスに随伴して飛散するのを抑制して、細粒地金が
排気系に付着や堆積するのを防止し、排気抵抗をなくし
て高真空度による安定した脱炭精錬を行うことができ
る。浸漬管内の排ガス流速が5m/秒未満では、酸素含
有ガスの吹き付け量を減少したり、真空度を極端な低真
空にするので、脱炭精錬により生成する排ガス量の低減
と共に十分な脱炭反応を行うことができず、精錬時間の
延長やクロムロスを招く。一方、浸漬管内の排ガス流速
が20m/秒を超えると、スプラッシュにより飛散する
地金が排ガスに随伴して、雰囲気中に残存する酸素によ
り二次燃焼して二次バーストを生じて、細粒化した地金
が排気系に付着、堆積する。この理由から、浸漬管内の
排ガス流速は、5〜15m/秒にすると、脱炭精錬時間
の延長、排気系への細粒地金の付着や堆積の防止等によ
り好ましい結果が得られる。また、取鍋の底部から供給
する不活性ガスの量が0.6Nリットル/(分・溶鋼ト
ン)未満では、浸漬管内の湯面に形成する気泡活性面が
小さくなり、ステンレス溶鋼の全体の攪拌が弱くなって
脱炭精錬の時間が延長する。不活性ガスの量が15.0
Nリットル/(分・溶鋼トン)を超えると、ステンレス
溶鋼の全体の攪拌が強くなり過ぎて、浸漬管内の湯面で
不活性ガスの気泡の破泡及び吹酸により地金の飛散が増
加する。
According to the first aspect of the present invention, there is provided a method for decarburizing and refining molten stainless steel according to the first aspect of the present invention. While supplying an inert gas of 0.6 to 15.0 Nl / (min / ton of molten steel) from the bottom of the ladle,
In the decarburization and refining method for molten stainless steel in which decarburization and refining is performed by spraying an oxygen-containing gas from above the molten metal surface in the immersion pipe, the exhaust gas flow rate in the immersion pipe is set to 5 to 20 m / sec. By this method, the metal scattered by the splash is suppressed from being accompanied by the exhaust gas, and the fine metal is prevented from adhering or accumulating in the exhaust system. Stable decarburization refining can be performed. If the exhaust gas flow rate in the immersion tube is less than 5 m / sec, the amount of oxygen-containing gas blown is reduced or the degree of vacuum is reduced to an extremely low vacuum. Cannot be carried out, resulting in prolonged refining time and chrome loss. On the other hand, when the flow rate of the exhaust gas in the immersion pipe exceeds 20 m / sec, the metal scattered by the splash accompanies the exhaust gas, and secondary combustion is caused by oxygen remaining in the atmosphere to generate a secondary burst, and the fine particles are refined. The wrought metal adheres and accumulates in the exhaust system. For this reason, when the exhaust gas flow rate in the immersion pipe is set to 5 to 15 m / sec, a favorable result can be obtained because the decarburization refining time is extended, and adhesion and deposition of fine-grained metal to the exhaust system are prevented. If the amount of the inert gas supplied from the bottom of the ladle is less than 0.6 Nl / (min / ton of molten steel), the bubble active surface formed on the molten metal surface in the immersion tube becomes small, and the entire stainless steel molten steel is stirred. And the time for decarburization refining is extended. The amount of inert gas is 15.0
If it exceeds N liters / (minute / ton of molten steel), the stirring of the entire molten stainless steel becomes too strong, and the scatter of the metal increases due to the breakage of bubbles of the inert gas and the blowing acid on the molten metal surface in the immersion tube. .

【0006】ここで、前記排ガス流速を前記浸漬管内の
湯面の上方より吹き付ける酸素含有ガス量により調整す
ることができる。これにより、溶鋼の湯面に吹き付ける
酸素含有ガス中の酸素の脱炭酸素効率を高めて、クロム
酸化物の生成を抑制し、浸漬管内の二次燃焼を少なくし
て飛散する地金の二次バーストを抑制することで地金の
細粒化を防止できる。
Here, the flow rate of the exhaust gas can be adjusted by the amount of the oxygen-containing gas blown from above the molten metal surface in the immersion tube. This enhances the decarbonation efficiency of oxygen in the oxygen-containing gas sprayed onto the molten steel surface, suppresses the formation of chromium oxide, reduces secondary combustion in the immersion pipe, By suppressing the burst, fine metal can be prevented from being finely divided.

【0007】更に、前記排ガス流速を前記浸漬管内の真
空度により調整することができる。これにより、浸漬管
内の排ガス流速を迅速に低減できるので、二次バースト
により生成した細粒地金が排気系に飛散するのを的確に
防止できる。
Further, the flow rate of the exhaust gas can be adjusted by the degree of vacuum in the immersion tube. As a result, the flow rate of the exhaust gas in the immersion pipe can be rapidly reduced, so that the fine metal ingot generated by the secondary burst can be prevented from being scattered to the exhaust system.

【0008】また、前記浸漬管の溶鋼浸漬部の内表面積
を前記取鍋内の全溶鋼表面積の0.1〜0.7にするこ
とができる。これにより、脱炭に有効な気泡活性面(不
活性ガスの気泡が膨張し、破泡して湯面が波立つ状態)
を大きくし、脱炭に寄与する酸素効率を高くし、二次バ
ーストを抑制しながら短時間で低い炭素濃度にできる。
浸漬管の溶鋼浸漬部の内表面積が取鍋内の全溶鋼表面積
の0.1より小さいと、ステンレス溶鋼の攪拌力が不足
して気泡活性面が狭くなり、脱炭反応が遅くなって到達
炭素濃度を低くできない。一方、0.7より大きくなる
と、取鍋の内側と浸漬管の外周面との隙間が狭くなり、
サンプリングの支障や浸漬管外に流出したクロム酸化物
等の付着により、取鍋への浸漬管の浸漬が困難になる。
Further, the inner surface area of the molten steel immersion portion of the immersion tube can be set to 0.1 to 0.7 of the total molten steel surface area in the ladle. As a result, a bubble activated surface effective for decarburization (a state in which bubbles of inert gas are expanded, broken, and the molten metal surface is wavy)
, The oxygen efficiency that contributes to decarburization is increased, and a low carbon concentration can be achieved in a short time while suppressing secondary burst.
If the inner surface area of the molten steel immersion part of the dip tube is smaller than 0.1 of the total molten steel surface area in the ladle, the stirring power of the molten stainless steel is insufficient, the bubble active surface becomes narrow, the decarburization reaction is slowed, and the carbon The concentration cannot be lowered. On the other hand, when it is larger than 0.7, the gap between the inside of the ladle and the outer peripheral surface of the immersion tube becomes narrower,
The immersion of the immersion tube in the ladle becomes difficult due to the obstruction of sampling and the adhesion of chromium oxide or the like flowing out of the immersion tube.

【0009】前記目的に沿う第2の発明に係るステンレ
ス溶鋼の脱炭精錬方法は、取鍋内のステンレス溶鋼に浸
漬管を浸漬し、該浸漬管の内部を減圧すると共に、前記
取鍋の底部から0.6〜15.0Nリットル/(分・溶
鋼トン)の不活性ガスを供給しつつ、前記浸漬管内の湯
面の上方に配置したランスから該湯面に向けて酸素含有
ガスを吹き付けて脱炭精錬を行うステンレス溶鋼の脱炭
精錬方法において、前記酸素含有ガスは、下記(1)、
(2)式により求まるキャビティー深さLが210〜5
00mmとなるようにして吹き付ける。 L=Lh×10(-780H/Lh) ・・・・・・(1) Lh=0.894×(Q2 /S×n)1/3 ・・・・・・(2) ここで、Lはキャビティー深さ(mm)、Hはランスの
先端位置から静止湯面までの距離(m)、LhはH=0
の時のキャビティー深さ(mm)、Qは酸素含有ガスの
流量(Nm3 )、Sはランス吐出口の最狭部の断面積
(m2 )、nはランス吐出口数である。溶鋼の湯面に吹
き付ける酸素含有ガスによるキャビティー深さLが21
0〜500mmとなるように、吹酸をハードブローにす
るので、吹酸の火点及びその近傍における脱炭反応と、
生成したCr23 の溶鋼中の炭素との反応を促進し、
脱炭及び生成したCOガスの湯面上方での燃焼(二次燃
焼)に消費される酸素を含めた脱炭酸素効率を向上で
き、吹酸によって飛散する地金の粒を大きくし、しか
も、この地金が酸素の噴流に暴露されるのを抑制して二
次バーストを防止することができる。
According to a second aspect of the present invention, there is provided a method for decarburizing and refining molten stainless steel according to a second aspect of the present invention, in which a dip tube is immersed in stainless steel in a ladle, the inside of the dip tube is depressurized, and the bottom of the ladle is depressed. While supplying an inert gas of 0.6 to 15.0 Nl / (min./ton of molten steel) from the lance disposed above the molten metal surface in the immersion tube, and blowing an oxygen-containing gas toward the molten metal surface. In the decarburization and refining method for molten stainless steel for decarburization and refining, the oxygen-containing gas includes the following (1):
The cavity depth L obtained by the equation (2) is 210 to 5
Spray so as to be 00 mm. L = Lh × 10 (−780H / Lh) (1) Lh = 0.894 × (Q 2 / S × n) 1/3 (2) where L Is the cavity depth (mm), H is the distance (m) from the tip position of the lance to the stationary metal surface, and Lh is H = 0.
, The cavity depth (mm), Q is the flow rate of the oxygen-containing gas (Nm 3 ), S is the cross-sectional area of the narrowest portion of the lance discharge port (m 2 ), and n is the number of lance discharge ports. The cavity depth L is 21 due to the oxygen-containing gas sprayed on the molten steel surface.
Since the blowing acid is hard blown so as to be 0 to 500 mm, the decarburization reaction at the flash point of the blowing acid and its vicinity,
Promotes the reaction of the generated Cr 2 O 3 with carbon in the molten steel,
Decarbonization efficiency including oxygen consumed for decarburization and combustion (secondary combustion) of the generated CO gas above the hot water surface can be improved, and the size of the metal scattered by the blowing acid can be increased. Exposure of the metal to the jet of oxygen can be suppressed to prevent secondary bursts.

【0010】[0010]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
ステンレス溶鋼の脱炭精錬方法に適用される脱炭精錬装
置の概念図、図2は同脱炭精錬装置を用いた吹酸脱炭精
錬中の排ガス流速、送酸量、排ガス流量及び真空度の変
化を示すグラフ、図3はランスの種類と排気ダクトへの
地金付着速度の関係を示すグラフ、図4は吹酸時の火点
近傍の部分拡大図である。図1に示すように、本発明の
一実施の形態に係るステンレス溶鋼の脱炭精錬方法に適
用される脱炭精錬装置10は、取鍋11及び取鍋11に
受湯されたステンレス溶鋼12内に図示しない昇降装置
により浸漬する直胴型の浸漬管13を有し、ステンレス
溶鋼12に不活性ガスを吹き込んで攪拌するためのポー
ラスプラグ14を取鍋11の底部に、浸漬管13内のス
テンレス溶鋼12の湯面12aに吹酸する酸素含有ガス
の流量を設定する流量調整弁15を設けたランス16を
浸漬管13の上部に備えている。また、浸漬管13に
は、内部を減圧する図示しないエゼクターに連通した排
気ダクト17を設けている。この排気ダクト17には、
浸漬管13内部の真空度を測定する真空度計18と排ガ
ス流量計19を設けている。更に、浸漬管13の溶鋼浸
漬部の内表面積は、取鍋11内のステンレス溶鋼12の
全溶鋼表面積に対して0.1〜0.7となるようにして
いる。なお、図中、符号20は浸漬管13内に合金鉄や
生石灰等の副原料を添加するシュートであり、21は合
金鉄や生石灰等の副原料の貯蔵ホッパーである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a conceptual diagram of a decarburizing refining apparatus applied to a method for decarburizing stainless steel molten steel according to one embodiment of the present invention, and FIG. 2 is an exhaust gas during blowing acid decarburizing refining using the decarburizing refining apparatus. FIG. 3 is a graph showing changes in flow velocity, acid supply amount, exhaust gas flow rate, and degree of vacuum, FIG. 3 is a graph showing a relationship between a lance type and a metal deposition speed on an exhaust duct, and FIG. It is an enlarged view. As shown in FIG. 1, a decarburizing and refining apparatus 10 applied to a method for decarburizing and refining stainless steel molten steel according to one embodiment of the present invention includes a ladle 11 and a stainless steel molten steel 12 received by the ladle 11. A dipping tube 13 of a straight body type to be dipped by an elevating device (not shown), a porous plug 14 for blowing an inert gas into the molten stainless steel 12 and stirring the molten steel 12 at the bottom of the ladle 11, and a stainless steel in the dipping tube 13. A lance 16 provided with a flow rate control valve 15 for setting the flow rate of the oxygen-containing gas to be blown on the molten metal surface 12 a of the molten steel 12 is provided above the immersion pipe 13. The immersion pipe 13 is provided with an exhaust duct 17 communicating with an ejector (not shown) for reducing the pressure inside. In this exhaust duct 17,
A vacuum gauge 18 for measuring the degree of vacuum inside the immersion tube 13 and an exhaust gas flow meter 19 are provided. Further, the inner surface area of the molten steel immersion part of the immersion tube 13 is set to be 0.1 to 0.7 with respect to the total molten steel surface area of the stainless steel molten steel 12 in the ladle 11. In the drawing, reference numeral 20 denotes a chute for adding an auxiliary material such as alloyed iron or quick lime into the immersion tube 13, and 21 denotes a storage hopper for auxiliary material such as alloyed iron or quick lime.

【0011】次に、この脱炭精錬装置10を用いた本実
施の形態に係るステンレス溶鋼の脱炭精錬方法について
説明する。まず、取鍋11にクロムを5重量%以上含有
した150トンのステンレス溶鋼12を受湯し、この取
鍋11内に浸漬管13をその先端が取鍋11内ステンレ
ス溶鋼12の表面から深さ600mmの位置に来るよう
に浸漬し、浸漬管13の内部を図示しないエゼクターに
より排気ダクト17から排気して減圧した。浸漬管13
内の湯面12aには、取鍋11のポーラスプラグ14か
ら不活性ガスの一例であるアルゴンガスを0.6〜1
5.0Nリットル/(分・溶鋼トン)供給することによ
り気泡活性面を形成し、浸漬管13内の真空度が200
torrに到達してから、この湯面12aにランス16
を介して2800mmの高さから3000Nm3 /hr
の酸素含有ガスの一例である酸素を吹き付けて(吹酸)
脱炭精錬を行った。脱炭精錬の初期、すなわち吹酸を開
始した直後は、浸漬管13内に昇熱用の金属Alを添加
しているので、酸素が金属Alの燃焼に消費され、発生
する排ガス量が少ない。金属Alの燃焼が終わると、積
極的に酸素とステンレス溶鋼12中のクロムが(3)式
の反応によりCr23 を生成し、このCr23 がス
テンレス溶鋼12中の炭素と(4)式のように反応して
脱炭が行われる。 2Cr+3/2O2 →Cr23 ・・・・・ (3) Cr23 +3C→2Cr+3CO↑ ・・・・・ (4) この際に真空度が低いと、ステンレス溶鋼12中のクロ
ムの酸化が急激に起こり、過剰のCr23 が生成し、
突沸等の異常反応やクロムの酸化ロスを招くことにな
る。
Next, a method for decarburizing and refining stainless steel melt according to the present embodiment using the decarburizing and refining apparatus 10 will be described. First, a ladle 11 receives 150 tons of molten stainless steel 12 containing 5% by weight or more of chromium, and a immersion tube 13 is inserted into the ladle 11 so that the tip of the immersion tube 13 has a depth from the surface of the molten stainless steel 12 in the ladle 11. It was immersed so as to reach a position of 600 mm, and the inside of the immersion tube 13 was evacuated from the exhaust duct 17 by an ejector (not shown) to reduce the pressure. Immersion tube 13
An argon gas, which is an example of an inert gas, is supplied from the porous plug 14 of the ladle 11 to the hot water surface 12a in the inner space 12a.
By supplying 5.0 Nl / (min / ton of molten steel), a bubble activated surface is formed, and the degree of vacuum in the immersion tube 13 is 200
After reaching torr, the lance 16
From a height of 2800 mm to 3000 Nm 3 / hr
By blowing oxygen, which is an example of an oxygen-containing gas (blowing acid)
Decarburization refining was performed. In the initial stage of the decarburization refining, that is, immediately after the start of the blowing acid, since the metal Al for heating is added into the immersion pipe 13, oxygen is consumed in the combustion of the metal Al, and the amount of generated exhaust gas is small. When the combustion of the metal Al is completed, oxygen and chromium in the molten stainless steel 12 positively generate Cr 2 O 3 by the reaction of the formula (3), and this Cr 2 O 3 is combined with carbon (4) in the molten stainless steel 12. Decarburization is carried out by reacting as shown in the formula (1). 2Cr + 3 / 2O 2 → Cr 2 O 3 (3) Cr 2 O 3 + 3C → 2Cr + 3CO (4) At this time, if the degree of vacuum is low, chromium in the stainless steel melt 12 is oxidized. Rapidly occurs, and excessive Cr 2 O 3 is generated,
An abnormal reaction such as bumping or oxidization loss of chromium is caused.

【0012】従って、図2に示すように、Cr23
過剰生成を抑制するために、吹酸初期には真空度計18
の値が100torr程度の高真空度になるように図示
しないエゼクターの排気量を調整して操業する。そし
て、生成したCOガスや二次燃焼したCO2 ガス等を含
む排ガスの流量(図中二点斜線で示す)は、排気ダクト
17に設けた排ガス流量計19で測定され、この排ガス
流量は、脱炭反応の開始と共に急激に増加し、排ガス流
速(図中太実線で示す)も排ガス流量の増加に追随して
上昇する。そこで、真空度(図中破線で示す)を100
torrの高真空から図示しないエゼクターの排気量を
調整して150torrの低真空に調整し、排ガス流速
を8〜12m/秒の範囲になるようにする。この排ガス
流速(m/秒)をVとすると、Vは(5)式により求め
ることができる。 V=Q÷S×(P0 /P)×(T/T0 ) ・・・・・(5) ここで、Qは排ガス流量(Nm3 /hr)、Sは浸漬管
の直径方向の面積(m2)、P0 は標準大気圧(101
325Pa)、Pは浸漬管の内圧(Pa)、Tは排ガス
温度(K)、T0 は標準温度(K)である。
Therefore, as shown in FIG. 2, in order to suppress the excessive production of Cr 2 O 3, a vacuum
The operation is performed by adjusting the exhaust amount of an ejector (not shown) so that the value of “” becomes a high vacuum degree of about 100 torr. The flow rate of the exhaust gas including the generated CO gas and the secondary-combusted CO 2 gas (shown by two-dot hatching in the figure) is measured by an exhaust gas flow meter 19 provided in the exhaust duct 17. It rapidly increases with the start of the decarburization reaction, and the exhaust gas flow rate (shown by a thick solid line in the figure) also rises following the increase in the exhaust gas flow rate. Therefore, the degree of vacuum (indicated by a broken line in the figure) is set to 100
The exhaust volume of an ejector (not shown) is adjusted from a high vacuum of torr to a low vacuum of 150 torr, and the exhaust gas flow rate is set in a range of 8 to 12 m / sec. Assuming that the exhaust gas flow rate (m / sec) is V, V can be obtained by equation (5). V = Q ÷ S × (P 0 / P) × (T / T 0 ) (5) Here, Q is the exhaust gas flow rate (Nm 3 / hr), and S is the area of the immersion tube in the diameter direction. (M 2 ), P 0 is the standard atmospheric pressure (101
325 Pa), P is the internal pressure of the immersion tube (Pa), T is the exhaust gas temperature (K), and T 0 is the standard temperature (K).

【0013】更に、ステンレス溶鋼12の脱炭反応が進
む中期では、排ガス流量がさらに増加し、排ガス流量計
19の指示が約3500Nm3 /hrになり、排ガス流
速が12m/秒を超える状態になったので、真空度を1
50torrに維持した状態で、流量調整弁15の開度
を調整して、吹酸の酸素量すなわち送酸量(図中実線で
示す)を2500Nm3 /hrに減少し、排ガス流速を
8〜12m/秒の範囲にした。脱炭精錬の末期では、ス
テンレス溶鋼12中の炭素濃度の低下により排ガス流量
が減少するので、排ガス流量の減少に合わせて、浸漬管
13内を150torrの低真空から5〜2torrの
高真空にして脱炭精錬を行う。このように、送酸量と真
空度を調整して浸漬管13内を上昇する排ガスの流速を
低くしているので、スプラッシュにより発生した地金の
二次バーストにより生成する細粒な地金が排ガスの流れ
に随伴して飛散し、排気ダクト17に付着したり、堆積
するのを防止でき、排気抵抗の増加や堆積した地金の処
理等の手間を解消することができる。
Further, in the middle stage in which the decarburization reaction of the stainless steel molten steel 12 proceeds, the exhaust gas flow rate further increases, the indication of the exhaust gas flow meter 19 becomes about 3500 Nm 3 / hr, and the exhaust gas flow rate exceeds 12 m / sec. So the degree of vacuum is 1
While maintaining the pressure at 50 torr, the opening of the flow control valve 15 is adjusted to reduce the oxygen amount of the blowing acid, that is, the acid supply amount (shown by a solid line in the figure) to 2500 Nm 3 / hr, and the exhaust gas flow rate to 8 to 12 m. / Sec range. At the end of the decarburization refining, the exhaust gas flow rate decreases due to the decrease in the carbon concentration in the stainless steel molten steel 12, so that the inside of the immersion pipe 13 is changed from a low vacuum of 150 torr to a high vacuum of 5 to 2 torr in accordance with the decrease in the exhaust gas flow rate. Perform decarburization refining. As described above, the acid flow rate and the degree of vacuum are adjusted to reduce the flow rate of the exhaust gas rising in the immersion tube 13, so that fine-grained metal generated by the secondary burst of the metal generated by the splash is reduced. It can be prevented from scattering along with the flow of the exhaust gas and adhering to or accumulating on the exhaust duct 17, and it is possible to eliminate the trouble of increasing the exhaust resistance and processing the accumulated metal.

【0014】また、図3に示すように、吹酸に用いるラ
ンス16は、吐出口の形状が一般に用いられてるストレ
ートノズルの場合では、ガスの噴流が広がってソフトブ
ローになり、脱炭の酸素効率が低下してスプラッシュに
より発生した地金が雰囲気中に存在する酸素と二次燃焼
を生じて二次バーストが発生する。しかし、吐出口から
音速以上の速さで吹き出すラバールノズルを用いてハー
ドブローする場合では、脱炭の酸素効率が高くなり、ス
プラッシュにより発生した地金の二次バーストを抑制で
きる。この傾向は3孔ラバールよりも単孔ラバールを用
いると、よりハードブローにすることができるので、二
次バーストの抑制に有効である。即ち、図4に示すよう
に、単孔ラバールを用いたハードブローの条件を一般的
に用いられている前述した(1)、(2)式から求めた
湯面12aのキャビティー深さ(へこみ深さ)L値を2
10〜500mmにすることにより、火点Aの近傍で
は、酸素と溶鋼12中の炭素の反応により脱炭が行われ
ると共に、酸素とクロム(Cr)が反応してCr23
を生成する。しかも、キャビティー深さLを所定の範囲
にしているので、生成したCr23が浮上する際に、
浸漬管13内のステンレス溶鋼12の上層部で炭素によ
り還元され、脱炭に寄与する酸素効率を向上することが
できる。また、キャビティー深さLを前記の範囲のよう
に深くするために、吹酸を行う際の吹き付け力を大きく
すると、湯面12aから飛散する地金の量が増加し、そ
の地金の粒が比較的大きくなる。しかし、吹酸をハード
ブローにすることにより、酸素噴流の広がりは小さくな
り、酸素の噴流に暴露される地金を少なくできるので、
二次バースト(図中に点線で示す細粒)による微細化を
抑制することができる。そして、火点近傍のCr23
の還元を含めた脱炭酸素効率の向上、地金の粗大化、酸
素の噴流の広がりの抑制等の相乗した働きにより、微細
地金が排気系ダクト等に堆積するのを防止して、安定し
た操業を行うことができる。吹酸をソフトブローにし
て、キャビティー深さLが210mmより小さくなる
と、地金の二次バーストが発生し、排気系ダクト等への
地金付着が発生する。吹酸時の吹き付け力が強過ぎて、
キャビティー深さLが500mmより大きくなると、地
金の飛散が極端に増加したり、火点近傍の耐火物が損耗
する。従って、キャビティー深さL値は、300〜45
0mmにすると、より好ましい結果が得られる。
As shown in FIG. 3, in the case of a straight nozzle having a generally used discharge port, the lance 16 used for blowing acid has a gas jet which spreads and becomes a soft blow, so that oxygen for decarburization is removed. The efficiency decreases, and the sliver generated by the splash causes secondary combustion with the oxygen present in the atmosphere to generate a secondary burst. However, in the case of hard blowing using a Laval nozzle that blows out from the discharge port at a speed higher than the speed of sound, the oxygen efficiency of decarburization increases, and the secondary burst of the slab generated by splash can be suppressed. This tendency is more effective in suppressing the secondary burst since the use of single-hole Laval than the use of three-hole Laval allows hard blow. That is, as shown in FIG. 4, the cavity depth (dent) of the molten metal surface 12a obtained from the above-described equations (1) and (2), which are generally used under the condition of hard blow using a single-hole Laval. Depth) L value is 2
By setting the thickness to 10 to 500 mm, in the vicinity of the flash point A, decarburization is performed by the reaction between oxygen and carbon in the molten steel 12, and oxygen and chromium (Cr) react to form Cr 2 O 3.
Generate In addition, since the cavity depth L is within a predetermined range, when the generated Cr 2 O 3 floats,
Oxygen efficiency which is reduced by carbon in the upper part of the stainless steel melt 12 in the immersion pipe 13 and contributes to decarburization can be improved. Further, if the blowing force at the time of blowing acid is increased to make the cavity depth L as deep as the above range, the amount of the metal scattered from the molten metal surface 12a increases, and the metal particles Is relatively large. However, by making the blowing acid a hard blow, the spread of the oxygen jet is reduced, and the amount of metal exposed to the oxygen jet can be reduced.
It is possible to suppress the miniaturization due to the secondary burst (fine grains indicated by dotted lines in the figure). The Cr 2 O 3 near the fire point
Synergistic actions such as improvement of decarbonation efficiency including reduction of metal, coarsening of metal, and suppression of spread of oxygen jet prevent the fine metal from accumulating in exhaust ducts, etc. Operation. When the blow acid is soft blown and the cavity depth L is smaller than 210 mm, a secondary burst of the metal occurs, and the metal adheres to the exhaust system duct and the like. The blowing power during blowing acid is too strong,
When the cavity depth L is larger than 500 mm, the scattering of the metal becomes extremely large, and the refractory near the fire point is worn. Therefore, the cavity depth L value is 300-45.
If it is set to 0 mm, more preferable results are obtained.

【0015】[0015]

【実施例】次に、本発明に係るステンレス溶鋼の脱炭精
錬方法を適用した実施例について説明する。転炉により
クロムを13重量%含有するステンレス溶鋼を150ト
ン溶製して取鍋に受湯してから、溶鋼浸漬部が取鍋内の
全溶鋼表面積の0.3の内表面積を有する浸漬管の先端
を取鍋のステンレス溶鋼の表面から深さ600mmに浸
漬し、浸漬管内部を減圧して浸漬管内の真空度が100
torrに到達した後、浸漬管上方からランスを介して
吹酸して脱炭精錬を行い、排ガス流速、排気ダクト地金
堆積の有無、操業時真空度の変動の有無等を調査した。
表1に示すように、実施例1は、吹酸時のキャビティー
深さを300mmにし、吹酸脱炭精錬の初期に単孔ラバ
ールを用いて3000Nm3 /hrの酸素を湯面に吹き
付け、中期には、真空度を150torrの低真空にし
て酸素を2500Nm3 /hrに減少し、吹酸脱炭精錬
の末期では、中期と同じ酸素量にして真空度のみを15
0torrから順次50torrの高真空にした場合で
あり、排ガス流速を平均で8m/秒にでき、排気ダクト
地金堆積が無く、操業時の真空度の変動が全く生じず安
定した脱炭精錬を行うことができ、総合評価として良好
(◎)であった。更に、実施例2は、吹酸時のキャビテ
ィー深さを450mmにし、吹酸脱炭精錬の初期に単孔
ラバールを用いて3000Nm3 /hrの酸素を湯面に
吹き付けを行い、中期では、真空度を120torrの
低真空にして酸素を2500Nm3/hrに減少し、吹
酸脱炭精錬の末期で、吹酸量を変えずに真空度を120
torrから順次50torrの高真空にした場合であ
り、排ガス流速を平均で10m/秒にでき、排気ダクト
地金堆積が無く、操業時の真空度の変動が全く生じず安
定した脱炭精錬をすることができ、総合評価として良好
(◎)であった。実施例3は、吹酸時のキャビティー深
さを210mmにし、吹酸脱炭精錬の初期に単孔ラバー
ルを用いて3000Nm3 /hrの酸素を湯面に吹き付
け、中期には、真空度を150torrの低真空にして
酸素を2500Nm3 /hrに減少し、吹酸脱炭精錬の
末期では、中期と同じ酸素量にして真空度のみを150
torrから順次50torrの高真空にした場合であ
り、排ガス流速を平均で8m/秒にでき、排気ダクト地
金堆積が極微量であり、操業時の真空度の変動が全く生
じず安定した脱炭精錬を行うことができ、総合評価とし
て良い(○)結果が得られた。
Next, an embodiment to which the method for decarburizing and refining stainless steel molten steel according to the present invention will be described. The molten steel immersion part has an inner surface area of 0.3 of the total molten steel surface area in the ladle after 150 tons of molten stainless steel containing 13% by weight of chromium is melted and received in a ladle by a converter. The tip of is dipped 600 mm deep from the surface of the stainless steel molten steel of the ladle, and the inside of the dipping tube is decompressed to a degree of vacuum of 100 mm.
After reaching torr, decarburization and refining were performed by blowing acid from above the dip tube through a lance, and the exhaust gas flow rate, the presence or absence of exhaust duct metal deposits, and the presence or absence of fluctuations in the degree of vacuum during operation were investigated.
As shown in Table 1, in Example 1, the cavity depth during blowing acid was set to 300 mm, and at the beginning of the blowing acid decarburization refining, 3000 Nm 3 / hr of oxygen was sprayed onto the surface of the molten metal using single-hole Laval. In the middle stage, the degree of vacuum is reduced to 150 NTorr and the oxygen is reduced to 2500 Nm 3 / hr.
This is a case where the vacuum is sequentially increased from 0 torr to 50 torr, the exhaust gas flow rate can be made 8 m / sec on average, there is no accumulation of metal in the exhaust duct, and there is no fluctuation in the degree of vacuum during operation, and stable decarburization refining is performed. The evaluation was good (◎) as the overall evaluation. Further, in Example 2, the cavity depth at the time of the blowing acid was set to 450 mm, and at the initial stage of the blowing acid decarburization refining, 3000 Nm 3 / hr of oxygen was sprayed on the molten metal surface using a single-hole laval. Oxygen was reduced to 2500 Nm 3 / hr by reducing the vacuum degree to 120 torr, and at the end of the blowing acid decarburization refining, the vacuum degree was increased to 120 without changing the blowing acid amount.
A high vacuum of 50 torr is applied sequentially from torr, the exhaust gas flow rate can be 10 m / sec on average, there is no accumulation of metal in the exhaust duct, and there is no fluctuation in the degree of vacuum during operation, and stable decarburization and refining is performed. The evaluation was good (◎) as the overall evaluation. In Example 3, the cavity depth at the time of blowing acid was set to 210 mm, and at the beginning of the blowing acid decarburization refining, 3000 Nm 3 / hr of oxygen was sprayed on the molten metal surface using a single-hole laval. Oxygen is reduced to 2500 Nm 3 / hr by reducing the pressure to 150 torr, and at the end of the blowing acid decarburization refining, the oxygen amount is the same as in the middle stage and only the degree of vacuum is set to 150 Nm 3 / hr.
A high vacuum of 50 torr sequentially from torr was applied, the exhaust gas flow rate could be 8 m / sec on average, the amount of metal in the exhaust duct was extremely small, and there was no fluctuation in the degree of vacuum during operation. Refining could be performed, and a good (○) result was obtained as an overall evaluation.

【0016】[0016]

【表1】 [Table 1]

【0017】これに対し比較例は、吹酸時のキャビティ
ー深さを150mmにし、吹酸脱炭精錬の全期間中3孔
ラバールのランスを用いて3000Nm3 /hrの酸素
を湯面に吹き付け、真空度を初期の100torrから
中期に60torr、末期に50torrの高真空度に
した場合であり、排ガス流速が27m/秒と速くなり、
排気ダクトに地金堆積が発生し、操業時の真空度が変動
して不安定な脱炭精錬になり、総合評価としては悪い結
果(×)となった。
On the other hand, in the comparative example, the cavity depth during blowing acid was set to 150 mm, and 3,000 Nm 3 / hr of oxygen was blown onto the molten metal surface using a 3-hole Laval lance during the entire period of blowing acid decarburization refining. The case where the degree of vacuum is increased from 100 torr in the initial stage to 60 torr in the middle stage and to 50 torr in the last stage, and the exhaust gas flow rate becomes as fast as 27 m / sec.
Metal deposits occurred in the exhaust duct, and the degree of vacuum during operation fluctuated, resulting in unstable decarburization and refining. The overall evaluation was poor (x).

【0018】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、前記実施の形態では、ステンレス溶鋼の脱
炭精錬について説明したが、炭素を含有した一般の溶鋼
の脱炭精錬に適用することもできる。更に、浸漬管の形
状は、直胴型の他に酸素含有ガスが吹き付けられる湯面
の上部に相当する中間部の直径を大きくしたものを用い
ることができる。また、酸素含有ガスも酸素にアルゴン
ガスあるいは炭酸ガス等を混合したガスを用いて脱炭精
錬を行うことができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, in the above embodiment, decarburization and refining of molten stainless steel has been described, but the present invention can also be applied to decarburization and refining of general molten steel containing carbon. Further, as the shape of the immersion tube, a shape in which a diameter of an intermediate portion corresponding to an upper portion of a molten metal surface to which an oxygen-containing gas is blown is enlarged, in addition to a straight body type, can be used. In addition, decarburization refining can be performed using a gas obtained by mixing argon gas, carbon dioxide gas, or the like with oxygen as the oxygen-containing gas.

【0019】[0019]

【発明の効果】請求項1〜4記載のステンレス溶鋼の脱
炭精錬方法は、取鍋内のステンレス溶鋼に浸漬管を浸漬
し、浸漬管の内部を減圧すると共に、取鍋の底部から
0.6〜15.0Nリットル/(分・溶鋼トン)の不活
性ガスを供給しつつ、浸漬管の上方より酸素含有ガスを
吹き付けて脱炭精錬を行うステンレス溶鋼の脱炭精錬方
法において、排ガス流速を5〜20m/秒にするので、
スプラッシュや突沸等により発生した地金の二次バース
トによって生成する細粒地金の飛散を抑制し、排気系ダ
クト等への付着や堆積を防止でき、安定した操業を行う
ことができる。
The method for decarburizing and refining molten stainless steel according to any one of claims 1 to 4 is to immerse the immersion pipe in the molten stainless steel in the ladle to reduce the pressure inside the immersion pipe and to reduce the pressure from the bottom of the ladle. In the decarburization and refining method for molten stainless steel, in which an oxygen-containing gas is blown from above the immersion pipe to perform decarburization and refining while supplying an inert gas at 6 to 15.0 Nl / (min. 5 to 20 m / sec.
It is possible to suppress the scattering of the fine-grained metal generated by the secondary burst of the metal generated by the splash, bumping, etc., to prevent the fine metal from sticking or accumulating on the exhaust system duct, etc., and to perform a stable operation.

【0020】特に、請求項2記載のステンレス溶鋼の脱
炭精錬方法は、排ガス流速を浸漬管の上方より吹き付け
る酸素含有ガス量により調整するので、脱炭反応により
生成したCOガスの二次燃焼を抑制し、スプラッシュや
突沸等により発生した地金の二次バーストを効率良く抑
制できる。
In particular, in the method for decarburizing and refining molten stainless steel according to claim 2, since the exhaust gas flow rate is adjusted by the amount of oxygen-containing gas blown from above the immersion pipe, the secondary combustion of the CO gas generated by the decarburization reaction is prevented. Thus, it is possible to efficiently suppress the secondary burst of the ingot caused by splash, bumping or the like.

【0021】請求項3記載のステンレス溶鋼の脱炭精錬
方法は、排ガス流速を浸漬管内の真空度により調整する
ので、排ガス流速を迅速に低下することができ、細粒地
金が排ガスの流れに随伴して飛散するのを防止できる。
In the method for decarburizing and refining stainless steel melt according to the third aspect, the flow rate of the exhaust gas is adjusted by the degree of vacuum in the immersion pipe, so that the flow rate of the exhaust gas can be rapidly reduced, and the fine-grained metal is reduced in the flow of the exhaust gas. It is possible to prevent accompanying scattering.

【0022】請求項4記載のステンレス溶鋼の脱炭精錬
方法は、浸漬管の溶鋼浸漬部の内表面積を取鍋内の全溶
鋼表面積の0.1〜0.7にしているので、排ガス流速
を低減でき、脱炭に寄与する酸素効率を高くして二次バ
ーストを抑制し、短時間で炭素濃度を低減できる。
In the method for decarburizing and refining molten stainless steel according to claim 4, since the inner surface area of the molten steel immersion portion of the immersion pipe is set to 0.1 to 0.7 of the total molten steel surface area in the ladle, the exhaust gas flow rate is reduced. The oxygen concentration that contributes to decarburization can be increased, secondary burst can be suppressed, and the carbon concentration can be reduced in a short time.

【0023】請求項5記載のステンレス溶鋼の脱炭精錬
方法は、 取鍋内のステンレス溶鋼に浸漬管を浸漬し、
浸漬管の内部を減圧すると共に、取鍋の底部から0.6
〜15.0Nリットル/(分・溶鋼トン)の不活性ガス
を供給しつつ、浸漬管内の湯面の上方より酸素含有ガス
を吹き付けて脱炭精錬を行うステンレス溶鋼の脱炭精錬
方法において、酸素含有ガスを、キャビティー深さLが
所定の範囲になるようにして吹き付けるので、吹酸の火
点近傍の脱炭反応とCr23 と炭素との反応が促進さ
れて酸素効率を向上することができ、吹酸によって飛散
する地金が二次バーストして微細化するのを抑制し、排
気系ダクトへの地金堆積を防止して安定した操業が可能
になる。
According to a fifth aspect of the present invention, there is provided a method for decarburizing and refining molten stainless steel, comprising: dipping a dip tube in molten stainless steel in a ladle;
While depressurizing the inside of the immersion tube, 0.6 mm from the bottom of the ladle
In a decarburization refining method for molten stainless steel, a decarburization refining method is performed in which an oxygen-containing gas is sprayed from above the surface of the molten metal in the immersion pipe to supply deactivated carbon while supplying an inert gas of up to 15.0 Nl / (min./ton of molten steel). Since the contained gas is blown such that the cavity depth L is within a predetermined range, the decarburization reaction near the ignition point of the blowing acid and the reaction between Cr 2 O 3 and carbon are promoted, and the oxygen efficiency is improved. It is possible to prevent the metal scattered by the blowing acid from being secondary-bursted and to be miniaturized, to prevent the metal from being deposited on the exhaust duct, and to perform a stable operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るステンレス溶鋼の
脱炭精錬方法を適用した脱炭精錬装置の概念図である。
FIG. 1 is a conceptual diagram of a decarburization refining apparatus to which a method for decarburization of molten stainless steel according to an embodiment of the present invention is applied.

【図2】同脱炭精錬装置を用いた吹酸脱炭精錬中の排ガ
ス流速、送酸量、排ガス流量及び真空度の変化を示すグ
ラフである。
FIG. 2 is a graph showing changes in an exhaust gas flow rate, an acid supply amount, an exhaust gas flow rate, and a degree of vacuum during blowing acid decarburization refining using the decarburization refining apparatus.

【図3】ランスの種類と排気ダクトへの地金の付着速度
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a type of a lance and an adhesion speed of a metal to an exhaust duct.

【図4】吹酸時の火点近傍の部分拡大図である。FIG. 4 is a partially enlarged view of the vicinity of a fire point during blowing acid.

【符号の説明】[Explanation of symbols]

10:脱炭精錬装置、11:取鍋、12:ステンレス溶
鋼、12a:湯面、13:浸漬管、14:ポーラスプラ
グ、15:流量調整弁、16:ランス、17:排気ダク
ト、18:真空度計、19:排ガス流量計、20:シュ
ート、21:貯蔵ホッパー
10: decarburization refining equipment, 11: ladle, 12: stainless steel, 12a: hot water, 13: immersion pipe, 14: porous plug, 15: flow control valve, 16: lance, 17: exhaust duct, 18: vacuum Meter, 19: exhaust gas flow meter, 20: chute, 21: storage hopper

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 取鍋内のステンレス溶鋼に浸漬管を浸漬
し、該浸漬管の内部を減圧すると共に、前記取鍋の底部
から0.6〜15.0Nリットル/(分・溶鋼トン)の
不活性ガスを供給しつつ、前記浸漬管内の湯面の上方よ
り酸素含有ガスを吹き付けて脱炭精錬を行うステンレス
溶鋼の脱炭精錬方法において、前記浸漬管内の排ガス流
速を5〜20m/秒にすることを特徴するステンレス溶
鋼の脱炭精錬方法。
1. An immersion tube is immersed in molten stainless steel in a ladle, the inside of the immersion tube is depressurized, and 0.6 to 15.0 Nl / (min./ton of molten steel) is applied from the bottom of the ladle. In the decarburization and refining method for molten stainless steel, in which an oxygen-containing gas is blown from above the surface of the molten metal in the immersion pipe to perform decarburization while supplying an inert gas, the exhaust gas flow rate in the immersion pipe is reduced to 5 to 20 m / sec. A method for decarburizing and refining molten stainless steel.
【請求項2】 請求項1記載のステンレス溶鋼の脱炭精
錬方法において、前記排ガス流速を前記浸漬管内の湯面
の上方より吹き付ける酸素含有ガス量により調整するス
テンレス溶鋼の脱炭精錬方法。
2. The decarburizing and refining method for molten stainless steel according to claim 1, wherein the flow rate of the exhaust gas is adjusted by the amount of oxygen-containing gas blown from above the molten metal surface in the immersion pipe.
【請求項3】 請求項1又は請求項2記載のステンレス
溶鋼の脱炭精錬方法において、前記排ガス流速を前記浸
漬管内の真空度により調整するステンレス溶鋼の脱炭精
錬方法。
3. The method for decarburizing and refining stainless steel melt according to claim 1, wherein the flow rate of the exhaust gas is adjusted by a degree of vacuum in the immersion pipe.
【請求項4】 請求項1〜3のいずれか1項に記載のス
テンレス溶鋼の脱炭精錬方法において、前記浸漬管の溶
鋼浸漬部の内表面積が前記取鍋内の全溶鋼表面積の0.
1〜0.7であるステンレス溶鋼の脱炭精錬方法。
4. The method for decarburizing and refining molten stainless steel according to any one of claims 1 to 3, wherein the inner surface area of the molten steel immersion portion of the immersion tube is 0.1% of the total molten steel surface area in the ladle.
A decarburization refining method for molten stainless steel of 1 to 0.7.
【請求項5】 取鍋内のステンレス溶鋼に浸漬管を浸漬
し、該浸漬管の内部を減圧すると共に、前記取鍋の底部
から0.6〜15.0Nリットル/(分・溶鋼トン)の
不活性ガスを供給しつつ、前記浸漬管内の湯面の上方に
配置したランスから該湯面に向けて酸素含有ガスを吹き
付けて脱炭精錬を行うステンレス溶鋼の脱炭精錬方法に
おいて、前記酸素含有ガスは、下記式により求まるキャ
ビティー深さLが210〜500mmとなるようにして
吹き付けることを特徴とするステンレス溶鋼の脱炭精錬
方法。 L=Lh×10(-780H/Lh) Lh=0.894×(Q2 /S×n)1/3 ここで、Lはキャビティー深さ(mm)、Hはランスの
先端位置から静止湯面までの距離(m)、LhはH=0
の時のキャビティー深さ(mm)、Qは酸素含有ガスの
流量(Nm3 )、Sはランス吐出口の最狭部の断面積
(m2 )、nはランス吐出口数である。
5. An immersion pipe is immersed in molten stainless steel in a ladle, and the inside of the immersion pipe is depressurized, and 0.6 to 15.0 Nl / (min./ton of molten steel) is applied from the bottom of the ladle. In the decarburizing and refining method for stainless steel molten steel, in which an oxygen-containing gas is blown toward the molten metal surface from a lance disposed above the molten metal surface in the immersion pipe to perform decarburization while supplying an inert gas, The method for decarburizing and refining molten stainless steel, wherein the gas is blown so that the cavity depth L determined by the following equation is 210 to 500 mm. L = Lh × 10 (−780H / Lh) Lh = 0.894 × (Q 2 / S × n) 1/3 where L is the cavity depth (mm), H is the stationary hot water from the tip of the lance. Distance to the surface (m), Lh is H = 0
, The cavity depth (mm), Q is the flow rate of the oxygen-containing gas (Nm 3 ), S is the cross-sectional area of the narrowest portion of the lance discharge port (m 2 ), and n is the number of lance discharge ports.
JP2000025604A 1999-02-08 2000-02-02 Method for decarburizing and refining molten stainless steel Expired - Fee Related JP3619414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025604A JP3619414B2 (en) 1999-02-08 2000-02-02 Method for decarburizing and refining molten stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3021699 1999-02-08
JP11-30216 1999-02-08
JP2000025604A JP3619414B2 (en) 1999-02-08 2000-02-02 Method for decarburizing and refining molten stainless steel

Publications (2)

Publication Number Publication Date
JP2000297315A true JP2000297315A (en) 2000-10-24
JP3619414B2 JP3619414B2 (en) 2005-02-09

Family

ID=26368525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025604A Expired - Fee Related JP3619414B2 (en) 1999-02-08 2000-02-02 Method for decarburizing and refining molten stainless steel

Country Status (1)

Country Link
JP (1) JP3619414B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153337A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp Method for continuously controlling vacuum degree
CN108866277A (en) * 2018-08-27 2018-11-23 北京科技大学 A kind of single-mouth refining furnace and refinery practice of smelting ultralow-carbon stainless steel
CN113337678A (en) * 2021-05-25 2021-09-03 江苏省沙钢钢铁研究院有限公司 Refining method for RH rapid decarburization
CN117230281A (en) * 2023-11-14 2023-12-15 山西同航特钢有限公司 Production process of high-phosphorus IF steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153337A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp Method for continuously controlling vacuum degree
CN108866277A (en) * 2018-08-27 2018-11-23 北京科技大学 A kind of single-mouth refining furnace and refinery practice of smelting ultralow-carbon stainless steel
CN108866277B (en) * 2018-08-27 2023-10-17 北京科技大学 Single-nozzle refining furnace and refining process for smelting ultra-low carbon stainless steel
CN113337678A (en) * 2021-05-25 2021-09-03 江苏省沙钢钢铁研究院有限公司 Refining method for RH rapid decarburization
CN117230281A (en) * 2023-11-14 2023-12-15 山西同航特钢有限公司 Production process of high-phosphorus IF steel
CN117230281B (en) * 2023-11-14 2024-01-23 山西同航特钢有限公司 Production process of high-phosphorus IF steel

Also Published As

Publication number Publication date
JP3619414B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US5902374A (en) Vacuum refining method for molten steel
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP3619414B2 (en) Method for decarburizing and refining molten stainless steel
JP2018104805A (en) Method of increasing temperature of molten iron
JP2017075399A (en) Top-blown lance, vacuum degasser and vacuum degassing treatment method
JP6658365B2 (en) Hot metal refining method
EP1026266B1 (en) Simplified ladle refining method
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JP7380444B2 (en) Top blowing lance for converter dephosphorization treatment and converter blowing method
JP2000212638A (en) Decarburize-refining of molten stainless steel
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
WO2021014918A1 (en) Molten iron dephosphorization method
JPH1112633A (en) Lance for refining molten metal and refining method
JPH07224317A (en) Production of high cleanliness steel
JP2017075400A (en) Top-blown lance, vacuum degasser and vacuum degassing treatment method
JP4470673B2 (en) Vacuum decarburization refining method for molten steel
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JPH02133510A (en) Vacuum treating apparatus
JPS5952921B2 (en) Steel manufacturing method
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JPH09143545A (en) Vacuum oxygen-blowing method of molten steel
JP3784692B2 (en) Blowing method of molten stainless steel in converter.

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R151 Written notification of patent or utility model registration

Ref document number: 3619414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees