JP3555843B2 - Demodulator - Google Patents

Demodulator Download PDF

Info

Publication number
JP3555843B2
JP3555843B2 JP09240799A JP9240799A JP3555843B2 JP 3555843 B2 JP3555843 B2 JP 3555843B2 JP 09240799 A JP09240799 A JP 09240799A JP 9240799 A JP9240799 A JP 9240799A JP 3555843 B2 JP3555843 B2 JP 3555843B2
Authority
JP
Japan
Prior art keywords
circuit
subcarrier
signal
output
phase error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09240799A
Other languages
Japanese (ja)
Other versions
JP2000286819A (en
Inventor
武志 山本
和広 岡ノ上
智喜 大沢
智明 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp filed Critical NEC Corp
Priority to JP09240799A priority Critical patent/JP3555843B2/en
Publication of JP2000286819A publication Critical patent/JP2000286819A/en
Application granted granted Critical
Publication of JP3555843B2 publication Critical patent/JP3555843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重(OFDM Orthogonal Frequency Division Multiplexing 以下OFDMと略記する)変調方式を用いるバースト信号伝送システムの復調装置において、搬送波周波数誤差および位相雑音に起因する位相回転の高精度な補正を実現する復調装置に関する。
【0002】
【従来の技術】
図3にOFDMバースト信号のフォーマットを示す。図3のように各バーストの先頭には同期用のプリアンブルおよび伝搬路推定用のプリアンブルが配置される。
【0003】
図4に従来のOFDM復調装置の構成を示す。このOFDM復調装置は、バーストOFDM変調信号を受信するためのアンテナ1と、アンテナ1を介して受信された変調信号を中間周波数帯信号に変換し、出力する周波数変換回路2と、周波数変換回路2から出力された中間周波数帯信号をアナログ複素ベースバンド信号に変換し、出力する直交検波回路3と、直交検波回路3から出力されたアナログ複素ベースバンド信号を標本量子化する標本量子化手段としてのA/D変換器4、5と、A/D変換器4、5にて標本量子化されたベースバンド信号をタイミング同期処理するタイミング同期手段および搬送波周波数同期処理する搬送波周波数同期処理手段を含み同期処理後の信号を出力する同期回路6と、同期回路6から出力された同期処理後の信号をフーリエ変換し、前記バーストOFDM変調信号をサブキャリア毎の信号に分離するフーリエ変換回路7と、フーリエ変換回路7から出力された信号から伝搬路歪を推定し、伝搬路歪情報と各サブキャリア振幅歪情報を出力する伝搬路歪推定回路8と、フーリエ変換回路7から出力された信号を伝搬路歪情報を用いて歪補償し、歪補償後の信号を出力する伝搬路歪補償回路9と、この歪補償後の搬送波の位相誤差補正を行う位相誤差補正回路14と、歪補償および位相誤差補正後の信号を各サブキャリア毎に復調し、復調データとして出力するサブキャリア復調回路10とを備える。
【0004】
この図4に示す従来例の復調装置では、同期回路6において同期用のプリアンブルを用いて搬送波周波数同期とシンボルタイミング同期を確立する。また、位相誤差補正回路14は必要に応じて設けられるもので、必要に応じて位相誤差補正回路14において搬送波の位相誤差を補正する。
【0005】
【発明が解決しようとする課題】
直交周波数分割多重(OFDM)変調方式は送信するデータを複数のサブキャリアに分割して変調するマルチキャリア変調方式である。マルチキャリア化することで各サブキャリアは狭帯域となり耐マルチパスフェージング特性に優れる。一方、周波数変換回路で用いるローカル信号により付加される搬送波の位相雑音に対して特性劣化が大きくなる問題がある。そこで、マルチパスフェージング環境下でも高精度の搬送波位相同期を実現することが望まれている。図4の従来の復調装置構成例において、特にマルチパスフェージング環境下では位相誤差補正回路14は、受信レベルの低いサブキャリアで検出位相誤差が大きくなる影響を受けて精密な動作ができない問題がある。
【0006】
本発明は、このような問題を解決するもので、高精度の位相誤差検出を行うことができ、これにより搬送波周波数誤差および位相雑音に起因する位相回転の高精度の補正を実現できる復調装置を提供することを目的とする。また、回路規模の増加の少ない復調装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、送信機から出力されるバーストOFDM変調信号を伝搬路を介して受信・復調するOFDM復調装置に関する。
【0008】
ここで本発明の復調装置の特徴は、受信されたバースト直交周波数分割多重変調信号を中間周波数帯信号に変換する周波数変換回路と、この周波数変換回路から出力された中間周波数帯信号をベースバンド信号に変換する直交検波回路と、この直交検波回路から出力されたベースバンド信号を標本量子化する標本量子化手段と、この標本量子化手段で標本量子化されたベースバンド信号のタイミング同期処理および搬送波周波数同期処理を行う同期回路と、この同期回路から出力される同期処理後の信号をフーリエ変換し前記バースト直交周波数分割多重変調信号をサブキャリア毎の信号に分離するフーリエ変換回路と、このフーリエ変換回路から出力される信号から伝搬路歪を推定し伝搬路歪情報を出力する伝搬路歪推定回路と、前記フーリエ変換回路から出力される信号を前記伝搬路歪情報を用いて歪補償を行う伝搬路歪補償回路と、この伝搬路歪補償回路の出力する歪補償後の信号を各サブキャリア毎に復調し復調データおよび軟判定データを出力するサブキャリア復調回路と、このサブキャリア復調回路から出力される軟判定データと前記伝搬路歪推定回路から出力される各サブキャリア振幅歪情報を用いて各サブキャリアに共通な位相誤差情報を生成し前記伝搬路歪推定回路へ出力する位相誤差検出回路とを備えたことにある。
【0009】
なお、位相誤差検出回路は、前記サブキャリア復調回路から出力される軟判定データと前記伝搬路歪推定回路から出力される各サブキャリア振幅歪情報を用い各サブキャリアの誤差成分を各サブキャリアの受信レベルに応じて重み付け平均する直交周波数分割多重シンボル内平均回路と、この直交周波数分割多重シンボル内平均回路から出力される重み付け平均結果の移動平均を行い前記位相誤差情報を出力する移動平均回路とを備えることができる。
【0010】
また、伝搬路歪推定回路は、前記位相誤差検出回路から出力される位相誤差情報を用い位相誤差を補償するように前記伝搬路歪情報を補正する手段を含むことができる。
【0011】
上記のように構成された本発明においては、位相誤差検出回路はOFDMシンボル毎に各サブキャリアの位相誤差を平均化することと、この際に、サブキャリア振幅歪情報を用いて、各サブキャリアの受信レベルに応じた重み付け平均をとることにより高精度の位相誤差検出を行うことができる。さらに移動平均回路においてOFDMシンボル内の平均結果を必要なシンボル数にわたり移動平均することによりさらに位相誤差の検出精度を上げることができる。これにより搬送波周波数誤差および位相雑音に起因する位相回転の高精度な補正を実現できる。
【0012】
【発明の実施の形態】
以下図面を参照して、本発明の実施の形態を説明する。
【0013】
図1は本発明の実施の形態の一例を示すOFDM復調装置の構成を示すものである。
【0014】
図1に本発明のOFDM復調装置の構成例を示す。また図3にOFDMバースト信号のフォーマットを示す。図3のように各バーストの先頭には同期用のプリアンブルおよび伝搬路推定用のプリアンブルが配置される。
【0015】
この図1の復調装置は、送信側でOFDM変調されたバーストOFDM変調信号を受信するためのアンテナ1と、このアンテナ1を介して受信された変調信号を中間周波数帯信号に変換し、出力する周波数変換回路2と、この周波数変換回路2から出力された中間周波数帯信号をアナログ複素ベースバンド信号に変換し、出力する直交検波回路3と、この直交検波回路3から出力されたアナログ複素ベースバンド信号を標本量子化する標本量子化手段としてのA/D変換器4、5と、A/D変換器4、5にて標本量子化されたベースバンド信号のタイミング同期処理および搬送波周波数同期処理を行い同期処理後の信号を出力する同期回路6と、この同期回路6から出力された同期処理後の信号をフーリエ変換し、前記バーストOFDM変調信号をサブキャリア毎の信号に分離するフーリエ変換回路7と、このフーリエ変換回路7から出力された信号から伝搬路歪を推定し、伝搬路歪情報と各サブキャリア振幅歪情報を出力する伝搬路歪推定回路8と、このフーリエ変換回路7から出力された信号を、伝搬路歪情報を用いて歪補償し、歪補償後の信号を出力する伝搬路歪補償回路9と、この歪補償後の信号を各サブキャリア毎に復調し、復調データおよび軟判定データを出力するサブキャリア復調回路10と、このサブキャリア復調回路10から出力される軟判定データと伝搬路歪推定回路8から出力される各サブキャリア振幅歪情報を用いて位相誤差情報を生成し、伝搬路歪推定回路8へ出力する位相誤差検出回路11を備えている。
【0016】
次に、図1のOFDM復調装置の動作を説明する。
【0017】
図1において、アンテナ1に受信OFDMバースト変調信号が入力される。周波数変換回路2は入力される受信OFDMバースト信号を中間周波数帯の信号に変換する。直交検波回路3は、中間周波数帯の搬送波にほぼ近いローカル信号により受信信号をアナログ複素ベースバンド信号に変換する。A/D変換器4、5は直交検波回路3より出力されるアナログ複素ベースバンド信号を標本量子化する。同期回路6は同期用プリアンブル受信時にA/D変換器4、5より出力される標本量子化後のディジタル複素ベースバンド信号を入力し、搬送波周波数同期とシンボルタイミング同期を確立する。フーリエ変換回路7は、同期回路6の出力信号を高速フーリエ変換し、OFDM変調信号を各サブキャリア毎の信号に分離する。伝搬路歪推定回路8は、伝搬路推定用のプリアンブル受信時に、フーリエ変換回路7からの各サブキャリア毎に分離された信号を用いて伝搬路特性を推定し、伝搬路歪補償信号を出力する。伝搬路歪補償回路9は伝搬路推定用のプリアンブル後のデータ信号に対して、伝搬路歪推定回路8からの伝搬路歪補償信号を用いて伝搬路歪補償を行う。サブキャリア復調回路10は歪み補償後の信号を入力し、サブキャリアごとの復調を行う。位相誤差検出回路11はサブキャリア復調回路10からのサブキャリア毎の位相誤差情報と伝搬路歪推定回路8からの各サブキャリア振幅歪情報を入力し、位相誤差情報を生成し出力する。
【0018】
図2に位相誤差検出回路11の構成例を示す。まずサブキャリア復調回路10においてサブキャリア毎の位相誤差を検出する際には、特定のサブキャリアに既知のパイロット信号を配置し、基準となるパイロット信号と受信信号との差をとる方法や、あるいはすべてのサブキャリアについてサブキャリア変調方式に対応する基準信号点からのずれを検出する方法を用いることができる。次に周波数変換回路2のローカル信号により付加される位相雑音は全サブキャリア共通となるのでOFDMシンボル内平均回路12はサブキャリア復調回路10からのサブキャリア毎の位相誤差をOFDMシンボル毎に平均をとる。OFDMシンボル内の平均をとる際には伝搬路歪推定回路8からの各サブキャリア振幅歪情報を用いて、各サブキャリアの受信レベルに応じた重み付け平均を行う。具体例としては例えばあるしきい値を設けて、それよりも受信レベルが高いサブキャリアのみの位相誤差の平均をとるという方法をとることができる。
【0019】
さらに移動平均回路13は、OFDMシンボル内の平均結果を数シンボル間にわたり移動平均することにより位相誤差情報を生成する。
【0020】
伝搬路歪推定回路8は、位相誤差検出回路11からの位相誤差情報を用いて、周波数変換回路のローカル信号により付加される位相雑音を補償するよう伝搬路歪補償回路9への伝搬路歪補償係数を修正する。
【0021】
【発明の効果】
このように、本発明は、位相誤差検出回路においてOFDMシンボル毎に各サブキャリアの位相誤差を平均化し、この際に、サブキャリア振幅歪情報を用いて、各サブキャリアの受信レベルに応じた重み付け平均をとることにより高精度の位相誤差検出を行うことができ、この位相誤差検出により搬送波周波数誤差および位相雑音に起因する位相回転の高精度な補正を実現できる。さらに、移動平均回路においてOFDMシンボル内の平均結果を必要なシンボル数にわたり移動平均することによりさらに位相誤差の検出精度を上げることができる。これにより搬送波周波数誤差および位相雑音に起因する位相回転の高精度な補正を実現できる。
【0022】
またその位相雑音の補償は伝搬路歪補償係数を修正することにより行うため、補償動作は伝搬路歪補償回路9の回路をそのまま用いることができる。従って回路規模の増加を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の復調装置の実施の形態の一例を示す図。
【図2】位相誤差検出回路の構成例を示す図。
【図3】バーストフォーマット構成例を示す図。
【図4】本発明の復調装置の構成例を示す図。
【符号の説明】
1 アンテナ
2 周波数変換回路
3 直交検波回路
4、5 A/D変換器
6 同期回路
7 フーリエ変換回路
8 伝搬路歪推定回路
9 伝搬路歪補償回路
10 サブキャリア復調回路
11 位相誤差検出回路
12 OFDMシンボル内平均回路
13 移動平均回路
14 位相誤差補正回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a demodulation device for a burst signal transmission system using an orthogonal frequency division multiplexing (hereinafter, abbreviated as OFDM) modulation scheme, in a demodulation device of a burst signal transmission system, which performs high-precision correction of phase rotation caused by carrier frequency error and phase noise. The present invention relates to a demodulation device to be realized.
[0002]
[Prior art]
FIG. 3 shows a format of the OFDM burst signal. As shown in FIG. 3, a preamble for synchronization and a preamble for channel estimation are arranged at the head of each burst.
[0003]
FIG. 4 shows the configuration of a conventional OFDM demodulator. The OFDM demodulator includes an antenna 1 for receiving a burst OFDM modulated signal, a frequency conversion circuit 2 for converting a modulated signal received via the antenna 1 into an intermediate frequency band signal, and outputting the signal, and a frequency conversion circuit 2. A quadrature detection circuit 3 that converts the intermediate frequency band signal output from the multiplexed signal into an analog complex baseband signal and outputs the analog complex baseband signal, and a sample quantization unit that samples and quantizes the analog complex baseband signal output from the quadrature detection circuit 3 Synchronization including A / D converters 4 and 5, timing synchronization means for performing timing synchronization processing on the baseband signals sampled and quantized by A / D converters 4 and 5, and carrier frequency synchronization processing means for performing carrier frequency synchronization processing A synchronization circuit 6 for outputting a signal after the processing, and a Fourier transform of the signal after the synchronization processing output from the synchronization circuit 6 to obtain the burst O A Fourier transform circuit 7 for separating the DM modulation signal into signals for each subcarrier, and a propagation path for estimating propagation path distortion from a signal output from the Fourier transformation circuit 7 and outputting propagation path distortion information and each subcarrier amplitude distortion information. A channel distortion estimating circuit 8, a channel distortion compensating circuit 9 for compensating for a signal output from the Fourier transform circuit 7 using the channel distortion information, and outputting a signal after distortion compensation, and a carrier wave after the distortion compensation. And a sub-carrier demodulation circuit 10 that demodulates the signal after the distortion compensation and the phase error correction for each sub-carrier and outputs the demodulated data as demodulated data.
[0004]
In the conventional demodulator shown in FIG. 4, the synchronization circuit 6 establishes carrier frequency synchronization and symbol timing synchronization using a synchronization preamble. The phase error correction circuit 14 is provided as needed, and corrects the phase error of the carrier wave in the phase error correction circuit 14 as necessary.
[0005]
[Problems to be solved by the invention]
The orthogonal frequency division multiplexing (OFDM) modulation scheme is a multicarrier modulation scheme in which data to be transmitted is divided into a plurality of subcarriers and modulated. By using multicarriers, each subcarrier has a narrow band and has excellent multipath fading resistance. On the other hand, there is a problem that the characteristic degradation is large with respect to the phase noise of the carrier added by the local signal used in the frequency conversion circuit. Therefore, it is desired to realize highly accurate carrier phase synchronization even in a multipath fading environment. In the conventional demodulator configuration example of FIG. 4, especially under a multipath fading environment, the phase error correction circuit 14 has a problem that a precise operation cannot be performed due to an influence that a detected phase error becomes large in a subcarrier having a low reception level. .
[0006]
The present invention solves such a problem, and a demodulation device capable of performing high-accuracy phase error detection and thereby achieving high-accuracy correction of phase rotation caused by carrier frequency error and phase noise is provided. The purpose is to provide. Another object of the present invention is to provide a demodulation device with a small increase in circuit scale.
[0007]
[Means for Solving the Problems]
The present invention relates to an OFDM demodulator for receiving and demodulating a burst OFDM modulated signal output from a transmitter via a propagation path.
[0008]
Here, the features of the demodulation device of the present invention include a frequency conversion circuit that converts a received burst orthogonal frequency division multiplexed modulation signal into an intermediate frequency band signal, and a baseband signal that is output from the frequency conversion circuit. A quadrature detection circuit for converting the baseband signal output from the quadrature detection circuit into a sample signal, a sample quantization unit for sample-quantizing the baseband signal output from the quadrature detection circuit, a timing synchronization process for the baseband signal sample-quantized by the sample quantization unit, and a carrier wave. A synchronizing circuit for performing frequency synchronizing processing, a Fourier transform circuit for performing a Fourier transform on the signal after the synchronizing process output from the synchronizing circuit and separating the burst orthogonal frequency division multiplex modulation signal into a signal for each subcarrier, and a Fourier transform A channel distortion estimating circuit for estimating channel distortion from a signal output from the circuit and outputting channel distortion information; D. A channel distortion compensation circuit that performs distortion compensation on a signal output from the conversion circuit using the channel distortion information, and demodulates a signal after distortion compensation output from the channel distortion compensation circuit for each subcarrier. A subcarrier demodulation circuit that outputs demodulated data and soft decision data; and a subcarrier demodulation circuit that outputs soft decision data output from the subcarrier demodulation circuit and subcarrier amplitude distortion information output from the propagation path distortion estimation circuit. And a phase error detecting circuit for generating common phase error information and outputting the same to the propagation path distortion estimating circuit.
[0009]
The phase error detection circuit uses the soft decision data output from the subcarrier demodulation circuit and the subcarrier amplitude distortion information output from the propagation path distortion estimation circuit to calculate the error component of each subcarrier for each subcarrier. An orthogonal frequency division multiplexing intra-symbol averaging circuit that performs weighted averaging according to the reception level, and a moving average circuit that performs a moving average of the weighted average result output from the orthogonal frequency division multiplexing intra-symbol averaging circuit and outputs the phase error information. Can be provided.
[0010]
Further, the propagation path distortion estimating circuit may include means for correcting the propagation path distortion information so as to compensate for the phase error using the phase error information output from the phase error detection circuit.
[0011]
In the present invention configured as described above, the phase error detection circuit averages the phase error of each subcarrier for each OFDM symbol, and at this time, uses the subcarrier amplitude distortion information to calculate each subcarrier. By performing weighted averaging in accordance with the reception level of the above, highly accurate phase error detection can be performed. Further, the moving average circuit performs a moving average of the average result in the OFDM symbol over a required number of symbols, so that the detection accuracy of the phase error can be further improved. Thereby, highly accurate correction of the phase rotation caused by the carrier frequency error and the phase noise can be realized.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
FIG. 1 shows a configuration of an OFDM demodulator showing one embodiment of the present invention.
[0014]
FIG. 1 shows a configuration example of an OFDM demodulator according to the present invention. FIG. 3 shows the format of an OFDM burst signal. As shown in FIG. 3, a preamble for synchronization and a preamble for channel estimation are arranged at the head of each burst.
[0015]
The demodulator of FIG. 1 receives an OFDM-modulated burst OFDM-modulated signal on the transmission side, and converts the modulated signal received via the antenna 1 into an intermediate frequency band signal and outputs it. A frequency conversion circuit 2, a quadrature detection circuit 3 that converts the intermediate frequency band signal output from the frequency conversion circuit 2 into an analog complex baseband signal and outputs the analog complex baseband signal, and an analog complex baseband output from the quadrature detection circuit 3 A / D converters 4 and 5 as sample quantization means for sample-quantizing the signal, and a timing synchronization process and a carrier frequency synchronization process of the baseband signal sample-quantized by the A / D converters 4 and 5 are performed. A synchronization circuit 6 for outputting a signal after the synchronization processing, and a Fourier transform of the signal after the synchronization processing output from the synchronization circuit 6 to perform the burst OFDM modulation. Fourier transform circuit 7 for separating the signal into signals for each subcarrier, and a propagation path for estimating propagation path distortion from a signal output from the Fourier transformation circuit 7 and outputting propagation path distortion information and each subcarrier amplitude distortion information A distortion estimating circuit 8, a distortion compensating circuit 9 for compensating the distortion of the signal output from the Fourier transform circuit 7 using the propagation distortion information, and outputting a signal after the distortion compensation; A subcarrier demodulation circuit 10 that demodulates a signal for each subcarrier and outputs demodulated data and soft decision data, and soft decision data outputted from the subcarrier demodulation circuit 10 and outputted from the channel distortion estimating circuit 8 A phase error detection circuit 11 that generates phase error information using each subcarrier amplitude distortion information and outputs the generated phase error information to the propagation path distortion estimation circuit 8 is provided.
[0016]
Next, the operation of the OFDM demodulator of FIG. 1 will be described.
[0017]
In FIG. 1, a received OFDM burst modulation signal is input to an antenna 1. The frequency conversion circuit 2 converts an input received OFDM burst signal into an intermediate frequency band signal. The quadrature detection circuit 3 converts a received signal into an analog complex baseband signal using a local signal that is substantially close to a carrier in the intermediate frequency band. The A / D converters 4 and 5 sample quantize the analog complex baseband signal output from the quadrature detection circuit 3. The synchronization circuit 6 receives the sample-quantized digital complex baseband signal output from the A / D converters 4 and 5 when the synchronization preamble is received, and establishes carrier frequency synchronization and symbol timing synchronization. The Fourier transform circuit 7 performs a fast Fourier transform on the output signal of the synchronization circuit 6, and separates the OFDM modulated signal into signals for each subcarrier. The propagation path distortion estimating circuit 8 estimates the propagation path characteristics using the signal separated for each subcarrier from the Fourier transform circuit 7 when receiving the preamble for propagation path estimation, and outputs a propagation path distortion compensation signal. . The channel distortion compensation circuit 9 performs channel distortion compensation on the data signal after the preamble for channel estimation using the channel distortion compensation signal from the channel distortion estimation circuit 8. The subcarrier demodulation circuit 10 receives the distortion-compensated signal and performs demodulation for each subcarrier. The phase error detection circuit 11 inputs the phase error information for each subcarrier from the subcarrier demodulation circuit 10 and each subcarrier amplitude distortion information from the propagation path distortion estimation circuit 8, and generates and outputs phase error information.
[0018]
FIG. 2 shows a configuration example of the phase error detection circuit 11. First, when the subcarrier demodulation circuit 10 detects a phase error for each subcarrier, a known pilot signal is arranged on a specific subcarrier, and a method of taking a difference between a reference pilot signal and a received signal, or A method of detecting a deviation from a reference signal point corresponding to a subcarrier modulation scheme for all subcarriers can be used. Next, since the phase noise added by the local signal of the frequency conversion circuit 2 is common to all subcarriers, the OFDM intra-symbol averaging circuit 12 averages the phase error of each subcarrier from the subcarrier demodulation circuit 10 for each OFDM symbol. Take. When averaging within an OFDM symbol, weighted averaging according to the reception level of each subcarrier is performed using each subcarrier amplitude distortion information from the channel distortion estimation circuit 8. As a specific example, for example, a method can be adopted in which a certain threshold value is provided, and the average of the phase errors of only the subcarriers having a higher reception level is obtained.
[0019]
Further, the moving average circuit 13 generates phase error information by performing a moving average of the average result in the OFDM symbol over several symbols.
[0020]
The propagation path distortion estimating circuit 8 uses the phase error information from the phase error detecting circuit 11 to compensate the propagation path distortion to the propagation path distortion compensating circuit 9 so as to compensate for the phase noise added by the local signal of the frequency conversion circuit. Modify the coefficient.
[0021]
【The invention's effect】
As described above, according to the present invention, the phase error detection circuit averages the phase error of each subcarrier for each OFDM symbol, and at this time, uses the subcarrier amplitude distortion information to perform weighting according to the reception level of each subcarrier. By taking the average, highly accurate phase error detection can be performed, and this phase error detection can realize highly accurate correction of phase rotation caused by carrier frequency error and phase noise. Further, by performing a moving average of the average result in the OFDM symbol in a required number of symbols in the moving average circuit, the detection accuracy of the phase error can be further improved. Thereby, highly accurate correction of the phase rotation caused by the carrier frequency error and the phase noise can be realized.
[0022]
Further, since the compensation of the phase noise is performed by correcting the propagation path distortion compensation coefficient, the circuit of the propagation path distortion compensation circuit 9 can be used as it is for the compensation operation. Therefore, an increase in circuit scale can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of a demodulation device of the present invention.
FIG. 2 is a diagram illustrating a configuration example of a phase error detection circuit.
FIG. 3 is a diagram showing an example of a burst format configuration.
FIG. 4 is a diagram showing a configuration example of a demodulation device of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 antenna 2 frequency conversion circuit 3 quadrature detection circuit 4, 5 A / D converter 6 synchronization circuit 7 Fourier conversion circuit 8 propagation path distortion estimation circuit 9 propagation path distortion compensation circuit 10 subcarrier demodulation circuit 11 phase error detection circuit 12 OFDM symbol Inner average circuit 13 Moving average circuit 14 Phase error correction circuit

Claims (2)

受信されたバースト直交周波数分割多重変調信号を中間周波数帯信号に変換する周波数変換回路と、
この周波数変換回路から出力された中間周波数帯信号をベースバンド信号に変換する直交検波回路と、
この直交検波回路から出力されたベースバンド信号を標本量子化する標本量子化手段と、
この標本量子化手段で標本量子化されたベースバンド信号のタイミング同期処理および搬送波周波数同期処理を行う同期回路と、
この同期回路から出力される同期処理後の信号をフーリエ変換し前記バースト直交周波数分割多重変調信号をサブキャリア毎の信号に分離するフーリエ変換回路と、
このフーリエ変換回路から出力される信号から伝搬路歪を推定し伝搬路歪情報を出力する伝搬路歪推定回路と、
前記フーリエ変換回路から出力される信号を前記伝搬路歪情報を用いて歪補償を行う伝搬路歪補償回路と、
この伝搬路歪補償回路の出力する歪補償後の信号を各サブキャリア毎に復調し復調データおよび軟判定データを出力するサブキャリア復調回路と、
このサブキャリア復調回路から出力される軟判定データと前記伝搬路歪推定回路から出力される各サブキャリア振幅歪情報を用いて各サブキャリアに共通な位相誤差情報を生成し前記伝搬路歪推定回路へ出力する位相誤差検出回路と
を備え
前記伝搬路歪推定回路は、前記位相誤差検出回路から出力される位相誤差情報を用い位相誤差を補償するように前記伝搬路歪情報を補正する手段を含む
ことを特徴とする復調装置。
A frequency conversion circuit for converting the received burst orthogonal frequency division multiplex modulation signal into an intermediate frequency band signal,
A quadrature detection circuit that converts the intermediate frequency band signal output from the frequency conversion circuit to a baseband signal,
Sample quantization means for sample-quantizing the baseband signal output from the quadrature detection circuit;
A synchronization circuit for performing timing synchronization processing and carrier frequency synchronization processing of the baseband signal sample-quantized by the sample quantization means,
A Fourier transform circuit for performing a Fourier transform on the signal after the synchronization process output from the synchronization circuit and separating the burst orthogonal frequency division multiplex modulation signal into a signal for each subcarrier;
A channel distortion estimating circuit that estimates channel distortion from a signal output from the Fourier transform circuit and outputs channel distortion information;
A channel distortion compensation circuit that performs distortion compensation on a signal output from the Fourier transform circuit using the channel distortion information,
A subcarrier demodulation circuit that demodulates the signal after distortion compensation output from the propagation path distortion compensation circuit for each subcarrier and outputs demodulated data and soft decision data;
Using the soft decision data output from the subcarrier demodulation circuit and each subcarrier amplitude distortion information output from the channel distortion estimation circuit, generates phase error information common to each subcarrier, and and a phase error detecting circuit to be output to,
The demodulation method, wherein the propagation path distortion estimating circuit includes means for correcting the propagation path distortion information so as to compensate for a phase error by using phase error information output from the phase error detection circuit. apparatus.
前記位相誤差検出回路は、前記サブキャリア復調回路から出力される軟判定データと前記伝搬路歪推定回路から出力される各サブキャリア振幅歪情報を用い各サブキャリアの誤差成分を各サブキャリアの受信レベルに応じて重み付け平均する直交周波数分割多重シンボル内平均回路と、この直交周波数分割多重シンボル内平均回路から出力される重み付け平均結果の移動平均を行い前記位相誤差情報を出力する移動平均回路とを備えた請求項1記載の復調装置。The phase error detection circuit receives an error component of each subcarrier by using the soft decision data output from the subcarrier demodulation circuit and each subcarrier amplitude distortion information output from the propagation path distortion estimation circuit. An orthogonal frequency division multiplexing intra-symbol averaging circuit that performs weighted averaging according to the level, and a moving average circuit that performs a moving average of the weighted average result output from the orthogonal frequency division multiplexing intra-symbol averaging circuit and outputs the phase error information. The demodulation device according to claim 1, further comprising:
JP09240799A 1999-03-31 1999-03-31 Demodulator Expired - Lifetime JP3555843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09240799A JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09240799A JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Publications (2)

Publication Number Publication Date
JP2000286819A JP2000286819A (en) 2000-10-13
JP3555843B2 true JP3555843B2 (en) 2004-08-18

Family

ID=14053574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09240799A Expired - Lifetime JP3555843B2 (en) 1999-03-31 1999-03-31 Demodulator

Country Status (1)

Country Link
JP (1) JP3555843B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339328A (en) 2000-05-25 2001-12-07 Communication Research Laboratory Receiver, reception method, and information recording medium
KR100666691B1 (en) * 2000-12-06 2007-01-11 삼성전자주식회사 Apparatus for receiving of OFDM signals and Method for recovering of signals by estimating channel
JP2002204215A (en) * 2000-12-28 2002-07-19 Kddi Research & Development Laboratories Inc Phase error correcting device of ofdm receiving device
JP4560963B2 (en) * 2001-01-19 2010-10-13 株式会社富士通ゼネラル QAM decoder
MY131621A (en) * 2001-08-28 2007-08-30 Ntt Docomo Inc Multi-carrier cdma transmission system, transmitting apparatus and receiving apparatus used in this system, and multi-carrier cdma transmission method
JP3538187B2 (en) 2002-03-26 2004-06-14 株式会社東芝 OFDM receiver and data demodulation method in OFDM receiver
JP3748449B2 (en) 2003-03-31 2006-02-22 株式会社東芝 OFDM receiver
CN100547989C (en) * 2003-06-11 2009-10-07 Nxp股份有限公司 The receiver that is used for multi-carrier communications systems
KR100728221B1 (en) 2005-12-08 2007-06-13 한국전자통신연구원 Iterative residual frequency and phase compensation for turbo coded ofdm system
JP2010220105A (en) 2009-03-18 2010-09-30 Toshiba Corp Wireless receiving apparatus and wireless receiving method
JP5984583B2 (en) * 2012-08-28 2016-09-06 三菱電機株式会社 Frequency error detection apparatus, frequency error detection method, and reception apparatus
JP6893958B2 (en) * 2019-07-16 2021-06-23 アンリツ株式会社 Clock error correction device, measuring device equipped with it, clock error correction method, and measurement method

Also Published As

Publication number Publication date
JP2000286819A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US6850481B2 (en) Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
EP1689140A1 (en) Apparatus and method for compensating for a frequency offset in a wireless communication system
JP5297502B2 (en) Estimation of carrier frequency offset in wireless communication systems
US7856068B1 (en) Nested preamble for multi input multi output orthogonal frequency division multiplexing
US6646980B1 (en) OFDM demodulator
CN100531176C (en) Averaging circuit for enhancing channel estimation in receptor and compensating frequency offset residue
US6584164B1 (en) Method for forming a training sequence
US20080181323A1 (en) Noise variance estimation
US7283598B2 (en) OFDM receiver apparatus
KR100807886B1 (en) Receiver of orthogonal frequency division multiple system
US6680901B1 (en) OFDM demodulator
JP3555843B2 (en) Demodulator
JP2001086092A (en) Ofdm communications equipment and detecting method
JP2006186427A (en) Wireless communication method and device
JP2001053712A (en) Phase tracking circuit for multicarrier modulation signal
CN1802828A (en) Receiver for a multi-carrier communication system
JP2003051768A (en) Diversity receiver
US8229042B2 (en) Orthogonal frequency division multiplexing demodulator
EP1780970B1 (en) Frequency correction for a multicarrier system
WO2007065045A2 (en) Method and apparatus for improving recovery performance of time windowed signals
JP3339490B2 (en) OFDM demodulator
JP2002044049A (en) Receiver for ofdm packet communication
JP3583013B2 (en) Demodulator
WO2008052146A2 (en) Method and apparatus for refining mimo channel estimation using the signal field
JP2001044963A (en) Receiver

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term