JP2000286819A - Demodulator - Google Patents

Demodulator

Info

Publication number
JP2000286819A
JP2000286819A JP11092407A JP9240799A JP2000286819A JP 2000286819 A JP2000286819 A JP 2000286819A JP 11092407 A JP11092407 A JP 11092407A JP 9240799 A JP9240799 A JP 9240799A JP 2000286819 A JP2000286819 A JP 2000286819A
Authority
JP
Japan
Prior art keywords
circuit
subcarrier
signal
phase error
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11092407A
Other languages
Japanese (ja)
Other versions
JP3555843B2 (en
Inventor
Takeshi Yamamoto
武志 山本
Kazuhiro Okanoue
和広 岡ノ上
Tomoyoshi Osawa
智喜 大沢
Tomoaki Kumagai
智明 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp filed Critical NEC Corp
Priority to JP09240799A priority Critical patent/JP3555843B2/en
Publication of JP2000286819A publication Critical patent/JP2000286819A/en
Application granted granted Critical
Publication of JP3555843B2 publication Critical patent/JP3555843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve deterioration in the characteristics of a carrier added by a local signal used by a frequency conversion circuit of an OFDM demodulator onto a phase noise. SOLUTION: The demodulator is provided with a phase error detection circuit 11, which uses the phase error information for each sub carrier from a sub carrier demodulation circuit 10 and the amplitude distortion information of each sub carrier from a propagation path distortion estimate circuit 8 to generate phase error information so as to correct a propagation path distortion compensation coefficient, thereby compensating the phase noise. Furthermore, a moving mean circuit applies moving mean processing to the mean results in an OFDM symbol over a required number of symbols so as to increase the detection accuracy of the phase error.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直交周波数分割多
重(OFDM Orthogonal Frequency DivisionMultipl
exing 以下OFDMと略記する)変調方式を用いるバ
ースト信号伝送システムの復調装置において、搬送波周
波数誤差および位相雑音に起因する位相回転の高精度な
補正を実現する復調装置に関する。
The present invention relates to an OFDM (Orthogonal Frequency Division Multiplex).
The present invention relates to a demodulation device for a burst signal transmission system using a modulation method (hereinafter, abbreviated as OFDM), which relates to a demodulation device that realizes highly accurate correction of phase rotation caused by carrier frequency error and phase noise.

【0002】[0002]

【従来の技術】図3にOFDMバースト信号のフォーマ
ットを示す。図3のように各バーストの先頭には同期用
のプリアンブルおよび伝搬路推定用のプリアンブルが配
置される。
2. Description of the Related Art FIG. 3 shows a format of an OFDM burst signal. As shown in FIG. 3, at the head of each burst, a preamble for synchronization and a preamble for channel estimation are arranged.

【0003】図4に従来のOFDM復調装置の構成を示
す。このOFDM復調装置は、バーストOFDM変調信
号を受信するためのアンテナ1と、アンテナ1を介して
受信された変調信号を中間周波数帯信号に変換し、出力
する周波数変換回路2と、周波数変換回路2から出力さ
れた中間周波数帯信号をアナログ複素ベースバンド信号
に変換し、出力する直交検波回路3と、直交検波回路3
から出力されたアナログ複素ベースバンド信号を標本量
子化する標本量子化手段としてのA/D変換器4、5
と、A/D変換器4、5にて標本量子化されたベースバ
ンド信号をタイミング同期処理するタイミング同期手段
および搬送波周波数同期処理する搬送波周波数同期処理
手段を含み同期処理後の信号を出力する同期回路6と、
同期回路6から出力された同期処理後の信号をフーリエ
変換し、前記バーストOFDM変調信号をサブキャリア
毎の信号に分離するフーリエ変換回路7と、フーリエ変
換回路7から出力された信号から伝搬路歪を推定し、伝
搬路歪情報と各サブキャリア振幅歪情報を出力する伝搬
路歪推定回路8と、フーリエ変換回路7から出力された
信号を伝搬路歪情報を用いて歪補償し、歪補償後の信号
を出力する伝搬路歪補償回路9と、この歪補償後の搬送
波の位相誤差補正を行う位相誤差補正回路14と、歪補
償および位相誤差補正後の信号を各サブキャリア毎に復
調し、復調データとして出力するサブキャリア復調回路
10とを備える。
FIG. 4 shows a configuration of a conventional OFDM demodulator. The OFDM demodulator includes an antenna 1 for receiving a burst OFDM modulated signal, a frequency conversion circuit 2 for converting a modulated signal received via the antenna 1 into an intermediate frequency band signal, and outputting the signal, and a frequency conversion circuit 2. A quadrature detection circuit 3 for converting the intermediate frequency band signal output from
Converters 4, 5 as sample quantization means for sample-quantizing the analog complex baseband signal output from
And a timing synchronizing means for synchronizing the baseband signals sample-quantized by the A / D converters 4 and 5 and a carrier frequency synchronizing means for synchronizing the carrier frequency, and outputting a signal after the synchronizing processing. A circuit 6;
A Fourier transform circuit for performing Fourier transform on the signal after the synchronization processing output from the synchronization circuit 6 to separate the burst OFDM modulated signal into signals for each subcarrier, and a propagation path distortion from the signal output from the Fourier transform circuit 7. And a channel distortion estimating circuit 8 that outputs channel distortion information and subcarrier amplitude distortion information, and a signal output from the Fourier transform circuit 7 is subjected to distortion compensation using the channel distortion information. And a phase error correction circuit 14 for correcting the phase error of the carrier after the distortion compensation, and demodulating the signal after the distortion compensation and the phase error correction for each subcarrier, A subcarrier demodulation circuit 10 that outputs demodulated data.

【0004】この図4に示す従来例の復調装置では、同
期回路6において同期用のプリアンブルを用いて搬送波
周波数同期とシンボルタイミング同期を確立する。ま
た、位相誤差補正回路14は必要に応じて設けられるも
ので、必要に応じて位相誤差補正回路14において搬送
波の位相誤差を補正する。
In the conventional demodulator shown in FIG. 1, a synchronization circuit 6 establishes carrier frequency synchronization and symbol timing synchronization using a synchronization preamble. The phase error correction circuit 14 is provided as needed, and corrects the phase error of the carrier wave in the phase error correction circuit 14 as necessary.

【0005】[0005]

【発明が解決しようとする課題】直交周波数分割多重
(OFDM)変調方式は送信するデータを複数のサブキ
ャリアに分割して変調するマルチキャリア変調方式であ
る。マルチキャリア化することで各サブキャリアは狭帯
域となり耐マルチパスフェージング特性に優れる。一
方、周波数変換回路で用いるローカル信号により付加さ
れる搬送波の位相雑音に対して特性劣化が大きくなる問
題がある。そこで、マルチパスフェージング環境下でも
高精度の搬送波位相同期を実現することが望まれてい
る。図4の従来の復調装置構成例において、特にマルチ
パスフェージング環境下では位相誤差補正回路14は、
受信レベルの低いサブキャリアで検出位相誤差が大きく
なる影響を受けて精密な動作ができない問題がある。
The orthogonal frequency division multiplexing (OFDM) modulation method is a multicarrier modulation method in which data to be transmitted is divided into a plurality of subcarriers and modulated. By using multicarriers, each subcarrier has a narrow band, and is excellent in multipath fading resistance. On the other hand, there is a problem that the characteristic deterioration is large with respect to the phase noise of the carrier added by the local signal used in the frequency conversion circuit. Therefore, it is desired to realize highly accurate carrier phase synchronization even in a multipath fading environment. In the conventional demodulator configuration example of FIG. 4, especially under a multipath fading environment, the phase error correction circuit 14
There is a problem that precise operation cannot be performed due to the influence of the detection phase error increasing in subcarriers having a low reception level.

【0006】本発明は、このような問題を解決するもの
で、高精度の位相誤差検出を行うことができ、これによ
り搬送波周波数誤差および位相雑音に起因する位相回転
の高精度の補正を実現できる復調装置を提供することを
目的とする。また、回路規模の増加の少ない復調装置を
提供することを目的とする。
The present invention solves such a problem, and can perform a highly accurate phase error detection, thereby realizing a highly accurate correction of a phase rotation caused by a carrier frequency error and phase noise. It is an object to provide a demodulation device. It is another object of the present invention to provide a demodulator with a small increase in circuit scale.

【0007】[0007]

【課題を解決するための手段】本発明は、送信機から出
力されるバーストOFDM変調信号を伝搬路を介して受
信・復調するOFDM復調装置に関する。
SUMMARY OF THE INVENTION The present invention relates to an OFDM demodulator for receiving and demodulating a burst OFDM modulated signal output from a transmitter via a propagation path.

【0008】ここで本発明の復調装置の特徴は、受信さ
れたバースト直交周波数分割多重変調信号を中間周波数
帯信号に変換する周波数変換回路と、この周波数変換回
路から出力された中間周波数帯信号をベースバンド信号
に変換する直交検波回路と、この直交検波回路から出力
されたベースバンド信号を標本量子化する標本量子化手
段と、この標本量子化手段で標本量子化されたベースバ
ンド信号のタイミング同期処理および搬送波周波数同期
処理を行う同期回路と、この同期回路から出力される同
期処理後の信号をフーリエ変換し前記バースト直交周波
数分割多重変調信号をサブキャリア毎の信号に分離する
フーリエ変換回路と、このフーリエ変換回路から出力さ
れる信号から伝搬路歪を推定し伝搬路歪情報を出力する
伝搬路歪推定回路と、前記フーリエ変換回路から出力さ
れる信号を前記伝搬路歪情報を用いて歪補償を行う伝搬
路歪補償回路と、この伝搬路歪補償回路の出力する歪補
償後の信号を各サブキャリア毎に復調し復調データおよ
び軟判定データを出力するサブキャリア復調回路と、こ
のサブキャリア復調回路から出力される軟判定データと
前記伝搬路歪推定回路から出力される各サブキャリア振
幅歪情報を用いて各サブキャリアに共通な位相誤差情報
を生成し前記伝搬路歪推定回路へ出力する位相誤差検出
回路とを備えたことにある。
Here, the demodulator of the present invention is characterized in that a frequency conversion circuit for converting a received burst orthogonal frequency division multiplex modulation signal into an intermediate frequency band signal, and an intermediate frequency band signal output from this frequency conversion circuit. A quadrature detection circuit for converting to a baseband signal, sample quantization means for sample-quantizing the baseband signal output from the quadrature detection circuit, and timing synchronization of the baseband signal sample-quantized by the sample quantization means A synchronization circuit that performs processing and carrier frequency synchronization processing, and a Fourier transform circuit that performs Fourier transform on the signal after the synchronization processing output from the synchronization circuit and separates the burst orthogonal frequency division multiplex modulation signal into a signal for each subcarrier. A channel distortion estimating circuit that estimates channel distortion from a signal output from the Fourier transform circuit and outputs channel distortion information A channel distortion compensation circuit that performs distortion compensation on a signal output from the Fourier transform circuit using the channel distortion information, and outputs a signal after distortion compensation output from the channel distortion compensation circuit for each subcarrier. A subcarrier demodulation circuit for demodulating and outputting demodulated data and soft decision data; and a soft decision data output from the subcarrier demodulation circuit and each subcarrier amplitude distortion information output from the propagation path distortion estimation circuit. A phase error detection circuit that generates phase error information common to the subcarriers and outputs the information to the propagation path distortion estimation circuit.

【0009】なお、位相誤差検出回路は、前記サブキャ
リア復調回路から出力される軟判定データと前記伝搬路
歪推定回路から出力される各サブキャリア振幅歪情報を
用い各サブキャリアの誤差成分を各サブキャリアの受信
レベルに応じて重み付け平均する直交周波数分割多重シ
ンボル内平均回路と、この直交周波数分割多重シンボル
内平均回路から出力される重み付け平均結果の移動平均
を行い前記位相誤差情報を出力する移動平均回路とを備
えることができる。
The phase error detection circuit uses the soft decision data output from the subcarrier demodulation circuit and the subcarrier amplitude distortion information output from the propagation path distortion estimation circuit to determine the error component of each subcarrier. An orthogonal frequency division multiplexing intra-symbol averaging circuit that performs weighted averaging according to the reception level of the subcarrier, and a moving average that outputs a moving average of the weighted averaging result output from the orthogonal frequency division multiplexing intra-symbol averaging circuit and outputs the phase error information And an averaging circuit.

【0010】また、伝搬路歪推定回路は、前記位相誤差
検出回路から出力される位相誤差情報を用い位相誤差を
補償するように前記伝搬路歪情報を補正する手段を含む
ことができる。
Further, the propagation path distortion estimating circuit may include means for correcting the propagation path distortion information so as to compensate for the phase error using the phase error information output from the phase error detecting circuit.

【0011】上記のように構成された本発明において
は、位相誤差検出回路はOFDMシンボル毎に各サブキ
ャリアの位相誤差を平均化することと、この際に、サブ
キャリア振幅歪情報を用いて、各サブキャリアの受信レ
ベルに応じた重み付け平均をとることにより高精度の位
相誤差検出を行うことができる。さらに移動平均回路に
おいてOFDMシンボル内の平均結果を必要なシンボル
数にわたり移動平均することによりさらに位相誤差の検
出精度を上げることができる。これにより搬送波周波数
誤差および位相雑音に起因する位相回転の高精度な補正
を実現できる。
In the present invention configured as described above, the phase error detection circuit averages the phase error of each subcarrier for each OFDM symbol, and uses the subcarrier amplitude distortion information at this time. By taking a weighted average according to the reception level of each subcarrier, highly accurate phase error detection can be performed. Further, the moving average circuit performs a moving average of the average result in the OFDM symbol over a required number of symbols, so that the detection accuracy of the phase error can be further improved. Thereby, highly accurate correction of the phase rotation caused by the carrier frequency error and the phase noise can be realized.

【0012】[0012]

【発明の実施の形態】以下図面を参照して、本発明の実
施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の実施の形態の一例を示すO
FDM復調装置の構成を示すものである。
FIG. 1 shows an example of an embodiment of the present invention.
1 shows a configuration of an FDM demodulator.

【0014】図1に本発明のOFDM復調装置の構成例
を示す。また図3にOFDMバースト信号のフォーマッ
トを示す。図3のように各バーストの先頭には同期用の
プリアンブルおよび伝搬路推定用のプリアンブルが配置
される。
FIG. 1 shows a configuration example of an OFDM demodulator according to the present invention. FIG. 3 shows the format of an OFDM burst signal. As shown in FIG. 3, at the head of each burst, a preamble for synchronization and a preamble for channel estimation are arranged.

【0015】この図1の復調装置は、送信側でOFDM
変調されたバーストOFDM変調信号を受信するための
アンテナ1と、このアンテナ1を介して受信された変調
信号を中間周波数帯信号に変換し、出力する周波数変換
回路2と、この周波数変換回路2から出力された中間周
波数帯信号をアナログ複素ベースバンド信号に変換し、
出力する直交検波回路3と、この直交検波回路3から出
力されたアナログ複素ベースバンド信号を標本量子化す
る標本量子化手段としてのA/D変換器4、5と、A/
D変換器4、5にて標本量子化されたベースバンド信号
のタイミング同期処理および搬送波周波数同期処理を行
い同期処理後の信号を出力する同期回路6と、この同期
回路6から出力された同期処理後の信号をフーリエ変換
し、前記バーストOFDM変調信号をサブキャリア毎の
信号に分離するフーリエ変換回路7と、このフーリエ変
換回路7から出力された信号から伝搬路歪を推定し、伝
搬路歪情報と各サブキャリア振幅歪情報を出力する伝搬
路歪推定回路8と、このフーリエ変換回路7から出力さ
れた信号を、伝搬路歪情報を用いて歪補償し、歪補償後
の信号を出力する伝搬路歪補償回路9と、この歪補償後
の信号を各サブキャリア毎に復調し、復調データおよび
軟判定データを出力するサブキャリア復調回路10と、
このサブキャリア復調回路10から出力される軟判定デ
ータと伝搬路歪推定回路8から出力される各サブキャリ
ア振幅歪情報を用いて位相誤差情報を生成し、伝搬路歪
推定回路8へ出力する位相誤差検出回路11を備えてい
る。
The demodulator shown in FIG. 1 uses OFDM on the transmitting side.
An antenna 1 for receiving a modulated burst OFDM modulated signal, a frequency conversion circuit 2 for converting a modulated signal received via the antenna 1 into an intermediate frequency band signal and outputting the signal, and a frequency conversion circuit 2 Convert the output intermediate frequency band signal to an analog complex baseband signal,
A quadrature detection circuit 3 for outputting, A / D converters 4 and 5 as sample quantization means for sample-quantizing the analog complex baseband signal output from the quadrature detection circuit 3,
A synchronization circuit 6 for performing timing synchronization processing and carrier frequency synchronization processing of the baseband signal sample-quantized by the D converters 4 and 5 and outputting a signal after the synchronization processing; and a synchronization processing output from the synchronization circuit 6 Fourier transform of the subsequent signal, and a Fourier transform circuit 7 for separating the burst OFDM-modulated signal into signals for each subcarrier; and estimating propagation path distortion from the signal output from the Fourier transformation circuit 7; And a propagation path distortion estimating circuit 8 for outputting each subcarrier amplitude distortion information, and a signal output from the Fourier transform circuit 7 for distortion compensation using the propagation path distortion information and outputting a signal after distortion compensation. A path distortion compensation circuit 9, a subcarrier demodulation circuit 10 for demodulating the signal after the distortion compensation for each subcarrier, and outputting demodulated data and soft decision data;
Phase error information is generated using the soft decision data output from the subcarrier demodulation circuit 10 and each subcarrier amplitude distortion information output from the channel distortion estimating circuit 8, and the phase output to the channel distortion estimating circuit 8 An error detection circuit 11 is provided.

【0016】次に、図1のOFDM復調装置の動作を説
明する。
Next, the operation of the OFDM demodulator of FIG. 1 will be described.

【0017】図1において、アンテナ1に受信OFDM
バースト変調信号が入力される。周波数変換回路2は入
力される受信OFDMバースト信号を中間周波数帯の信
号に変換する。直交検波回路3は、中間周波数帯の搬送
波にほぼ近いローカル信号により受信信号をアナログ複
素ベースバンド信号に変換する。A/D変換器4、5は
直交検波回路3より出力されるアナログ複素ベースバン
ド信号を標本量子化する。同期回路6は同期用プリアン
ブル受信時にA/D変換器4、5より出力される標本量
子化後のディジタル複素ベースバンド信号を入力し、搬
送波周波数同期とシンボルタイミング同期を確立する。
フーリエ変換回路7は、同期回路6の出力信号を高速フ
ーリエ変換し、OFDM変調信号を各サブキャリア毎の
信号に分離する。伝搬路歪推定回路8は、伝搬路推定用
のプリアンブル受信時に、フーリエ変換回路7からの各
サブキャリア毎に分離された信号を用いて伝搬路特性を
推定し、伝搬路歪補償信号を出力する。伝搬路歪補償回
路9は伝搬路推定用のプリアンブル後のデータ信号に対
して、伝搬路歪推定回路8からの伝搬路歪補償信号を用
いて伝搬路歪補償を行う。サブキャリア復調回路10は
歪み補償後の信号を入力し、サブキャリアごとの復調を
行う。位相誤差検出回路11はサブキャリア復調回路1
0からのサブキャリア毎の位相誤差情報と伝搬路歪推定
回路8からの各サブキャリア振幅歪情報を入力し、位相
誤差情報を生成し出力する。
In FIG. 1, a reception OFDM is
A burst modulation signal is input. The frequency conversion circuit 2 converts an input received OFDM burst signal into an intermediate frequency band signal. The quadrature detection circuit 3 converts a received signal into an analog complex baseband signal using a local signal that is substantially close to a carrier in the intermediate frequency band. The A / D converters 4 and 5 sample quantize the analog complex baseband signal output from the quadrature detection circuit 3. The synchronization circuit 6 receives the sample-quantized digital complex baseband signal output from the A / D converters 4 and 5 when the synchronization preamble is received, and establishes carrier frequency synchronization and symbol timing synchronization.
The Fourier transform circuit 7 performs fast Fourier transform on the output signal of the synchronization circuit 6, and separates the OFDM modulated signal into signals for each subcarrier. The propagation path distortion estimating circuit 8 estimates the propagation path characteristics using the signal separated for each subcarrier from the Fourier transform circuit 7 when receiving the preamble for propagation path estimation, and outputs a propagation path distortion compensation signal. . The channel distortion compensation circuit 9 performs channel distortion compensation on the data signal after the preamble for channel estimation using the channel distortion compensation signal from the channel distortion estimation circuit 8. The subcarrier demodulation circuit 10 receives the signal after distortion compensation and performs demodulation for each subcarrier. The phase error detection circuit 11 is a subcarrier demodulation circuit 1
The phase error information for each subcarrier from 0 and each subcarrier amplitude distortion information from the propagation path distortion estimating circuit 8 are input, and phase error information is generated and output.

【0018】図2に位相誤差検出回路11の構成例を示
す。まずサブキャリア復調回路10においてサブキャリ
ア毎の位相誤差を検出する際には、特定のサブキャリア
に既知のパイロット信号を配置し、基準となるパイロッ
ト信号と受信信号との差をとる方法や、あるいはすべて
のサブキャリアについてサブキャリア変調方式に対応す
る基準信号点からのずれを検出する方法を用いることが
できる。次に周波数変換回路2のローカル信号により付
加される位相雑音は全サブキャリア共通となるのでOF
DMシンボル内平均回路12はサブキャリア復調回路1
0からのサブキャリア毎の位相誤差をOFDMシンボル
毎に平均をとる。OFDMシンボル内の平均をとる際に
は伝搬路歪推定回路8からの各サブキャリア振幅歪情報
を用いて、各サブキャリアの受信レベルに応じた重み付
け平均を行う。具体例としては例えばあるしきい値を設
けて、それよりも受信レベルが高いサブキャリアのみの
位相誤差の平均をとるという方法をとることができる。
FIG. 2 shows a configuration example of the phase error detection circuit 11. First, when detecting a phase error for each subcarrier in the subcarrier demodulation circuit 10, a method of arranging a known pilot signal on a specific subcarrier and taking a difference between a reference pilot signal and a received signal, or A method of detecting a deviation from a reference signal point corresponding to a subcarrier modulation scheme for all subcarriers can be used. Next, since the phase noise added by the local signal of the frequency conversion circuit 2 is common to all subcarriers,
The DM symbol averaging circuit 12 is a subcarrier demodulation circuit 1
The phase error for each subcarrier from 0 is averaged for each OFDM symbol. When averaging within an OFDM symbol, weighted averaging according to the reception level of each subcarrier is performed using each subcarrier amplitude distortion information from the channel distortion estimation circuit 8. As a specific example, for example, a method of setting a certain threshold value and averaging the phase errors of only the subcarriers having a higher reception level can be used.

【0019】さらに移動平均回路13は、OFDMシン
ボル内の平均結果を数シンボル間にわたり移動平均する
ことにより位相誤差情報を生成する。
Further, the moving average circuit 13 generates phase error information by performing a moving average of the average result in the OFDM symbol over several symbols.

【0020】伝搬路歪推定回路8は、位相誤差検出回路
11からの位相誤差情報を用いて、周波数変換回路のロ
ーカル信号により付加される位相雑音を補償するよう伝
搬路歪補償回路9への伝搬路歪補償係数を修正する。
The propagation path distortion estimating circuit 8 uses the phase error information from the phase error detecting circuit 11 to propagate the signal to the propagation path distortion compensating circuit 9 so as to compensate for the phase noise added by the local signal of the frequency conversion circuit. Correct the road distortion compensation coefficient.

【0021】[0021]

【発明の効果】このように、本発明は、位相誤差検出回
路においてOFDMシンボル毎に各サブキャリアの位相
誤差を平均化し、この際に、サブキャリア振幅歪情報を
用いて、各サブキャリアの受信レベルに応じた重み付け
平均をとることにより高精度の位相誤差検出を行うこと
ができ、この位相誤差検出により搬送波周波数誤差およ
び位相雑音に起因する位相回転の高精度な補正を実現で
きる。さらに、移動平均回路においてOFDMシンボル
内の平均結果を必要なシンボル数にわたり移動平均する
ことによりさらに位相誤差の検出精度を上げることがで
きる。これにより搬送波周波数誤差および位相雑音に起
因する位相回転の高精度な補正を実現できる。
As described above, according to the present invention, the phase error detection circuit averages the phase error of each subcarrier for each OFDM symbol, and uses the subcarrier amplitude distortion information to receive each subcarrier. High-precision phase error detection can be performed by taking a weighted average according to the level, and high-precision correction of phase rotation caused by a carrier frequency error and phase noise can be realized by the phase error detection. Further, the moving average circuit performs a moving average of the average result in the OFDM symbol over a required number of symbols, so that the detection accuracy of the phase error can be further improved. Thereby, highly accurate correction of the phase rotation caused by the carrier frequency error and the phase noise can be realized.

【0022】またその位相雑音の補償は伝搬路歪補償係
数を修正することにより行うため、補償動作は伝搬路歪
補償回路9の回路をそのまま用いることができる。従っ
て回路規模の増加を防ぐことができる。
Since the compensation of the phase noise is performed by correcting the channel distortion compensation coefficient, the circuit of the channel distortion compensation circuit 9 can be used as it is for the compensation operation. Therefore, an increase in circuit scale can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の復調装置の実施の形態の一例を示す
図。
FIG. 1 is a diagram showing an example of an embodiment of a demodulation device of the present invention.

【図2】位相誤差検出回路の構成例を示す図。FIG. 2 is a diagram illustrating a configuration example of a phase error detection circuit.

【図3】バーストフォーマット構成例を示す図。FIG. 3 is a diagram showing an example of a burst format configuration.

【図4】本発明の復調装置の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a demodulation device of the present invention.

【符号の説明】[Explanation of symbols]

1 アンテナ 2 周波数変換回路 3 直交検波回路 4、5 A/D変換器 6 同期回路 7 フーリエ変換回路 8 伝搬路歪推定回路 9 伝搬路歪補償回路 10 サブキャリア復調回路 11 位相誤差検出回路 12 OFDMシンボル内平均回路 13 移動平均回路 14 位相誤差補正回路 DESCRIPTION OF SYMBOLS 1 Antenna 2 Frequency conversion circuit 3 Quadrature detection circuit 4, 5 A / D converter 6 Synchronization circuit 7 Fourier transformation circuit 8 Propagation path distortion estimation circuit 9 Propagation path distortion compensation circuit 10 Subcarrier demodulation circuit 11 Phase error detection circuit 12 OFDM symbol Inner average circuit 13 Moving average circuit 14 Phase error correction circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡ノ上 和広 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 大沢 智喜 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 熊谷 智明 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 5K022 DD01 DD13 DD17 DD19 DD33 DD34 DD43 DD44 5K046 AA05 EE55 EF46 EF52 5K052 AA01 BB02 CC00 DD16 EE26 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhiro Okanoue 5-7-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Tomoki Osawa 5-7-1 Shiba, Minato-ku, Tokyo Japan Within the Electric Company (72) Inventor Tomoaki Kumagai 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Nippon Telegraph and Telephone Corporation F-term (reference) 5K022 DD01 DD13 DD17 DD19 DD33 DD34 DD43 DD44 5K046 AA05 EE55 EF46 EF52 5K052 AA01 BB02 CC00 DD16 EE26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 受信されたバースト直交周波数分割多重
変調信号を中間周波数帯信号に変換する周波数変換回路
と、 この周波数変換回路から出力された中間周波数帯信号を
ベースバンド信号に変換する直交検波回路と、 この直交検波回路から出力されたベースバンド信号を標
本量子化する標本量子化手段と、 この標本量子化手段で標本量子化されたベースバンド信
号のタイミング同期処理および搬送波周波数同期処理を
行う同期回路と、 この同期回路から出力される同期処理後の信号をフーリ
エ変換し前記バースト直交周波数分割多重変調信号をサ
ブキャリア毎の信号に分離するフーリエ変換回路と、 このフーリエ変換回路から出力される信号から伝搬路歪
を推定し伝搬路歪情報を出力する伝搬路歪推定回路と、 前記フーリエ変換回路から出力される信号を前記伝搬路
歪情報を用いて歪補償を行う伝搬路歪補償回路と、 この伝搬路歪補償回路の出力する歪補償後の信号を各サ
ブキャリア毎に復調し復調データおよび軟判定データを
出力するサブキャリア復調回路と、 このサブキャリア復調回路から出力される軟判定データ
と前記伝搬路歪推定回路から出力される各サブキャリア
振幅歪情報を用いて各サブキャリアに共通な位相誤差情
報を生成し前記伝搬路歪推定回路へ出力する位相誤差検
出回路とを備えたことを特徴とする復調装置。
1. A frequency conversion circuit for converting a received burst orthogonal frequency division multiplex modulation signal into an intermediate frequency band signal, and a quadrature detection circuit for converting the intermediate frequency band signal output from the frequency conversion circuit into a baseband signal Sample quantization means for sample-quantizing the baseband signal output from the quadrature detection circuit; and synchronization for performing timing synchronization processing and carrier frequency synchronization processing of the baseband signal sample-quantized by the sample quantization means. Circuit, a Fourier transform circuit for performing a Fourier transform on the signal after the synchronization process output from the synchronous circuit, and separating the burst orthogonal frequency division multiplex modulation signal into a signal for each subcarrier, a signal output from the Fourier transform circuit A channel distortion estimating circuit that estimates channel distortion from and outputs channel distortion information; and A channel distortion compensation circuit for compensating the output signal for distortion using the channel distortion information; a signal after distortion compensation output from the channel distortion compensation circuit for each subcarrier; A subcarrier demodulation circuit that outputs decision data; and a phase common to each subcarrier using soft decision data outputted from the subcarrier demodulation circuit and each subcarrier amplitude distortion information outputted from the channel distortion estimation circuit. A demodulation device comprising: a phase error detection circuit that generates error information and outputs the error information to the propagation path distortion estimation circuit.
【請求項2】 前記位相誤差検出回路は、前記サブキャ
リア復調回路から出力される軟判定データと前記伝搬路
歪推定回路から出力される各サブキャリア振幅歪情報を
用い各サブキャリアの誤差成分を各サブキャリアの受信
レベルに応じて重み付け平均する直交周波数分割多重シ
ンボル内平均回路と、この直交周波数分割多重シンボル
内平均回路から出力される重み付け平均結果の移動平均
を行い前記位相誤差情報を出力する移動平均回路とを備
えた請求項1記載の復調装置。
2. The method according to claim 1, wherein the phase error detection circuit uses the soft decision data output from the subcarrier demodulation circuit and the subcarrier amplitude distortion information output from the propagation path distortion estimation circuit to calculate an error component of each subcarrier. An average circuit in an orthogonal frequency division multiplex symbol for weighting and averaging according to the reception level of each subcarrier, and a moving average of the weighted average result output from the average circuit in the orthogonal frequency division multiplex symbol to output the phase error information The demodulator according to claim 1, further comprising a moving average circuit.
【請求項3】 前記伝搬路歪推定回路は、前記位相誤差
検出回路から出力される位相誤差情報を用い位相誤差を
補償するように前記伝搬路歪情報を補正する手段を含む
請求項1または2記載の復調装置。
3. The channel distortion estimating circuit includes means for correcting the channel distortion information so as to compensate for a phase error using the phase error information output from the phase error detecting circuit. The demodulator according to any of the preceding claims.
JP09240799A 1999-03-31 1999-03-31 Demodulator Expired - Lifetime JP3555843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09240799A JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09240799A JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Publications (2)

Publication Number Publication Date
JP2000286819A true JP2000286819A (en) 2000-10-13
JP3555843B2 JP3555843B2 (en) 2004-08-18

Family

ID=14053574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09240799A Expired - Lifetime JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Country Status (1)

Country Link
JP (1) JP3555843B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366958A (en) * 2000-05-25 2002-03-20 Comm Res Lab The A receiver for more accurately estimating transmission path characteristics when receiving a signal including a data and a known signal
JP2002204215A (en) * 2000-12-28 2002-07-19 Kddi Research & Development Laboratories Inc Phase error correcting device of ofdm receiving device
JP2002217862A (en) * 2001-01-19 2002-08-02 Fujitsu General Ltd Qam-decoding device
WO2003021834A1 (en) * 2001-08-28 2003-03-13 Ntt Docomo, Inc. Multi-carrier cdma transmission system, transmission apparatus and reception apparatus used in the system, and multi-carrier cdma transmission method
WO2004110012A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics N.V. Receiver for multi-carrier communication system
KR100666691B1 (en) * 2000-12-06 2007-01-11 삼성전자주식회사 Apparatus for receiving of OFDM signals and Method for recovering of signals by estimating channel
US7206279B2 (en) 2002-03-26 2007-04-17 Kabushiki Kaisha Toshiba OFDM receiving apparatus and method of demodulation in OFDM receiving apparatus
KR100728221B1 (en) 2005-12-08 2007-06-13 한국전자통신연구원 Iterative residual frequency and phase compensation for turbo coded ofdm system
US7283598B2 (en) 2003-03-31 2007-10-16 Kabushiki Kaisha Toshiba OFDM receiver apparatus
JP2010220105A (en) * 2009-03-18 2010-09-30 Toshiba Corp Wireless receiving apparatus and wireless receiving method
JP2014045433A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Frequency error detector, frequency error detection method and receiver
JP2021016138A (en) * 2019-07-16 2021-02-12 アンリツ株式会社 Clock error correction device, measurement device including the same, clock error correction method, and measurement method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366958B (en) * 2000-05-25 2004-05-12 Comm Res Lab The Receiver, receiving method, and recording medium which records program for receiving data signals
GB2366958A (en) * 2000-05-25 2002-03-20 Comm Res Lab The A receiver for more accurately estimating transmission path characteristics when receiving a signal including a data and a known signal
US7006430B2 (en) 2000-05-25 2006-02-28 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Receiver, receiving method, and recording medium which records program for receiving data signals
KR100666691B1 (en) * 2000-12-06 2007-01-11 삼성전자주식회사 Apparatus for receiving of OFDM signals and Method for recovering of signals by estimating channel
JP2002204215A (en) * 2000-12-28 2002-07-19 Kddi Research & Development Laboratories Inc Phase error correcting device of ofdm receiving device
JP2002217862A (en) * 2001-01-19 2002-08-02 Fujitsu General Ltd Qam-decoding device
JP4560963B2 (en) * 2001-01-19 2010-10-13 株式会社富士通ゼネラル QAM decoder
CN1561591B (en) * 2001-08-28 2010-08-25 株式会社Ntt都科摩 Multi-carrier CDMA transmission system, transmission apparatus and reception apparatus used in the system, and multi-carrier CDMA transmission method
WO2003021834A1 (en) * 2001-08-28 2003-03-13 Ntt Docomo, Inc. Multi-carrier cdma transmission system, transmission apparatus and reception apparatus used in the system, and multi-carrier cdma transmission method
US7236452B2 (en) 2001-08-28 2007-06-26 Ntt Docomo, Inc. Multi-carrier CDMA transmission system, transmitting apparatus and receiving apparatus used in this system, and multi-carrier CDMA transmission method
US7206279B2 (en) 2002-03-26 2007-04-17 Kabushiki Kaisha Toshiba OFDM receiving apparatus and method of demodulation in OFDM receiving apparatus
US7283598B2 (en) 2003-03-31 2007-10-16 Kabushiki Kaisha Toshiba OFDM receiver apparatus
WO2004110012A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics N.V. Receiver for multi-carrier communication system
US7830970B2 (en) 2003-06-11 2010-11-09 Nxp B.V. Receiver for a multi-carrier communication system
KR100728221B1 (en) 2005-12-08 2007-06-13 한국전자통신연구원 Iterative residual frequency and phase compensation for turbo coded ofdm system
US8036289B2 (en) 2005-12-08 2011-10-11 Electronics And Telecommunications Research Institute Apparatus and method for correcting iterative residual frequency and phase in turbo coded OFDM system
JP2010220105A (en) * 2009-03-18 2010-09-30 Toshiba Corp Wireless receiving apparatus and wireless receiving method
US8428190B2 (en) 2009-03-18 2013-04-23 Kabushiki Kaisha Toshiba Radio receiving apparatus and radio receiving method
JP2014045433A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Frequency error detector, frequency error detection method and receiver
JP2021016138A (en) * 2019-07-16 2021-02-12 アンリツ株式会社 Clock error correction device, measurement device including the same, clock error correction method, and measurement method

Also Published As

Publication number Publication date
JP3555843B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US7856068B1 (en) Nested preamble for multi input multi output orthogonal frequency division multiplexing
US8243834B2 (en) Wireless communication device
US8077696B2 (en) Wireless communication apparatus and wireless communication method
CN100531176C (en) Averaging circuit for enhancing channel estimation in receptor and compensating frequency offset residue
EP1689140A1 (en) Apparatus and method for compensating for a frequency offset in a wireless communication system
US7283598B2 (en) OFDM receiver apparatus
JP2001086092A (en) Ofdm communications equipment and detecting method
EP1039713B1 (en) Reduction of delay in multicarrier receivers
JP2006186427A (en) Wireless communication method and device
JP3555843B2 (en) Demodulator
US8249195B2 (en) Wireless communication apparatus with a plurality of antenna elements
US7706471B2 (en) Method and apparatus for receiving signals by a plurality of antennas
EP1331783A2 (en) Apparatus and method for recovering symbol timing in OFDM receiver
US8229042B2 (en) Orthogonal frequency division multiplexing demodulator
KR20070095135A (en) Apparatus and control method of inter subcarrier interface suppresion in wireless ofdma system
JP2001069118A (en) Ofdm communication equipment and propagation path estimating method
JP2006191238A (en) Multicarrier signal demodulation circuit and method
JP2000286820A (en) Demodulator
JP4255908B2 (en) Multi-carrier signal demodulation circuit and multi-carrier signal demodulation method
JP2001044963A (en) Receiver
JP2003051802A (en) Digital reception system
JP2000349736A (en) Ofdm demodulation device
JP2000358010A (en) Ofdm demodulator
JPH11308129A (en) Multi-carrier transmitting method and adaptive receiver
JP4779279B2 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term