JP2000290512A - Polymer alloy and its film - Google Patents

Polymer alloy and its film

Info

Publication number
JP2000290512A
JP2000290512A JP10003599A JP10003599A JP2000290512A JP 2000290512 A JP2000290512 A JP 2000290512A JP 10003599 A JP10003599 A JP 10003599A JP 10003599 A JP10003599 A JP 10003599A JP 2000290512 A JP2000290512 A JP 2000290512A
Authority
JP
Japan
Prior art keywords
polymer
film
liquid crystal
crystal polymer
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10003599A
Other languages
Japanese (ja)
Other versions
JP2000290512A5 (en
JP4091209B2 (en
Inventor
Atsuo Yoshikawa
淳夫 吉川
Kenichi Tsudaka
健一 津高
Toshiaki Sato
敏昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10003599A priority Critical patent/JP4091209B2/en
Publication of JP2000290512A publication Critical patent/JP2000290512A/en
Publication of JP2000290512A5 publication Critical patent/JP2000290512A5/ja
Application granted granted Critical
Publication of JP4091209B2 publication Critical patent/JP4091209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve edge splitting strength by combining a thermoplastic polymer and an amorphous polymer which can form an optically isomeric fused phase by a specified rate without damaging superior characteristics of the thermoplastic polymer. SOLUTION: A polymer alloy is composed of 97.1-99.0 wt.% of a thermoplastic polymer and 1.0-2.9 wt.% (based on the total amount of the polymers) of an amorphous polymer which can form an optically isomeric fused phase. A thermoplastic liquid crystal polymer is preferably a copolymer composed of a p-hydroxy benzoic acid structure unit and a 6-hydroxy-2-naphthoic acid structure unit, most preferably the copolymer containing the former of 60-90 mole %. The amorphous polymer includes, for example, α polysulfone, a polyether sulfone, a polyarylate and the like, and most preferably is a polyarylate composed of an aromatic discarboxylic acid unit and a diphenol unit in terms of stability as a polymer alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的異方性の溶
融相を形成し得る熱可塑性ポリマー(以下、これを熱可
塑性液晶ポリマーと称する)を用いたポリマーアロイに
関する。加えて、加工工程の通過性にとって重要な端裂
強度を向上させたポリマーアロイからなるフィルムに関
する。かかるフィルムは、熱可塑性液晶ポリマーからな
るフィルム(以下、これを熱可塑性液晶ポリマーフィル
ムと称する)の優れた特性を損なうことなく、優れた加
工工程通過性を有するので、電気絶縁材や電気回路基板
材として有用である。ここで、端裂強度とは、フィルム
等の端部に生じる欠損や破れに対する強度をいう。
The present invention relates to a polymer alloy using a thermoplastic polymer capable of forming an optically anisotropic molten phase (hereinafter referred to as a thermoplastic liquid crystal polymer). In addition, the present invention relates to a film made of a polymer alloy having improved edge tear strength, which is important for the passability of a processing step. Since such a film has excellent processability without impairing the excellent properties of a film made of a thermoplastic liquid crystal polymer (hereinafter, referred to as a thermoplastic liquid crystal polymer film), it can be used as an electric insulating material or an electric circuit board. Useful as plate material. Here, the edge crack strength refers to the strength against breakage or breakage occurring at the edge of a film or the like.

【0002】[0002]

【従来の技術】熱可塑性液晶ポリマーは、(1) 金属と直
接熱接着できること、(2) 耐熱性であること、(3) 低吸
湿性であること、(4) 熱寸法安定性に優れること、(5)
湿度寸法安定性に優れること、(6) 高周波数特性に優れ
ること、(7) 有毒なハロゲン、燐、アンチモン等の難燃
剤を含有しなくても難燃性であること、(8) 耐放射線性
に優れること、(9) 熱膨張係数が制御できること、(10)
低温でもしなやかであること、などの特長を有するため
に、電気絶縁材、耐熱性材、回路基板材、ガスバリア材
などの理想的な材料の一つであるとされている。そし
て、そのフィルムまたはシートの実用化が強く要望され
ていた。
2. Description of the Related Art Thermoplastic liquid crystal polymers must (1) be directly heat-bondable to metal, (2) be heat-resistant, (3) have low moisture absorption, and (4) have excellent thermal dimensional stability. ,(Five)
Excellent dimensional stability in humidity, (6) excellent in high frequency characteristics, (7) flame retardant even without containing flame retardants such as toxic halogen, phosphorus, antimony, etc., (8) radiation resistance (9) The coefficient of thermal expansion can be controlled, (10)
It is considered to be one of ideal materials such as an electrical insulating material, a heat-resistant material, a circuit board material, and a gas barrier material because of its features such as flexibility at low temperatures. And there has been a strong demand for the practical use of the film or sheet.

【0003】ところで、従来の熱可塑性液晶ポリマーの
研究開発の視点は、特に、流動方向における良好な耐引
張性ならびに優れた流動性に着目したものであった。例
えば、熱可塑性液晶ポリマーから溶融紡糸によって極め
て細いながらも優れた耐引張性を有する繊維が製造さ
れ、この繊維から織布や編布が製造され使用されてい
る。このような特性は熱可塑性液晶ポリマーの異方性に
起因するものであるが、平面状フィルムに適用する場合
には、この異方性は多くの場合に致命的な欠点であっ
た。その最大の欠点は、液晶ポリマーフィルムが、成形
ダイからの吐出方向に裂けやすい(割れやすい)という
ことであり、平面状フィルムの実用化が阻まれてきた。
[0003] By the way, the viewpoint of the research and development of the conventional thermoplastic liquid crystal polymer has focused particularly on good tensile resistance in the flow direction and excellent flowability. For example, a very thin fiber having excellent tensile resistance is produced from a thermoplastic liquid crystal polymer by melt spinning, and a woven or knitted fabric is produced and used from this fiber. Such properties are due to the anisotropy of the thermoplastic liquid crystal polymer, but when applied to planar films, this anisotropy is often a fatal drawback. The biggest drawback is that the liquid crystal polymer film is easily torn (breakable) in the direction of discharge from the forming die, which has hindered the practical use of the planar film.

【0004】近年、熱可塑性液晶ポリマーの異方性を崩
し、一方向に裂けやすいという欠点を解消した実用的な
フィルムの製法が種々提案されている。その手法は、
(a) 製膜装置および/または製膜方法の改良、(b) 原料
樹脂である熱可塑性液晶ポリマーへの添加剤による改
質、に大別することができる。
[0004] In recent years, there have been proposed various methods for producing practical films which break the anisotropy of the thermoplastic liquid crystal polymer and eliminate the drawback of easily tearing in one direction. The method is
(a) Improvement of a film forming apparatus and / or a film forming method, and (b) Modification of a thermoplastic liquid crystal polymer as a raw material resin with an additive.

【0005】製膜装置および/または製膜方法の改良手
法としては、(1)環状スリットを介して相互に反対方
向に回転する可動ダイリップを用いて溶融液晶ポリマー
を吐出せしめる、いわゆる回転ダイを用いるインフレー
ション製膜方法(特表平3−504948号、特表平4
−506779号)、(2)多層Tダイの各層の吐出方
向を交差させる製膜方法(特開平2−89617号、特
開昭63−264323号)、(3)Tダイで横方向に
磁場をかける製膜方法(特開昭63−242513
号)、(4)Tダイなどを用いて得られる異方性液晶ポ
リマーフィルムを、合成樹脂フィルムとラミネートし、
該ラミネート体を横延伸(MD方向よりも大きい延伸倍
率でTD方向に延伸)するラミネート体延伸法という後
加工方法(特開平7−323506号、特開平7−25
1438号、特開平9−131789号)、(5)静止
環状ダイを用いるインフレーション製膜方法(特開平2
−3430号、特開平2−88212号)などが提案さ
れている。
[0005] As a method of improving the film forming apparatus and / or the film forming method, (1) a so-called rotary die in which a molten liquid crystal polymer is discharged by using movable die lips rotating in opposite directions through an annular slit is used. Inflation film forming method (Tokuheihei 3-504948, Tokuhyohei 4)
506779), (2) a film forming method of intersecting the ejection direction of each layer of a multilayer T-die (Japanese Patent Application Laid-Open No. 2-89617, Japanese Patent Application Laid-Open No. 63-264323), and (3) a magnetic field in the lateral direction using a T-die. Film forming method (Japanese Patent Laid-Open No. 63-242513)
No.), (4) laminating an anisotropic liquid crystal polymer film obtained using a T-die or the like with a synthetic resin film,
A post-processing method called a laminate stretching method in which the laminate is laterally stretched (stretched in the TD direction at a stretching ratio larger than the MD direction) (JP-A-7-323506, JP-A-7-25
No. 1438, JP-A-9-131789), (5) Inflation film forming method using a stationary annular die (JP-A-Heisei 2
-3430 and JP-A-2-88212).

【0006】上記(1)、(2)、(3)は、環状また
は直線状のスリットを有するダイから吐出される溶融状
態の液晶ポリマー分子の配向を、ダイ内部で2方向に配
向せしめることにより、得られるフィルムの液晶ポリマ
ー分子が一方向に配向しないようにする方法である。上
記(4)は、ダイから吐出して得られる一方向に液晶ポ
リマー分子が配向したフィルムを、後加工によって再配
向することにより、一方向の分子配向を崩す方法であ
る。また、上記(5)は、ダイから吐出して得られる一
方向に液晶ポリマー分子が配向した未固化状態(半溶融
状態)のフィルムにおいて、一方向の分子配向を崩す方
法である。
The above (1), (2), and (3) are directed to aligning liquid crystal polymer molecules in a molten state discharged from a die having an annular or linear slit in two directions inside the die. This is a method for preventing the liquid crystal polymer molecules of the obtained film from being oriented in one direction. The method (4) is a method of reorienting a film in which liquid crystal polymer molecules are oriented in one direction obtained by discharging from a die by post-processing, thereby breaking the unidirectional molecular orientation. The method (5) is a method of breaking the unidirectional molecular orientation in a non-solidified (semi-molten) film in which liquid crystal polymer molecules are oriented in one direction obtained by discharging from a die.

【0007】一方、原料樹脂である熱可塑性液晶ポリマ
ーへの添加剤による改質方法を例示すると、無機物を添
加する手法も含めると枚挙にいとまが無いが、液晶コポ
リマーとポリアリールエステルとのポリマーアロイによ
る手法が、米国特許第4,792,587号や特開平6
−49338号に示されている。特に、特開平6−49
338号では、液晶芳香族ポリエステル45〜97重量
%と、非晶質ポリアリールエステル3〜55重量%(ポ
リエステルの総量を基準にして)とから成るポリマーア
ロイが開示されているが、その手法の本質は、多量に添
加した非晶質ポリアリールエステルで希釈することによ
り、液晶芳香族ポリエステルが有する異方性の発現を抑
制したものであり、非晶質ポリアリールエステルの添加
量が増えるほど、異方性は改良されるものの、液晶芳香
族ポリエステルの優れた特性である機械的性質(例え
ば、引張り弾性率や曲げ応力および曲げ弾性率)が弱く
なるだけでなく、本発明の目的に関連性があると思われ
る引裂強さの低下が発生することが、その実施例1に報
告されている。
On the other hand, the method of modifying the thermoplastic liquid crystal polymer as a raw material resin with an additive can be exemplified by a number of methods including the method of adding an inorganic substance. An alloy method is disclosed in U.S. Pat.
No. 49338. In particular, JP-A-6-49
No. 338 discloses a polymer alloy comprising 45 to 97% by weight of a liquid crystal aromatic polyester and 3 to 55% by weight (based on the total amount of polyester) of an amorphous polyarylester. The essence is that by diluting with a large amount of added amorphous polyarylester, the expression of anisotropy of the liquid crystal aromatic polyester is suppressed, and as the amount of amorphous polyarylester added increases, Although the anisotropy is improved, not only the mechanical properties (eg, tensile modulus, bending stress and flexural modulus), which are excellent properties of the liquid crystal aromatic polyester, are weakened, but also the relevance to the object of the present invention is reduced. It is reported in Example 1 that a decrease in tear strength, which seems to be caused, occurs.

【0008】これら熱可塑性液晶ポリマーの異方性を崩
す手法は、熱可塑性液晶ポリマーフィルムまたはシート
の特定の方向への裂けやすさ(割れやすさ)という欠点
を解消できるものの、絶対的な強度(端裂強度)の向上
は達成されていないのが実状である。
[0008] These techniques for breaking the anisotropy of the thermoplastic liquid crystal polymer can eliminate the disadvantage that the thermoplastic liquid crystal polymer film or sheet is easily ruptured in a specific direction (easiness of cracking), but the absolute strength ( In fact, improvement in end crack strength) has not been achieved.

【0009】[0009]

【発明が解決しようとする課題】この端裂強度の改善
は、熱可塑性液晶ポリマーを用いた加工製品の特性向上
のみならず、その加工工程の通過性を改良することがで
きるので、製造工程上の重要な意義を持っている。端裂
強度が低い場合に発生する工程上の問題点を例示する
と、フィルムの幅方向端部に欠損や破れが発生し易
く、熱可塑性液晶ポリマーフィルムをRoll To Rollで加
工した時に掛かる張力によって、このような欠損や破れ
を起点としてフィルムが破断する、熱可塑性液晶ポリ
マーフィルムを裁断する時の裁断刃や押え治具による端
裂応力に耐え切れずにフィルムが破断する、熱可塑性
液晶ポリマーフィルムの開孔部をネジ止めする際にフィ
ルムに掛かる回転歪み応力に耐え切れずにフィルムが破
断する、等の重大な問題点を挙げることができる。
The improvement of the edge crack strength not only improves the properties of the processed product using the thermoplastic liquid crystal polymer, but also improves the passability of the processing step. Has significant significance. To illustrate the problems in the process that occurs when the end crack strength is low, the chip is likely to cause chipping or tearing in the width direction end of the film, and the tension applied when the thermoplastic liquid crystal polymer film is processed by Roll To Roll, The film breaks from such a defect or tear as a starting point. There are serious problems such as breaking of the film without being able to withstand the rotational strain stress applied to the film when screwing the opening.

【0010】本発明の目的は、熱可塑性液晶ポリマーの
優れた特性を損なうことなく、端裂強度の向上を図るこ
とができるポリマーアロイを提供することにある。
[0010] An object of the present invention is to provide a polymer alloy capable of improving the edge crack strength without impairing the excellent properties of the thermoplastic liquid crystal polymer.

【0011】[0011]

【課題を解決するための手段】熱可塑性液晶ポリマーの
端裂強度を向上させるために、本発明者らは、より精緻
な実験・観察・考察を重ねた結果、原料樹脂が、熱可塑
性液晶ポリマー97.1〜99.0重量%と、非晶性ポ
リマー1.0〜2.9重量%(ポリマーの総量を基準に
して)とからなるポリマーアロイであることにより、そ
の目的が達成できることを見い出した。本発明は、非晶
性ポリマーのブレンド比率が、当分野に従事する研究開
発者が想定するよりも極めて少量であるという意外な知
見に基づいている。
Means for Solving the Problems In order to improve the edge tear strength of the thermoplastic liquid crystal polymer, the present inventors have conducted more detailed experiments, observations and considerations. It has been found that a polymer alloy comprising 97.1 to 99.0% by weight and 1.0 to 2.9% by weight (based on the total amount of the polymer) of an amorphous polymer achieves the object. Was. The present invention is based on the surprising finding that the blending ratio of the amorphous polymer is much lower than expected by the research and development personnel engaged in the field.

【0012】本発明によれぱ、熱可塑性液晶ポリマー9
7.1〜99.0重量%に、非晶性ポリマーを1.0〜
2.9重量%添加することによって、熱可塑性液晶ポリ
マーフィルムの優れた特性を損なうことなく、全く非晶
性ポリマーを添加しない場合と比較して、端裂強度を
2.5倍以上に向上させることができる。
According to the present invention, the thermoplastic liquid crystal polymer 9
The amorphous polymer is added in an amount of 1.0 to 9 to 99.0% by weight.
By adding 2.9% by weight, the end crack strength is improved to 2.5 times or more as compared with the case where no amorphous polymer is added without impairing the excellent properties of the thermoplastic liquid crystal polymer film. be able to.

【0013】本発明に使用される熱可塑性液晶ポリマー
の原料は特に限定されるものではないが、その具体例と
して、以下に例示する(イ)から(ニ)に分類される化
合物およびその誘導体から導かれる公知のサーモトロピ
ック液晶ポリエステルおよびサーモトロピック液晶ポリ
エステルアミドを挙げることができる。但し、光学的に
異方性の溶融相を形成し得るポリマーを得るためには、
各々の原料化合物の組み合わせには適当な範囲があるこ
とは言うまでもない。
The raw material of the thermoplastic liquid crystal polymer used in the present invention is not particularly limited, and specific examples thereof include compounds (a) to (d) and derivatives thereof shown below. There may be mentioned known thermotropic liquid crystal polyesters and thermotropic liquid crystal polyesteramides. However, in order to obtain a polymer capable of forming an optically anisotropic molten phase,
It goes without saying that there is an appropriate range for each combination of the starting compounds.

【0014】とりわけ、p−ヒドロキシ安息香酸構造単
位と6−ヒドロキシ−2−ナフトエ酸構造単位からなる
共重合物であり、p−ヒドロキシ安息香酸構造単位が6
0〜90モル%となるように合成した共重合物が、本発
明の効果が特に発揮される熱可塑性液晶ポリマーとして
例示される。
In particular, it is a copolymer comprising a p-hydroxybenzoic acid structural unit and a 6-hydroxy-2-naphthoic acid structural unit, wherein the p-hydroxybenzoic acid structural unit is 6
A copolymer synthesized so as to be 0 to 90 mol% is exemplified as a thermoplastic liquid crystal polymer in which the effects of the present invention are particularly exhibited.

【0015】(イ)芳香族または脂肪族ジヒドロキシ化
合物(代表例は表1参照)
(A) Aromatic or aliphatic dihydroxy compounds (see Table 1 for typical examples)

【0016】[0016]

【表1】 [Table 1]

【0017】(ロ)芳香族または脂肪族ジカルボン酸
(代表例は表2参照)
(B) Aromatic or aliphatic dicarboxylic acids (for typical examples, see Table 2)

【0018】[0018]

【表2】 [Table 2]

【0019】(ハ)芳香族ヒドロキシカルボン酸(代表
例は表3参照)
(C) Aromatic hydroxycarboxylic acids (see Table 3 for typical examples)

【0020】[0020]

【表3】 [Table 3]

【0021】(ニ)芳香族ジアミン、芳香族ヒドロキシ
アミンまたは芳香族アミノカルボン酸(代表例は表4参
照)
(D) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (for typical examples, see Table 4)

【0022】[0022]

【表4】 [Table 4]

【0023】これらの原料化合物から得られる熱可塑性
液晶ポリマーの代表例として表5に示す構造単位を有す
る共重合体(a)〜(e)を挙げることができる。
Representative examples of thermoplastic liquid crystal polymers obtained from these starting compounds include copolymers (a) to (e) having the structural units shown in Table 5.

【0024】[0024]

【表5】 [Table 5]

【0025】また、本発明に使用される熱可塑性液晶ポ
リマーとしては、フィルムの所望の耐熱性および加工性
を得る目的においては、約200〜約400℃の範囲
内、とりわけ約250〜約350℃の範囲内に融点を有
するものが好ましいが、フィルム製造の観点からは、比
較的低い融点のものが好ましい。したがって、より高い
耐熱性や融点が必要な場合には、一旦得られたフィルム
を加熱処理することによって、所望の耐熱性や融点にま
で高めることが有利である。加熱処理の条件の一例を説
明すれば、一旦得られたフィルムの融点が283℃の場
合でも、260℃で5時間加熱すれば、融点は320℃
になる。
The thermoplastic liquid crystal polymer used in the present invention may have a temperature in the range of about 200 to about 400 ° C., particularly about 250 to about 350 ° C. for the purpose of obtaining the desired heat resistance and processability of the film. Are preferred, but from the viewpoint of film production, those having a relatively low melting point are preferred. Therefore, when a higher heat resistance and a higher melting point are required, it is advantageous to heat the obtained film to a desired heat resistance and a higher melting point. To explain an example of the condition of the heat treatment, even if the melting point of the obtained film is 283 ° C., if the film is heated at 260 ° C. for 5 hours, the melting point becomes 320 ° C.
become.

【0026】本発明で使用される非晶性ポリマーとして
は、ポリスルホン、ポリエーテルスルホン、ポリフェニ
レンスルファイド、ポリカーボネート、ポリエチレンイ
ソフタレート、ポリアリレートなどの非晶性を有するポ
リマーを例示することができる。
Examples of the non-crystalline polymer used in the present invention include non-crystalline polymers such as polysulfone, polyether sulfone, polyphenylene sulfide, polycarbonate, polyethylene isophthalate and polyarylate.

【0027】とりわけ、本発明に使用される熱可塑性液
晶ポリマーとのブレンドが均一であり、いわゆるポリマ
ーアロイとしての安定性(押出成形での分散均一性や長
期熱安定性などの特性)の点で、芳香族ジカルボン酸単
位とジフェノール単位とから構成される非晶性ポリアリ
レートが好ましい。さらに、使用する熱可塑性液晶ポリ
マーに近接した融点を持つように調整する目的で、非晶
性ポリアリレートを構成する芳香族ジカルボン酸とし
て、イソフタル酸もしくはテレフタル酸またはイソフタ
ル酸とテレフタル酸との混合物を用いることが好まし
い。
In particular, the blend with the thermoplastic liquid crystal polymer used in the present invention is uniform, and the stability as a so-called polymer alloy (characteristics such as dispersion uniformity in extrusion molding and long-term thermal stability) is obtained. An amorphous polyarylate comprising an aromatic dicarboxylic acid unit and a diphenol unit is preferred. Further, for the purpose of adjusting the melting point close to the thermoplastic liquid crystal polymer to be used, isophthalic acid or terephthalic acid or a mixture of isophthalic acid and terephthalic acid as an aromatic dicarboxylic acid constituting the amorphous polyarylate. Preferably, it is used.

【0028】非晶性ポリアリレートを構成するジフェノ
ール単位としては、入手の容易性からビスフェノールを
用いることが好ましい。このような非晶性ポリアリレー
トとしては、特に限定されるわけではないが、ユニチカ
株式会社製のUポリマーや米国のセラニーズ社製のデュ
レルをその一例として挙げることができる。
As the diphenol unit constituting the amorphous polyarylate, bisphenol is preferably used from the viewpoint of easy availability. Examples of such an amorphous polyarylate include, but are not particularly limited to, U Polymer manufactured by Unitika Co., Ltd. and Durel manufactured by Celanese Corporation in the United States.

【0029】本発明のポリマーアロイは、1種以上の熱
可塑性液晶ポリマーと1種以上の非晶性ポリマーとを含
むことができる。本発明のポリマーアロイ中の非晶性ポ
リマーの割合は、1.0〜2.9重量%であり、熱可塑
性液晶ポリマーの割合は97.1〜99.0重量%であ
る。非晶性ポリマーの割合が1.0重量%未満である
と、十分な端裂強度が発現されず、本発明の目的が達成
できない。一方、2.9重量%よりも多量に用いると、
端裂強度が逆に低下するとともに、熱可塑性液晶ポリマ
ーの優れた特長である電気特性、低吸湿性、湿度寸法安
定性、熱膨張係数制御性、等の物性低下が発生する。非
晶性ポリアリレートの割合としては、2〜2.5重量%
が好ましい。
[0029] The polymer alloys of the present invention can include one or more thermoplastic liquid crystal polymers and one or more amorphous polymers. The proportion of the amorphous polymer in the polymer alloy of the present invention is 1.0 to 2.9% by weight, and the proportion of the thermoplastic liquid crystal polymer is 97.1 to 99.0% by weight. When the proportion of the amorphous polymer is less than 1.0% by weight, sufficient end tear strength is not exhibited, and the object of the present invention cannot be achieved. On the other hand, when used in an amount larger than 2.9% by weight,
Conversely, the end crack strength is reduced, and physical properties such as electrical characteristics, low moisture absorption, humidity dimensional stability, and thermal expansion coefficient controllability, which are excellent characteristics of the thermoplastic liquid crystal polymer, are generated. The ratio of the amorphous polyarylate is 2 to 2.5% by weight.
Is preferred.

【0030】また、本発明のポリマーアロイは、熱可塑
性ポリマーの公知の方法によって混練・造粒することが
できるが、非晶性ポリマーの量が少ないので、安定した
混練状態を提供するには、二軸式スクリュー混練設備を
使用したり、混練部に逆流機構を備えたスクリューや、
混練部の圧力、温度を高める工夫をしたスクリューを備
えた混練設備を使用するのが好ましい。
The polymer alloy of the present invention can be kneaded and granulated by a known thermoplastic polymer method. However, since the amount of the amorphous polymer is small, to provide a stable kneaded state, Use a twin screw kneading equipment, or a screw with a backflow mechanism in the kneading section,
It is preferable to use a kneading facility equipped with a screw devised to increase the pressure and temperature of the kneading section.

【0031】本発明において、上記のポリマーアロイか
ら、前述した公知の方法またはその組合せの手段を利用
することによって、ポリマーアロイフィルムを製造する
ことができる。製造方法としては、例えば、周知のTダ
イ製膜延伸法、ラミネート体延伸法、インフレーション
法等が工業的に有利である。特にインフレーション法で
は、フィルムの機械軸方向(以下、MD方向と略す)だ
けでなく、これと直交する方向(以下、TD方向と略
す)にも応力が加えられるため、MD方向とTD方向に
おける機械的性質および熱的性質のバランスのとれた二
軸配向フィルムを容易に得ることができる。
In the present invention, a polymer alloy film can be produced from the above-mentioned polymer alloy by utilizing the above-mentioned known method or a combination thereof. As the production method, for example, a well-known T-die film forming and stretching method, a laminate stretching method, an inflation method and the like are industrially advantageous. In particular, in the inflation method, stress is applied not only in the mechanical axis direction of the film (hereinafter abbreviated as the MD direction) but also in a direction orthogonal to the machine direction (hereinafter abbreviated as the TD direction). A biaxially oriented film having a good balance of thermal properties and thermal properties can be easily obtained.

【0032】また、フィルムのMD方向だけでなく、T
D方向にも応力を加える方法として、(1)環状ダイの
環状スリットの内周壁と外周壁で囲まれたギャップ空間
における溶融液晶ポリマーの走行距離を十分に長くし
て、内周壁および外周壁に起因する溶融液晶ポリマー流
れに平行な剪断力を与える方法、(2)回転ダイによっ
て、溶融液晶ポリマー流れに斜め方向への応力を与える
方法、(3)溶融液晶ポリマー流れを混合・均一化させ
るマンドレルにおいて、例えば、(3−1)斜め格子状
に配列した半球を多数配置したり、(3−2)マンドレ
ル内壁に設けられたスパイラル溝の巻き方向と逆のスパ
イラル溝をマンドレル外壁に設けるなどの工夫を施した
マンドレルを用いて液晶ポリマーを配向する方法などを
用いることができる。
In addition to the MD direction of the film,
As a method of applying a stress also in the D direction, (1) the traveling distance of the molten liquid crystal polymer in the gap space surrounded by the inner peripheral wall and the outer peripheral wall of the annular slit of the annular die is made sufficiently long so that the inner peripheral wall and the outer peripheral wall are A method of applying a shearing force parallel to the flow of the molten liquid crystal polymer, (2) a method of applying an oblique stress to the flow of the molten liquid crystal polymer by a rotating die, and (3) a mandrel for mixing and homogenizing the flow of the molten liquid crystal polymer. For example, (3-1) arranging a large number of hemispheres arranged in an oblique lattice pattern, (3-2) providing a spiral groove on the mandrel outer wall opposite to the winding direction of the spiral groove provided on the mandrel inner wall, and the like. A method of orienting a liquid crystal polymer using a devised mandrel can be used.

【0033】上記の二軸配向性は、二軸配向ポリマーア
ロイフィルムの分子配向度SORを指標として用いるこ
とができるが、分子配向度SORを1.3以下とするこ
とが好ましい。二軸配向ポリマーアロイフィルムは、上
記のMD方向とTD方向における機械的性質および熱的
性質のバランスが良好であるので、より実用性が高い。
The above-mentioned biaxial orientation can be determined by using the degree of molecular orientation SOR of the biaxially oriented polymer alloy film as an index. The degree of molecular orientation SOR is preferably set to 1.3 or less. The biaxially oriented polymer alloy film is more practical because it has a good balance of mechanical properties and thermal properties in the MD and TD directions.

【0034】ここで、分子配向度SOR(Segment Orie
ntation Ratio )とは、分子を構成するセグメントにつ
いての分子配向の度合いを与える指標をいい、従来のM
OR(Molecular Orientation Ratio )とは異なり、物
体の厚さを考慮した値である。この分子配向度SOR
は、以下のように算出される。
Here, the degree of molecular orientation SOR (Segment Orie
The term “ntation ratio” refers to an index that gives the degree of molecular orientation of a segment constituting a molecule.
Unlike OR (Molecular Orientation Ratio), it is a value in consideration of the thickness of the object. This molecular orientation degree SOR
Is calculated as follows.

【0035】まず、周知のマイクロ波分子配向度測定機
において、二軸配向ポリマーアロイフィルムを、マイク
ロ波の進行方向にフィルム面が垂直になるように、マイ
クロ波共振導波管中に挿入し、該フィルムを透過したマ
イクロ波の電場強度(マイクロ波透過強度)が測定され
る。そして、この測定値に基づいて、次式により、m値
(屈折率と称する)が算出される。 m=(Zo/△z)X[1−νmax /νo] ただし、Zoは装置定数、△zは物体の平均厚、νmax
はマイクロ波の振動数を変化させたとき、最大のマイク
ロ波透過強度を与える振動数、νoは平均厚ゼロのとき
(すなわち物体がないとき)の最大マイクロ波透過強度
を与える振動数である。
First, in a well-known microwave molecular orientation measuring instrument, a biaxially oriented polymer alloy film is inserted into a microwave resonant waveguide such that the film surface is perpendicular to the direction in which the microwave travels. The electric field intensity (microwave transmission intensity) of the microwave transmitted through the film is measured. Then, based on the measured value, an m value (referred to as a refractive index) is calculated by the following equation. m = (Zo / △ z) X [1-νmax / νo] where Zo is a device constant, Δz is the average thickness of the object, and νmax
Is the frequency that gives the maximum microwave transmission intensity when the frequency of the microwave is changed, and vo is the frequency that gives the maximum microwave transmission intensity when the average thickness is zero (that is, when there is no object).

【0036】次に、マイクロ波の振動方向に対する物体
の回転角が0°のとき、つまり、マイクロ波の振動方向
と、物体の分子が最もよく配向されている方向であっ
て、最小マイクロ波透過強度を与える方向とが合致して
いるときのm値をm0 、回転角が90°のときのm値を
m90として、分子配向度SORはm0 /m90により
算出される。
Next, when the rotation angle of the object with respect to the vibration direction of the microwave is 0 °, that is, the vibration direction of the microwave and the direction in which the molecules of the object are most oriented, and the minimum microwave transmission The degree of molecular orientation SOR is calculated by m0 / m90, where m0 when the direction in which the strength is given coincides with m0 and m when the rotation angle is 90 ° are m90.

【0037】なお、本発明の予期せぬ効果として、上記
インフレーション法において製膜安定性が改良できる結
果を得ることができた。すなわち、環状ダイから押出さ
れた溶融樹脂が膨張と冷却を受けながら固化することに
より、形成されるバブル(環状ダイ近傍のチューブ状フ
ィルム)の横揺れが防止され、変位量が少なくなり、安
定した製膜が維持された。
As an unexpected effect of the present invention, a result that the film formation stability can be improved by the inflation method was obtained. That is, the molten resin extruded from the annular die is solidified while undergoing expansion and cooling, thereby preventing the bubble (tube-like film near the annular die) from being rolled, reducing the displacement, and stabilizing the bubble. Film formation was maintained.

【0038】[0038]

【実施例】以下、本発明を具体的に実施例を用いて説明
するが、本発明はこれら実施例になんら限定されるもの
ではない。なお、以下の実施例において、融点、膜厚、
バブル揺れ幅および端裂強度の評価は以下の方法により
行った。 (1)融点 示差走査熱量計を用いて、熱挙動を観察して得た。すな
わち、原料を20℃/分の速度で昇温して完全に溶融さ
せた後、溶融物を50℃/分の速度で50℃まで急冷
し、再び20℃/分の速度で昇温した時に現れる吸熱ピ
ークの位置を、融点として記録した。 (2)膜厚 デジタル厚み計(株式会社ミツトヨ製)を用い、得られ
たフィルムをTD方向に1cm間隔で測定し、中央部お
よび端部から任意に選んだ10点の平均値を膜厚とし
た。 (3)バブル揺れ幅 ダイから押出された溶融樹脂のバブルが膨張を完了した
位置から、MD方向に5cm下流の位置におけるバブル
端部のTD方向の変位量を測定し、バブル揺れ幅とし
た。変動幅が5mm以下の場合を優良、10〜5mmを
良好、10mm以上を不良とした。 (4)端裂強度 得られたフィルムから、幅10mm、長さ200mmの
試料を5本採取して、JIS C2318に準じて、1
0mm/分の速度で引張って引き裂けた時の値を測定し
た。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. In the following examples, the melting point, film thickness,
The evaluation of the bubble swing width and the end crack strength was performed by the following methods. (1) Melting point Obtained by observing the thermal behavior using a differential scanning calorimeter. That is, after the raw material is heated at a rate of 20 ° C./min to completely melt it, the melt is rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and then heated again at a rate of 20 ° C./min. The position of the endothermic peak that appeared was recorded as the melting point. (2) Film thickness Using a digital thickness gauge (manufactured by Mitutoyo Corporation), the obtained film is measured at 1 cm intervals in the TD direction, and the average value of 10 points arbitrarily selected from the center and the edge is defined as the film thickness. did. (3) Bubble swing width The displacement amount of the bubble end in the TD direction at a position 5 cm downstream in the MD direction from the position where the bubble of the molten resin extruded from the die has completed expansion was measured and defined as the bubble swing width. The case where the variation width was 5 mm or less was excellent, the case where 10-5 mm was good, and the case where 10 mm or more was bad. (4) End tear strength Five samples having a width of 10 mm and a length of 200 mm were sampled from the obtained film, and each sample was taken as 1 according to JIS C2318.
The value at the time of tearing by pulling at a speed of 0 mm / min was measured.

【0039】〔実施例1〕p−ヒドロキシ安息香酸75
モル%と6−ヒドロキシ−2−ナフトエ酸25モル%の
共重合物で融点が285℃の熱可塑性液晶ポリマーを9
8重量%、非晶性ポリマーであるポリアリレート樹脂
(ユニチカ株式会社製、Uポリマー)を2重量%になる
ように混合し、二軸押出機で溶融混練しながら15kg
/時で押出し、連続式ペレタイザーで切断してポリマー
アロイ樹脂を得た。次いで、ダイクリアランス500μ
m、アウターリップ内径40mm、インナーリップ外径
39mm、ダイランド部長さ20mmのインフレーショ
ンダイより吐出量9Kg/時で溶融押出し、ドラフト比
=5.2、ブロー比=3.2の条件で延伸し、厚み30
μmの二軸配向ポリマーアロイフィルムを得た。インフ
レーション成形中のバブルの横揺れは6mmと少なく良
好であった。得られた二軸配向ポリマーアロイフィルム
の分子配向度SORは1.03であり、端裂強度は4.
2kg/cmであった。これらの結果を表6に示す。
Example 1 p-hydroxybenzoic acid 75
% Of a thermoplastic liquid crystal polymer having a melting point of 285 ° C. and a copolymer of 25% by mole of 6-hydroxy-2-naphthoic acid and
8% by weight, a polyarylate resin (U-polymer, manufactured by Unitika Ltd.), which is an amorphous polymer, was mixed to 2% by weight, and melt-kneaded with a twin-screw extruder to 15 kg.
/ H and extruded with a continuous pelletizer to obtain a polymer alloy resin. Then, die clearance 500μ
m, melt-extrusion from an inflation die having an outer lip inner diameter of 40 mm, an inner lip outer diameter of 39 mm, and a die land length of 20 mm at a discharge rate of 9 kg / hour, and stretched under the conditions of a draft ratio of 5.2, a blow ratio of 3.2, and a thickness. 30
A μm biaxially oriented polymer alloy film was obtained. The roll of the bubble during inflation molding was as small as 6 mm, which was good. The molecular orientation degree SOR of the obtained biaxially oriented polymer alloy film was 1.03, and the end crack strength was 4.0.
It was 2 kg / cm. Table 6 shows the results.

【0040】[0040]

【表6】 [Table 6]

【0041】〔実施例2〕熱可塑性液晶ポリマーの量を
97.5重量%とし、ポリアリレート樹脂の量を2.5
重量%とした以外は、実施例1と同様にして、厚み30
μmの二軸配向ポリマーアロイフィルムを得た。インフ
レーション成形中のバブルの横揺れは3mmと極めて少
なく、優良であった。得られた二軸配向ポリマーアロイ
フィルムの分子配向度SORは1.02、端裂強度は
4.8kg/cmであった。これらの結果を表6に示
す。
Example 2 The amount of the thermoplastic liquid crystal polymer was 97.5% by weight, and the amount of the polyarylate resin was 2.5%.
The same as in Example 1 except that the thickness was 30% by weight.
A μm biaxially oriented polymer alloy film was obtained. The bubble sway during inflation molding was extremely small at 3 mm, which was excellent. The molecular orientation degree SOR of the obtained biaxially oriented polymer alloy film was 1.02, and the end tear strength was 4.8 kg / cm. Table 6 shows the results.

【0042】〔実施例3〕熱可塑性液晶ポリマーの量を
97.1重量%とし、ポリアリレート樹脂の量を2.9
重量%とした以外は、実施例1と同様にして、厚み30
μmの二軸配向ポリマーアロイフィルムを得た。インフ
レーション成形中のバブルの横揺れは7mmと少なく、
良好であった。得られた二軸配向ポリマーアロイフィル
ムの分子配向度SORは1.03、端裂強度は3.5k
g/cmであった。これらの結果を表6に示す。
Example 3 The amount of the thermoplastic liquid crystal polymer was 97.1% by weight, and the amount of the polyarylate resin was 2.9.
The same as in Example 1 except that the thickness was 30% by weight.
A μm biaxially oriented polymer alloy film was obtained. The roll of the bubble during inflation molding is as small as 7 mm,
It was good. The molecular orientation degree SOR of the obtained biaxially oriented polymer alloy film was 1.03, and the end crack strength was 3.5 k.
g / cm. Table 6 shows the results.

【0043】〔比較例1〕熱可塑性液晶ポリマーの量を
100重量%(すなわち、ポリアリレート樹脂をまった
く混合しないで)使用した以外は、実施例1と同様にし
て、厚み30μmの二軸配向熱可塑性液晶ポリマーフィ
ルムを得た。インフレーション成形中のバブルの横揺れ
は12mmと大きく、不良であった。得られた二軸配向
熱可塑性液晶ポリマーフィルムの分子配向度SORは
1.05、端裂強度は1.2kg/cmであった。これ
らの結果を表6に示す。
Comparative Example 1 A 30 μm thick biaxially oriented heat was prepared in the same manner as in Example 1 except that the amount of the thermoplastic liquid crystal polymer was used at 100% by weight (ie, without mixing the polyarylate resin at all). A plastic liquid crystal polymer film was obtained. The lateral sway of the bubble during the inflation molding was as large as 12 mm, which was poor. The molecular orientation degree SOR of the obtained biaxially oriented thermoplastic liquid crystal polymer film was 1.05, and the end tear strength was 1.2 kg / cm. Table 6 shows the results.

【0044】〔比較例2〕熱可塑性液晶ポリマーの量を
95重量%とし、ポリアリレート樹脂の量を5重量%と
した以外は、実施例1と同様にして、厚み30μmの二
軸配向ポリマーアロイフィルムを得た。インフレーショ
ン成形中のバブルの横揺れは7mmと少なく、良好であ
った。得られた二軸配向ポリマーアロイフィルムの分子
配向度SORは1.03、端裂強度は2.6kg/cm
であった。これらの結果を表6に示す。
Comparative Example 2 A biaxially oriented polymer alloy having a thickness of 30 μm was prepared in the same manner as in Example 1 except that the amount of the thermoplastic liquid crystal polymer was 95% by weight and the amount of the polyarylate resin was 5% by weight. A film was obtained. The roll of the bubble during inflation molding was as small as 7 mm, which was good. The molecular orientation degree SOR of the obtained biaxially oriented polymer alloy film was 1.03, and the end tear strength was 2.6 kg / cm.
Met. Table 6 shows the results.

【0045】[0045]

【発明の効果】本発明によれば、熱可塑性液晶ポリマー
の優れた特性を損なうことなく、非晶性ポリマーを少量
添加することによって、全く非晶性ポリマーを添加しな
い場合と比較して、端裂強度を2.5倍以上に向上させ
ることができる。
According to the present invention, by adding a small amount of the amorphous polymer without impairing the excellent properties of the thermoplastic liquid crystal polymer, the end effect can be improved as compared with the case where the amorphous polymer is not added at all. The crack strength can be improved to 2.5 times or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 敏昭 岡山県倉敷市酒津1621番地 株式会社クラ レ内 Fターム(参考) 4F071 AA43 AA44 AA45 AA48 AA50 AA57 AA62 AA64 AF12 AF16 AH12 AH13 BA01 BB07 BB09 BC01 4J002 CF042 CF161 CF162 CF181 CG002 CL081 CN012 CN032 GQ01  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toshiaki Sato 1621 Sazu, Kurashiki-shi, Okayama Prefecture F-term (reference) 4F071 AA43 AA44 AA45 AA48 AA50 AA57 AA62 AA64 AF12 AF16 AH12 AH13 BA01 BB07 BB09 BC01 4J002 CF042 CF161 CF162 CF181 CG002 CL081 CN012 CN032 GQ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学的異方性の溶融相を形成し得る熱可
塑性ポリマー97.1〜99.0重量%と、非晶性ポリ
マー1.0〜2.9重量%(ポリマーの総量を基準にし
て)とからなることを特徴とするポリマーアロイ。
1. A thermoplastic polymer capable of forming an optically anisotropic molten phase in an amount of 97.1 to 99.0% by weight and an amorphous polymer in an amount of 1.0 to 2.9% by weight (based on the total amount of the polymer). A polymer alloy comprising:
【請求項2】 請求項1のポリマーアロイからなるフィ
ルム。
2. A film comprising the polymer alloy according to claim 1.
JP10003599A 1999-04-07 1999-04-07 Polymer alloy and film thereof Expired - Lifetime JP4091209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003599A JP4091209B2 (en) 1999-04-07 1999-04-07 Polymer alloy and film thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003599A JP4091209B2 (en) 1999-04-07 1999-04-07 Polymer alloy and film thereof

Publications (3)

Publication Number Publication Date
JP2000290512A true JP2000290512A (en) 2000-10-17
JP2000290512A5 JP2000290512A5 (en) 2005-11-04
JP4091209B2 JP4091209B2 (en) 2008-05-28

Family

ID=14263283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003599A Expired - Lifetime JP4091209B2 (en) 1999-04-07 1999-04-07 Polymer alloy and film thereof

Country Status (1)

Country Link
JP (1) JP4091209B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103623A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Method for manufacturing stretched laminate and apparatus therefor
JP2007187892A (en) * 2006-01-13 2007-07-26 Canon Electronics Inc Light shielding blade and optical path opening/closing device
JP2007326885A (en) * 2006-06-06 2007-12-20 Dainippon Plastics Co Ltd Tubular molded article and method for producing the same
JP2020070369A (en) * 2018-10-31 2020-05-07 Jxtgエネルギー株式会社 Resin composition capable of reducing anisotropy by melting, and resin molded article made of the resin composition
JP2020193261A (en) * 2019-05-27 2020-12-03 上野製薬株式会社 Liquid crystal polymer composition
WO2021106764A1 (en) 2019-11-29 2021-06-03 デンカ株式会社 Method for producing lcp film for circuit boards, and lcp film for circuit boards melt extruded from t-die
KR20230037046A (en) 2020-09-30 2023-03-15 후지필름 가부시키가이샤 Method for manufacturing liquid crystal polymer film, flexible copper-clad laminate and liquid crystal polymer film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740515B (en) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103623A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Method for manufacturing stretched laminate and apparatus therefor
JP2007187892A (en) * 2006-01-13 2007-07-26 Canon Electronics Inc Light shielding blade and optical path opening/closing device
JP2007326885A (en) * 2006-06-06 2007-12-20 Dainippon Plastics Co Ltd Tubular molded article and method for producing the same
JP7237524B2 (en) 2018-10-31 2023-03-13 Eneos株式会社 A resin composition capable of alleviating anisotropy by melting, and a resin molded article made of the resin composition
JP2020070369A (en) * 2018-10-31 2020-05-07 Jxtgエネルギー株式会社 Resin composition capable of reducing anisotropy by melting, and resin molded article made of the resin composition
WO2020090823A1 (en) * 2018-10-31 2020-05-07 Jxtgエネルギー株式会社 Resin composition capable of relaxing anisotropy by melting and resin molded article formed of said resin composition
CN112969740A (en) * 2018-10-31 2021-06-15 引能仕株式会社 Resin composition capable of relaxing anisotropy by melting and resin molded article formed from the resin composition
US20210371646A1 (en) * 2018-10-31 2021-12-02 Eneos Corporation Resin composition capable of relaxing anisotropy by fusing and resin molded article comprising the same
US11781009B2 (en) 2018-10-31 2023-10-10 Eneos Corporation Resin composition capable of relaxing anisotropy by fusing and resin molded article comprising the same
CN112969740B (en) * 2018-10-31 2023-09-29 引能仕株式会社 Resin composition capable of reducing anisotropy by melting and resin molded article formed from the resin composition
JP2020193261A (en) * 2019-05-27 2020-12-03 上野製薬株式会社 Liquid crystal polymer composition
WO2021106764A1 (en) 2019-11-29 2021-06-03 デンカ株式会社 Method for producing lcp film for circuit boards, and lcp film for circuit boards melt extruded from t-die
KR20220111290A (en) 2019-11-29 2022-08-09 덴카 주식회사 Manufacturing method of LCP film for circuit board, and T-die melt-extruded LCP film for circuit board
CN114746484A (en) * 2019-11-29 2022-07-12 电化株式会社 Method for producing LCP film for circuit board, and LCP film melt-extruded from T die for circuit board
KR20230037046A (en) 2020-09-30 2023-03-15 후지필름 가부시키가이샤 Method for manufacturing liquid crystal polymer film, flexible copper-clad laminate and liquid crystal polymer film

Also Published As

Publication number Publication date
JP4091209B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US6528164B1 (en) Process for producing aromatic liquid crystalline polyester and film thereof
TW572944B (en) Mono- or biaxially-stretched polyester resin foamed sheets or films, multilayer material comprising the same, and method for preparing the same
JP5041652B2 (en) Film production method
US5032433A (en) Thermoplastic web and process for manufacture same
JP2000290512A (en) Polymer alloy and its film
JPH023430A (en) Wholly aromatic polyester film and preparation thereof
JP4576644B2 (en) Aromatic liquid crystalline polyester and method for producing the same
JP6537250B2 (en) Polylactic acid monofilament
WO1992017545A1 (en) Extruded blends of thermoplastic and liquid crystalline polymers
JP2006225642A (en) Aromatic liquid crystal polyester and film formed herefrom
JP4679679B2 (en) Method for producing thermoplastic liquid crystal polymer film
JPH0729355B2 (en) Molded article manufacturing method
Yang et al. Stress‐induced crystallization of biaxially oriented polypropylene
JP3876509B2 (en) Polyester film and method for producing the same
JP3650459B2 (en) Liquid crystal polyester resin composition film and method for producing the same
KR20000053617A (en) Transparent articles of polyester resin
JP3637678B2 (en) Liquid crystal polyester resin composition and film
KR20000017460A (en) Fiber-reinforced polyester resin molding material and its production process and molded product
JPH02263849A (en) Polyolefin molded product
JP3876508B2 (en) Polyester film and method for producing the same
WO2024075636A1 (en) Method for producing thermoplastic liquid crystal polymer film
WO2009091072A1 (en) Polyester resin, process for production of the same, and biaxially oriented polyester film comprising the same
JP4216401B2 (en) Extrusion molding method and extrusion molding apparatus for thermoplastic liquid crystal polymer film
JP4576886B2 (en) Laminated polyester film for folding packaging
JPS61243826A (en) Polyester film and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

EXPY Cancellation because of completion of term