JP2000286686A - Transition detection circuit - Google Patents

Transition detection circuit

Info

Publication number
JP2000286686A
JP2000286686A JP11094066A JP9406699A JP2000286686A JP 2000286686 A JP2000286686 A JP 2000286686A JP 11094066 A JP11094066 A JP 11094066A JP 9406699 A JP9406699 A JP 9406699A JP 2000286686 A JP2000286686 A JP 2000286686A
Authority
JP
Japan
Prior art keywords
circuit
pulse
detection circuit
contact
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11094066A
Other languages
Japanese (ja)
Inventor
Akihiko Tago
明彦 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11094066A priority Critical patent/JP2000286686A/en
Publication of JP2000286686A publication Critical patent/JP2000286686A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transition detection circuit which is effective to increase the access speed by the reduction of capacitance of an input circuit and also to improve the noise characteristics by detecting the rise or fall of an input signal and expanding the pulse width of an output signal. SOLUTION: When an input terminal T1 falls, an output pulse is generated by a rise pulse detection circuit of a circuit block B2 and a pulse expansion circuit of the block B2 expands the output pulse. When the terminal T1 rises, an output pulse is generated by a rise pulse detection circuit of a circuit block B1 and a pulse expansion circuit of the block B1 expands the output pulse. The output waveforms of both blocks B1 and B2 are logically synthesized to obtain an output waveform of a transition circuit. Thereby the output pulse of a transition detection circuit having a sufficient reset time can be generated even with the pulse width that is generated by the noise of an input terminal that does not satisfy the reset time. Furthermore, the load capacitance of an input circuit can be optimized and accordingly the access speed is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は入力端子に印加され
る入力信号の変化を検出する遷移検出回路に関する。
The present invention relates to a transition detection circuit for detecting a change in an input signal applied to an input terminal.

【0002】[0002]

【従来の技術】図5は半導体記憶装置のアドレス遷移検
出回路の回路図である。T1はアドレスの入力端子、2
は低電源電圧(低電源電圧を0Vとし以下GNDと略
す)、T2はNOR回路L1を活性/非活性状態を選択
するNOR回路制御信号入力端子である。NOR回路L
1はGNDで活性状態、高電源電圧(以下VDDと略
す)で非活性状態となる。C1は負荷容量、L2とL3
は反転回路である。T3は入力回路出力端子でアドレス
バッファに接続される。B5とB6は立ち上がりパルス
検出回路の回路ブロックを表す。L4はNOR回路で前
記回路ブロックB5とB6の出力波形を論理合成する機
能を有する。T4は遷移検出回路の出力端子を,N1〜
N4は接点を表す。立ち上がりパルス検出回路の回路ブ
ロックB5とB6の回路図を図6に示す。D6からD1
0は遅延用反転回路で遅延回路ブロックB7を構成す
る。S6iからS8i(回路ブロックB5の時はi=
5,回路ブロックB6の時はi=6となる)は接点を表
し、図5の接点N1からN4の対応は次のようになる。
接点S65と接点N1,接点S66と接点N2,接点S
85と接点N3,接点S86と接点N4は同一である。
L10はNAND回路で前記遅延回路ブロックの入力及
び出力である接点S6iとS7iの波形を論理合成する
機能を有する。遅延用反転回路D6〜D10において、
奇数段目の遅延用反転回路のPチャネルトランジスタの
能力はNチャネルトランジスタの能力に比べて大きく、
偶数段目の遅延用反転回路のPチャネルトランジスタの
能力はNチャネルトランジスタの能力に比べて小さく設
定しているので、立ち下がり波形が接点S6iに入力さ
れると、接点S7iの波形はGNDからVDDにすぐに
立ち上がり、立ち上がり波形が接点S6iに入力される
と、接点S7iの波形は接点S6iの立ち上がり波形か
ら遅延して立ち下がる。以下、前者の遅延量を速い経路
の遅延量、後者の遅延量を遅い経路の遅延量とする。遅
い経路の遅延量はアドレスが変化してから読み出しまた
はデータの書き込みを始める前に半導体記憶装置内の内
部回路を十分に初期化状態するのに必要な時間に設定さ
れている。前記初期化状態とは半導体装置内部の回路内
で対となる信号線(たとえば、ビット線、データ線、セ
ンスアンプの入力及び出力線)を同電圧化し、メモリセ
ルを選択するワードラインとカラムラインを非選択状態
にすることで以下リセットと略す。
2. Description of the Related Art FIG. 5 is a circuit diagram of an address transition detection circuit of a semiconductor memory device. T1 is an address input terminal, 2
Is a low power supply voltage (the low power supply voltage is 0 V and is abbreviated to GND hereinafter), and T2 is a NOR circuit control signal input terminal for selecting an active / inactive state of the NOR circuit L1. NOR circuit L
Reference numeral 1 denotes an active state at GND and an inactive state at a high power supply voltage (hereinafter abbreviated to VDD). C1 is the load capacity, L2 and L3
Is an inversion circuit. T3 is an input circuit output terminal connected to the address buffer. B5 and B6 represent circuit blocks of the rising pulse detection circuit. L4 is a NOR circuit having a function of logically synthesizing output waveforms of the circuit blocks B5 and B6. T4 is the output terminal of the transition detection circuit,
N4 represents a contact point. FIG. 6 shows a circuit diagram of the circuit blocks B5 and B6 of the rising pulse detection circuit. D6 to D1
Numeral 0 denotes a delay inverting circuit which constitutes a delay circuit block B7. S6i to S8i (i = for circuit block B5)
5, i = 6 in the case of the circuit block B6) represents a contact, and the correspondence of the contacts N1 to N4 in FIG. 5 is as follows.
Contact S65 and contact N1, contact S66 and contact N2, contact S
The contact 85 and the contact N3 are the same as the contact S86 and the contact N4.
L10 is a NAND circuit having a function of logically synthesizing the waveforms of the contacts S6i and S7i, which are the input and output of the delay circuit block. In the delay inverting circuits D6 to D10,
The capability of the P-channel transistor of the odd-numbered delay inverting circuit is greater than the capability of the N-channel transistor.
Since the capability of the P-channel transistor of the even-numbered delay inverting circuit is set smaller than that of the N-channel transistor, when the falling waveform is input to the contact S6i, the waveform of the contact S7i is changed from GND to VDD. When the rising waveform is immediately input to the contact S6i, the waveform at the contact S7i falls with a delay from the rising waveform at the contact S6i. Hereinafter, the former delay amount is referred to as a fast path delay amount, and the latter delay amount is referred to as a slow path delay amount. The delay amount of the slow path is set to a time necessary for sufficiently initializing the internal circuit in the semiconductor memory device before starting reading or writing data after the address changes. The initialized state means that a pair of signal lines (for example, a bit line, a data line, and an input and output line of a sense amplifier) in a circuit inside a semiconductor device are made to have the same voltage, and a word line and a column line for selecting a memory cell are used. Is abbreviated as “reset” in the following.

【0003】アドレスの入力端子T4に通常の波形が印
加された時の図5の回路の動作波形を図7示す。図中に
おいて縦軸は電圧、横軸は時間を表す。接点N1とN2
の波形が立ち下がる時接点S75とS76の波形は速い
経路の遅延量分遅れて立ち上がり、接点N1とN2の波
形が立ち上がる時接点S75とS76の波形は遅い経路
の遅延量分遅れて立ち上がるので、アドレスの入力端子
T1が立ち下がる時は接点S86でパルスが発生し、ア
ドレスの入力端子T1が立ち上がる時は接点S85でパ
ルスが発生する。遷移検出回路の出力端子T4の波形は
接点S85とS86と論理合成された波形になる。遷移
検出回路の出力端子T4の波形のVDDの期間がリセッ
ト時間となる。
FIG. 7 shows operation waveforms of the circuit of FIG. 5 when a normal waveform is applied to the address input terminal T4. In the figure, the vertical axis represents voltage, and the horizontal axis represents time. Contacts N1 and N2
When the waveform of the contacts S75 and S76 falls, the waveform of the contacts S75 and S76 rises with a delay of the delay amount of the fast path, and when the waveforms of the contacts N1 and N2 rise, the waveforms of the contacts S75 and S76 rise with a delay amount of the delay of the slow path. When the address input terminal T1 falls, a pulse is generated at the contact S86, and when the address input terminal T1 rises, a pulse is generated at the contact S85. The waveform of the output terminal T4 of the transition detection circuit is a waveform logically synthesized with the contacts S85 and S86. The period of VDD of the waveform of the output terminal T4 of the transition detection circuit is the reset time.

【0004】図8にアドレスの入力端子T1に印加され
ている信号に遅延回路ブロックB7の遅い経路の遅延量
以下の幅を持つノイズが入った場合の動作波形を示す。
図中において縦軸は電圧、横軸は時間を表す。
FIG. 8 shows operation waveforms when a signal applied to the address input terminal T1 contains noise having a width equal to or less than the delay amount of the slow path of the delay circuit block B7.
In the figure, the vertical axis represents voltage, and the horizontal axis represents time.

【0005】アドレスの入力端子T1の入力電圧がVD
Dの時にノイズが入ってGNDになり、そしてまたVD
Dに回復する場合についての動作の説明をする。遅延回
路ブロックB5の入力となる接点N1の波形はVDDか
らGNDそしてVDDに変化する。接点N1がVDDか
らGNDに変化すると接点S75の波形は、速い経路の
遅延量遅延してGNDからVDDに変化し、接点N1が
GNDからVDDに変化すると接点S75の波形は遅い
経路の遅延量遅延してVDDからGNDに変化するので
接点N3には遅い経路の遅延で形成されたパルスが出力
される。一方、接点N2の波形はGNDからVDDそし
てGNDに変化する。接点N2がGNDからVDDに変
化すると遅い経路で遅延がかかるため接点S76の電圧
はすぐには変化しない。接点N2がVDDなっている時
間は遅い経路の遅延量より短かいので接点N2がVDD
からGNDの変化は速い経路で伝達されるため、接点N
2のGNDからVDDへの変化が接点S76に出力され
る前に接点S76にVDDからGNDへの変化が伝達さ
れる。接点S76の波形はVDDのままとなるので接点
N4には接点N2のパルスが出力される。遷移検出回路
の出力端子T4の波形は、接点N3とN4の波形の合成
波形が出力される。
When the input voltage of the address input terminal T1 is VD
In the case of D, noise enters and becomes GND, and again VD
The operation for recovering to D will be described. The waveform of the contact N1 serving as an input to the delay circuit block B5 changes from VDD to GND and then to VDD. When the contact N1 changes from VDD to GND, the waveform of the contact S75 changes from GND to VDD with a delay of the fast path, and when the contact N1 changes from GND to VDD, the waveform of the contact S75 delays the delay of the slow path. As a result, the pulse changes from VDD to GND, so that a pulse formed with a delay in the slow path is output to the node N3. On the other hand, the waveform at the contact N2 changes from GND to VDD and GND. When the voltage at the contact N2 changes from GND to VDD, a delay occurs on a slow path, so that the voltage at the contact S76 does not change immediately. Since the time during which the contact N2 is at VDD is shorter than the delay amount of the slow path, the contact N2 is at VDD.
Since the change of GND from is transmitted through a fast path, the contact N
Before the change from GND to VDD of No. 2 is output to the contact S76, the change from VDD to GND is transmitted to the contact S76. Since the waveform at the contact S76 remains at VDD, a pulse at the contact N2 is output to the contact N4. As a waveform at the output terminal T4 of the transition detection circuit, a composite waveform of the waveforms at the contacts N3 and N4 is output.

【0006】[0006]

【発明が解決しようとする課題】アドレスの入力端子T
1に印加されるノイズで入力の波形にパルスが発生し、
前記パルスで半導体記憶装置を誤動作させないために回
路L1とL2間に容量C1接続し、半導体記憶装置内の
リセットを十分に行えない幅の小さいパルス信号をC1
で吸収していた。
The address input terminal T
A pulse is generated in the input waveform due to the noise applied to 1,
A capacitor C1 is connected between the circuits L1 and L2 in order to prevent the semiconductor memory device from malfunctioning due to the pulse, and a pulse signal having a small width that cannot sufficiently reset the semiconductor memory device.
Had been absorbed.

【0007】アクセスの高速化をはかるためには入力回
路についても負荷容量の軽減が必要である。入力回路内
での負荷容量を低減すると、幅が小さいパルス信号が回
路L2に入力される。図9にノイズで発生したパルス幅
が速い経路の遅延時間と同等の場合の動作波形を示す。
In order to speed up access, it is necessary to reduce the load capacity of the input circuit. When the load capacitance in the input circuit is reduced, a pulse signal having a small width is input to the circuit L2. FIG. 9 shows an operation waveform when the pulse width generated by noise is equal to the delay time of the fast path.

【0008】各接点N1からN4とS75とS76の動
作波形は図8とほぼ同じであるが、遷移検出回路の出力
端子T4には接点N3とN4のそれそれの波形が出力さ
れる。通常の入力信号時のリセット時間に比べて図9の
場合はリセット時間が速い経路の遅延量短く十分なリセ
ットが行われない為に誤動作の原因となる。
The operating waveforms of the contacts N1 to N4, S75 and S76 are almost the same as those of FIG. 8, but the respective waveforms of the contacts N3 and N4 are output to the output terminal T4 of the transition detection circuit. In the case of FIG. 9 as compared with the reset time at the time of a normal input signal, the delay time of the path whose reset time is fast is short, and sufficient reset is not performed, thereby causing a malfunction.

【0009】前記の誤動作をなくすためには遅い経路の
遅延量を増やしてリセット時間を確保するか、または速
い経路の遅延量を減少つまり速い経路の伝達速度を高速
化すればよい。前述の方法を用いると、遅延回路ブロッ
クの奇数段目の遅延用反転回路のNチャネルトランジス
タの能力と偶数段目の遅延用反転回路のPチャネルトラ
ンジスタの能力を小さくすればよいが、前記遅延用反転
回路のロジックレベルがVDDまたはGNDに近づくた
めに電源のノイズで遅延回路の誤動作が発生する。後述
の方法を用いると、遅延回路ブロックの奇数段目の遅延
用反転回路のPチャネルトランジスタの能力と偶数段目
の遅延用反転回路のNチャネルトランジスタの能力を大
きくすればよいが前記反転回路のロジックレベルがVD
DまたはGNDに近づくために電源のノイズで遅延回路
の誤動作が発生する。前記の方法では速い経路の遅延量
とリセット時間は相対する特性なので設定がかない難し
い。
To eliminate the malfunction, the delay time of the slow path is increased to secure the reset time, or the delay amount of the fast path is reduced, that is, the transmission speed of the fast path is increased. When the above-described method is used, the capability of the N-channel transistor of the odd-numbered delay inverting circuit of the delay circuit block and the capability of the P-channel transistor of the even-numbered delay inverting circuit may be reduced. Since the logic level of the inverting circuit approaches VDD or GND, malfunction of the delay circuit occurs due to power supply noise. When the method described later is used, the capability of the P-channel transistor of the odd-numbered delay inverting circuit of the delay circuit block and the capability of the N-channel transistor of the even-numbered delay inverting circuit may be increased. Logic level is VD
Since the voltage approaches D or GND, a malfunction of the delay circuit occurs due to noise of the power supply. In the above method, the delay amount of the fast path and the reset time have opposite characteristics, so it is difficult to set them.

【0010】そこで本発明の目的は、入力端子にノイズ
の影響を受けた場合に生じる誤動作の問題を解決するも
のであり、入力回路の容量の減少によるアクセスの高速
化とノイズ特性の向上に対して有効な遷移検出回路を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of a malfunction that occurs when an input terminal is affected by noise. The object of the present invention is to increase the speed of access and improve noise characteristics by reducing the capacity of an input circuit. And an effective transition detection circuit.

【0011】[0011]

【課題を解決するための手段】入力端子に印加される入
力信号の変化を検出する遷移検出回路において、入力信
号の立ち上がりまたは立ち下がりを検出する機能を有す
るパルス検出回路と、前記パルス検出回路の出力信号の
パルス幅を伸長する機能を有するパルス伸長回路から構
成されることを特徴とする。
In a transition detection circuit for detecting a change in an input signal applied to an input terminal, a pulse detection circuit having a function of detecting a rise or a fall of an input signal; It is characterized by comprising a pulse expansion circuit having a function of expanding the pulse width of the output signal.

【0012】前記パルス伸長回路は、第一1導電型トラ
ンジスタのドレインまたは第2の導電型トランジスタの
ドレインが前記パルス検出回路の出力信号を遅延させる
機能を有する反転回路の入力端子または出力端子に接続
され、前記第1の導電型トランジスタのソースを第1の
電源電圧に、前記第2の導電型トランジスタのソースを
第2の電源電圧に接続され、前記第1の導電型トランジ
スタのゲートが前記パルス検出回路の出力端子に接続さ
れ、前記第2の導電型トランジスタのゲートが、前記パ
ルス検出回路の出力端子に入力端子が接続された反転回
路の出力端子に接続されていることを特徴とする。
In the pulse stretching circuit, a drain of a first conductivity type transistor or a drain of a second conductivity type transistor is connected to an input terminal or an output terminal of an inversion circuit having a function of delaying an output signal of the pulse detection circuit. The source of the first conductivity type transistor is connected to a first power supply voltage, the source of the second conductivity type transistor is connected to a second power supply voltage, and the gate of the first conductivity type transistor is connected to the pulse. It is connected to the output terminal of the detection circuit, and the gate of the second conductivity type transistor is connected to the output terminal of the inversion circuit whose input terminal is connected to the output terminal of the pulse detection circuit.

【0013】前記パルス伸長回路は、前記パルス検出回
路の出力端子に接続する第1の導電型および第2の導電
型のトランジスタのゲート長が前記パルス伸長回路を構
成する第1の導電型および第2の導電型のトランジスタ
の最大ゲート長より小さいことを特徴とする。
In the pulse stretching circuit, a gate length of a transistor of a first conductivity type and a transistor of a second conductivity type connected to an output terminal of the pulse detection circuit may be a first conductivity type and a second conductivity type constituting the pulse stretching circuit. 2 is smaller than the maximum gate length of the second conductivity type transistor.

【0014】[0014]

【発明の実施の形態】本発明の回路図を図1に示す。B
1とB2は立ち上がりパルス検出回路とパルス伸長回路
からなる回路ブロックを表す。前記以外の図中の記号は
図5と同じ意味である。立ち上がりパルス検出回路とパ
ルス伸長回路からなる回路ブロックB1とB2の回路図
を図2に示す。
FIG. 1 shows a circuit diagram of the present invention. B
Reference numerals 1 and B2 denote circuit blocks each including a rising pulse detection circuit and a pulse expansion circuit. Symbols in the figures other than those described above have the same meaning as in FIG. FIG. 2 shows a circuit diagram of circuit blocks B1 and B2 each including a rising pulse detection circuit and a pulse expansion circuit.

【0015】B3は立ち上がりパルス検出回路ブロック
を、B4はパルス伸長回路ブロックを示す。
B3 indicates a rising pulse detection circuit block, and B4 indicates a pulse expansion circuit block.

【0016】1は高電源電圧を、D1からD5は遅延用
反転回路を、L6からL8は反転回路を、L5とL9は
NAND回路を、TR1とTR2はPチャネルトランジ
スタをTR3とTR4はNチャネルトランジスタを示
す。S1iからS5i(なおiは回路ブロックB1の時
i=1,回路ブロックB2の時i=2とする)は接点を
表し、図1の接点N1からN4の対応は次のようにな
る。接点S11と接点N1,接点S12と接点N2,接
点S51と接点N3,接点S52と接点N4は同一であ
る。
1 is a high power supply voltage, D1 to D5 are delay inverting circuits, L6 to L8 are inverting circuits, L5 and L9 are NAND circuits, TR1 and TR2 are P channel transistors, and TR3 and TR4 are N channel transistors. 3 shows a transistor. S1i to S5i (where i is i = 1 for the circuit block B1 and i = 2 for the circuit block B2) represent contacts, and the correspondence of the contacts N1 to N4 in FIG. 1 is as follows. The contacts S11 and N1, the contacts S12 and N2, the contacts S51 and N3, and the contacts S52 and N4 are the same.

【0017】立ち上がりパルス検出回路ブロックB3内
の遅延用反転回路D1からD3では奇数段目の遅延用反
転回路のPチャネルトランジスタの能力はNチャネルト
ランジスタの能力に比べて大きく、偶数段目の遅延用反
転回路のPチャネルトランジスタの能力はNチャネルト
ランジスタの能力に比べて小さく設定しているので、立
ち下がり波形が接点S1iに入力されると接点S2iの
波形はすぐに立ち上がり、立ち上がり波形が接点S1i
に入力されると接点S2iは接点S1iの立ち上がり波
形から遅延して立ち下がるように設定されている。前者
の遅延量を速い経路の遅延量、後者の遅延量を遅い経路
の遅延量とする。
In the delay inverting circuits D1 to D3 in the rising pulse detection circuit block B3, the capacity of the P-channel transistor of the odd-numbered delay inverting circuit is greater than the capacity of the N-channel transistor, and the delay of the even-numbered stage is inverted. Since the capability of the P-channel transistor of the inverting circuit is set smaller than that of the N-channel transistor, when the falling waveform is input to the contact S1i, the waveform of the contact S2i immediately rises and the rising waveform changes to the contact S1i.
, The contact S2i is set to fall with a delay from the rising waveform of the contact S1i. The delay amount of the former is the delay amount of the fast path, and the delay amount of the latter is the delay amount of the slow path.

【0018】遅延用反転回路D1,D2とD3のPチャ
ネルトランジスタとNチャネルトランジスタの能力が図
6の遅延回路ブロックB7を構成する遅延用反転回路の
D6,D7とD8と同じとすると速い経路の遅延量と遅
い経路の遅延量は従来より小さくなる。パルス伸長回路
でのパルスを伸ばす量は、図5の回路で通常の入力を印
可した時のリセット時間からパルス検出回路の出力パル
ス幅を引いた時間とする。
If the capabilities of the P-channel transistor and the N-channel transistor of the delay inverting circuits D1, D2 and D3 are the same as those of the delay inverting circuits D6, D7 and D8 constituting the delay circuit block B7 in FIG. The delay amount and the delay amount of the slow path are smaller than before. The amount of extension of the pulse in the pulse extension circuit is a time obtained by subtracting the output pulse width of the pulse detection circuit from the reset time when a normal input is applied in the circuit of FIG.

【0019】パルス伸長回路ブロックB4において、P
チャネルトランジスタTR1とTR2及び反転回路L6
とL7のPチャネルトランジスタ及びNチャネルトラン
ジスタのゲート長を、同回路ブロック内の最大ゲート長
より小さく、さらにはゲート幅をより小さくすると幅の
狭い入力パルスにも前記回路ブロックが反応してパルス
伸長回路内の各接点をVDDまたはGNDにすることが
できる。これにより小さな幅のパルスにもパルス伸長回
路が正常に動作する。アドレスの入力端子T1に図9と
同じ波形が入力された時の動作波形を図3に示す。図中
において縦軸は電圧、横軸は時間を表している。
In the pulse expansion circuit block B4, P
Channel transistors TR1 and TR2 and inverting circuit L6
When the gate lengths of the P-channel transistor and the N-channel transistor of L7 are smaller than the maximum gate length in the same circuit block, and the gate width is further reduced, the circuit block reacts to a narrow input pulse to extend the pulse. Each contact in the circuit can be VDD or GND. As a result, the pulse expansion circuit operates normally even for a pulse having a small width. FIG. 3 shows an operation waveform when the same waveform as that of FIG. 9 is input to the address input terminal T1. In the figure, the vertical axis represents voltage, and the horizontal axis represents time.

【0020】アドレスの入力端子T1は入力電圧がVD
Dの時にノイズが入ってGNDになり、そしてまたVD
Dに回復する信号である。
The address input terminal T1 has an input voltage of VD
In the case of D, noise enters and becomes GND, and again VD
It is a signal that recovers to D.

【0021】接点N1の波形はVDDからGNDそして
VDDに変化する。回路ブロックB1側の立ち上がりパ
ルス検出回路内の遅延用反転回路D1からD3において
接点N1の立ち下がり側は速い経路なので接点S21は
GNDからVDDになる。接点N1が立ち上がる時は遅
い経路なので接点S21は接点N1から遅い経路の遅延
量遅れてVDDからGNDになる。接点N1とS21の
波形により接点31には遅い経路の遅延量分の幅を持つ
パルスが発生する。接点S31がVDDからGNDに変
化すると、PチャネルトランジスタTR1とTR2のゲ
ートはVDDからGNDになり、またNチャネルトラン
ジスタTR3とTR4のゲートはGNDからVDDにな
る。前記PチャネルトランジスタとNチャネルトランジ
スタは導通状態となるので前記トランジスタのドレイン
が接続される接点はVDDまたはGNDになり、接点S
41はVDDからGNDになる。接点S31がGNDか
らVDDに変化すると、PチャネルトランジスタTR1
とTR2のゲートはGNDからVDDになり、またNチ
ャネルトランジスタTR3とTR4のゲートはVDDか
らGNDになる。前記PチャネルトランジスタとNチャ
ネルトランジスタは遮断状態となり、遅延用反転回路D
4とD5に遅延を持たせてあるので設定した遅延量だけ
接点S31から遅れて接点S41はGNDからVDDに
なる。一方、接点N2の波形はGNDからVDDそして
GNDに変化する。回路ブロックB2側の立ち上がりパ
ルス検出回路では接点N2の波形を検出できないので、
接点S22はVDDのままである。接点S32の波形は
接点12の波形の反転信号が出力されるため、VDDか
らGNDそしてVDDに変化する。接点S32がVDD
からGNDに変化すると、PチャネルトランジスタTR
1とTR2のゲートはVDDからGNDになり、またN
チャネルトランジスタTR3とTR4のゲートはGND
からVDDになる。前記PチャネルとNチャネルトラン
ジスタは導通状態となるので前記トランジスタのドレイ
ンが接続される接点はVDDまたはGNDになり、接点
S42はVDDからGNDになる。接点S32がGND
からVDDに変化すると、PチャネルトランジスタTR
1とTR2のゲートはGNDからVDDになり、またN
チャネルトランジスタTR3とTR4のゲートはVDD
からGNDになる。前記PとNチャネルトランジスタは
遮断状態となり、遅延用反転回路D4とD5に遅延を持
たせてあるので設定した遅延量だけ接点S32から遅れ
て接点S42はGNDからVDDになる。遷移検出回路
の出力端子T4の波形は接点N3とN4の波形を合成し
た波形となり十分なリセット時間を持つ。
The waveform at the contact N1 changes from VDD to GND and then to VDD. In the inverting circuits D1 to D3 for delay in the rising pulse detection circuit on the circuit block B1 side, the falling side of the contact point N1 is a fast path, so that the contact point S21 changes from GND to VDD. When the contact N1 rises, the path is a slow path, so that the contact S21 changes from VDD to GND with a delay of the delay of the path slower than the contact N1. Due to the waveforms of the contacts N1 and S21, a pulse having a width corresponding to the delay amount of the slow path is generated at the contact 31. When the contact S31 changes from VDD to GND, the gates of the P-channel transistors TR1 and TR2 change from VDD to GND, and the gates of the N-channel transistors TR3 and TR4 change from GND to VDD. Since the P-channel transistor and the N-channel transistor become conductive, the contact to which the drain of the transistor is connected becomes VDD or GND, and the contact S
41 changes from VDD to GND. When the contact S31 changes from GND to VDD, the P-channel transistor TR1
And the gate of TR2 goes from GND to VDD, and the gates of the N-channel transistors TR3 and TR4 go from VDD to GND. The P-channel transistor and the N-channel transistor are cut off, and the delay inverting circuit D
4 and D5 are delayed, so that the contact S41 changes from GND to VDD with a delay from the contact S31 by the set delay amount. On the other hand, the waveform at the contact N2 changes from GND to VDD and GND. Since the rising pulse detection circuit on the circuit block B2 side cannot detect the waveform of the contact N2,
The contact S22 remains at VDD. Since the inverted signal of the waveform of the contact 12 is output, the waveform of the contact S32 changes from VDD to GND and VDD. Contact S32 is VDD
Changes from GND to GND, the P-channel transistor TR
1 and the gate of TR2 change from VDD to GND, and N
The gates of the channel transistors TR3 and TR4 are GND
To VDD. Since the P-channel and N-channel transistors are conductive, the contact to which the drain of the transistor is connected becomes VDD or GND, and the contact S42 changes from VDD to GND. Contact S32 is GND
From VDD to VDD, the P-channel transistor TR
The gates of 1 and TR2 go from GND to VDD, and N
The gates of the channel transistors TR3 and TR4 are connected to VDD.
To GND. The P and N channel transistors are cut off, and the delay inverting circuits D4 and D5 have a delay, so that the contact S42 changes from GND to VDD with a delay from the contact S32 by the set delay amount. The waveform of the output terminal T4 of the transition detection circuit becomes a waveform obtained by combining the waveforms of the contacts N3 and N4, and has a sufficient reset time.

【0022】図4に通常のアドレスが入力された場合の
動作波形を示す。
FIG. 4 shows operation waveforms when a normal address is input.

【0023】入力端子T1が立ち下がる時は、回路ブロ
ックB2の立ち上がりパルス検出回路で出力パルスが発
生し、同ブロックのパルス伸長回路が前記出力パルスを
伸長、入力端子T1が立ち上がる時は、回路ブロックB
1の立ち上がりパルス検出回路で出力パルスが発生し、
同ブロックのパルス伸長回路が前記出力パルスを伸長
し、各ブロックB1とB2の出力波形を論理合成して遷
移回路の出力波形となる。
When the input terminal T1 falls, an output pulse is generated by the rising pulse detection circuit of the circuit block B2, and the pulse expansion circuit of the block expands the output pulse. When the input terminal T1 rises, the circuit block B2 generates the output pulse. B
An output pulse is generated by the rising pulse detection circuit of 1 and
The pulse expansion circuit of the block expands the output pulse, logically synthesizes the output waveforms of the blocks B1 and B2, and becomes the output waveform of the transition circuit.

【0024】このようにして、従来回路ではリセット時
間を満足しない入力端子のノイズにより発生するパルス
幅でも、本発明した回路を使用することでリセット時間
が十分な遷移検出回路の出力パルスを発生することが可
能となる。また入力回路の負荷容量の最適化が図れるの
でアクセスの高速化が可能となる。
As described above, even if the pulse width is generated by the noise of the input terminal which does not satisfy the reset time in the conventional circuit, the output pulse of the transition detection circuit having a sufficient reset time is generated by using the circuit of the present invention. It becomes possible. In addition, since the load capacity of the input circuit can be optimized, the access can be speeded up.

【0025】[0025]

【発明の効果】以上述べてきたように、本発明によれ
ば、パルス検出回路と、前記パルス検出回路の出力信号
で遅延回路を構成する反転回路の各接点を第1の電源電
圧または第2の電源電圧に接続する機能を有するパルス
伸長回路を遷移検出回路に設けることで入力信号にノイ
ズで生じた幅の小さいパルスが発生してもリセット時間
が十分な遷移検出回路の出力パルスを生成する。
As described above, according to the present invention, each contact of the pulse detection circuit and the inverting circuit forming the delay circuit by the output signal of the pulse detection circuit is connected to the first power supply voltage or the second power supply voltage. By providing a pulse expansion circuit having a function of connecting to the power supply voltage of the transition detection circuit, an output pulse of the transition detection circuit having a sufficient reset time can be generated even if a pulse having a small width caused by noise occurs in the input signal. .

【0026】また、パルス検出回路の出力端子に接続す
る回路のPチャネルトランジスタとNチャネルトランジ
スタのゲート長をパルス伸長回路を構成するPチャネル
トランジスタとNチャネルトランジスタの最大ゲート長
より小さくすることで、より幅が小さいパルスに対して
もリセット時間が十分な遷移回路の出力パルスが得られ
るので入力端子に印加されるノイズによる誤動作防止効
果がある。さらには入力回路の負荷容量の最適化が図れ
るのでアクセスの高速化に効果がある。
Also, by making the gate lengths of the P-channel transistor and the N-channel transistor of the circuit connected to the output terminal of the pulse detection circuit smaller than the maximum gate lengths of the P-channel transistor and the N-channel transistor constituting the pulse extension circuit, Since an output pulse of the transition circuit having a sufficient reset time can be obtained even for a pulse having a smaller width, there is an effect of preventing a malfunction due to noise applied to the input terminal. Further, the load capacitance of the input circuit can be optimized, which is effective in increasing the access speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回路図。FIG. 1 is a circuit diagram of the present invention.

【図2】本発明の回路ブロックの回路図。FIG. 2 is a circuit diagram of a circuit block according to the present invention.

【図3】本発明の速い経路の遅延と同じパルス幅がある
入力波形での動作波形図。
FIG. 3 is an operation waveform diagram for an input waveform having the same pulse width as a fast path delay according to the present invention.

【図4】本発明の通常の入力波形での動作波形図。FIG. 4 is an operation waveform diagram with a normal input waveform of the present invention.

【図5】従来の回路図。FIG. 5 is a conventional circuit diagram.

【図6】従来の回路ブロックの回路図。FIG. 6 is a circuit diagram of a conventional circuit block.

【図7】従来の通常の入力波形での動作波形図。FIG. 7 is an operation waveform diagram with a conventional normal input waveform.

【図8】従来の遅い経路の遅延以下のパルス幅がある入
力波形での動作波形図。
FIG. 8 is an operation waveform diagram for an input waveform having a pulse width equal to or less than the delay of a conventional slow path.

【図9】従来の速い経路の遅延と同じパルス幅がある入
力波形での動作波形図。
FIG. 9 is an operation waveform diagram for an input waveform having the same pulse width as a conventional fast path delay.

【符号の説明】 1:高電源電圧 2:低電源電圧 T1:アドレスの入力端子 T2:NOR回路制御信号入力端子 T3:入力回路出力端子 T4:遷移検出回路の出力端子 S1i,S2i,S3i,S4i,S5i,S6i,S
7i,S8i:接点 L1、L4:NOR回路 L2、L3、L6、L7、L8:反転回路 D1、D2、D3、D4、D5、D6、D7、D8、D
9、D10:遅延用反転回路 L5、L9、L10:NAND回路 B1、B2、B3、B4、B5、B6、B7:回路ブロ
ック TR1、TR2:Pチャネルトランジスタ TR3、TR4:Nチャネルトランジスタ C1:負荷容量
[Description of Signs] 1: High power supply voltage 2: Low power supply voltage T1: Address input terminal T2: NOR circuit control signal input terminal T3: Input circuit output terminal T4: Output terminal of transition detection circuit S1i, S2i, S3i, S4i , S5i, S6i, S
7i, S8i: Contact L1, L4: NOR circuit L2, L3, L6, L7, L8: Inverting circuit D1, D2, D3, D4, D5, D6, D7, D8, D
9, D10: delay inverting circuit L5, L9, L10: NAND circuit B1, B2, B3, B4, B5, B6, B7: circuit block TR1, TR2: P-channel transistor TR3, TR4: N-channel transistor C1: load capacitance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入力端子に印加される入力信号の変化を検
出する遷移検出回路において、入力信号の立ち上がりま
たは立ち下がりを検出する機能を有するパルス検出回路
と、前記パルス検出回路の出力信号のパルス幅を伸長す
る機能を有するパルス伸長回路から構成されることを特
徴とする遷移検出回路。
A transition detection circuit for detecting a change in an input signal applied to an input terminal, wherein the pulse detection circuit has a function of detecting a rise or a fall of the input signal, and a pulse of an output signal of the pulse detection circuit. A transition detection circuit comprising a pulse expansion circuit having a function of expanding a width.
【請求項2】前記パルス伸長回路は、第1の導電型トラ
ンジスタのドレインまたは第2の導電型トランジスタの
ドレインが前記パルス検出回路の出力信号を遅延させる
機能を有する反転回路の入力端子または出力端子に接続
され、前記第1の導電型トランジスタのソースを第1の
電源電圧に、前記第2の導電型トランジスタのソースを
第2の電源電圧に接続され、前記第1の導電型トランジ
スタのゲートが前記パルス検出回路の出力端子に接続さ
れ、前記第2の導電型トランジスタのゲートが、前記パ
ルス検出回路の出力端子に入力端子が接続された反転回
路の出力端子に接続されていることを特徴とする請求項
1記載の遷移検出回路。
2. The pulse expansion circuit according to claim 1, wherein the drain of the first conductivity type transistor or the drain of the second conductivity type transistor has a function of delaying an output signal of the pulse detection circuit. And the source of the first conductivity type transistor is connected to the first power supply voltage, the source of the second conductivity type transistor is connected to the second power supply voltage, and the gate of the first conductivity type transistor is connected to the first power supply voltage. It is connected to the output terminal of the pulse detection circuit, and the gate of the second conductivity type transistor is connected to the output terminal of the inversion circuit whose input terminal is connected to the output terminal of the pulse detection circuit. The transition detection circuit according to claim 1, wherein
【請求項3】前記パルス伸長回路は、前記パルス検出回
路の出力端子に接続する第1の導電型および第2の導電
型のトランジスタのゲート長が前記パルス伸長回路を構
成する第1の導電型および第2の導電型のトランジスタ
の最大ゲートゲート長より小さいことを特徴とする請求
項1記載の遷移検出回路。
3. The pulse stretching circuit according to claim 1, wherein a gate length of a transistor of a first conductivity type and a transistor of a second conductivity type connected to an output terminal of said pulse detection circuit is a first conductivity type of said pulse stretching circuit. 2. The transition detection circuit according to claim 1, wherein the gate length is smaller than the maximum gate length of the transistor of the second conductivity type.
JP11094066A 1999-03-31 1999-03-31 Transition detection circuit Withdrawn JP2000286686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11094066A JP2000286686A (en) 1999-03-31 1999-03-31 Transition detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11094066A JP2000286686A (en) 1999-03-31 1999-03-31 Transition detection circuit

Publications (1)

Publication Number Publication Date
JP2000286686A true JP2000286686A (en) 2000-10-13

Family

ID=14100155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11094066A Withdrawn JP2000286686A (en) 1999-03-31 1999-03-31 Transition detection circuit

Country Status (1)

Country Link
JP (1) JP2000286686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705205B1 (en) 2006-04-18 2007-04-09 주식회사 하이닉스반도체 Internal clock generator for generating stable internal clock signal regardless of variation of pulse width of external clock signal and internal clock generation method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705205B1 (en) 2006-04-18 2007-04-09 주식회사 하이닉스반도체 Internal clock generator for generating stable internal clock signal regardless of variation of pulse width of external clock signal and internal clock generation method of the same

Similar Documents

Publication Publication Date Title
KR100474755B1 (en) Output circuit
US7352650B2 (en) External clock synchronization semiconductor memory device and method for controlling same
KR100272167B1 (en) Reference signal generating circuit & sdram having the same
US7120085B2 (en) Pseudo SRAM having combined synchronous and asynchronous mode register set
JPH08315575A (en) Complementary differential amplifier and semiconductor memory equipped therewith
JP2000100158A (en) Integrated circuit and synchronization-type semiconductor memory device
US6803792B2 (en) Input buffer circuit with constant response speed of output inversion
US6385108B2 (en) Voltage differential sensing circuit and methods of using same
US20030048114A1 (en) Output buffer of semiconductor device
JP2000286686A (en) Transition detection circuit
US5978310A (en) Input buffer for a semiconductor memory device
JP3109986B2 (en) Signal transition detection circuit
JP3408875B2 (en) Semiconductor storage device
JPS62145595A (en) Semiconductor memory device
US5963501A (en) Dynamic clock signal generating circuit for use in synchronous dynamic random access memory devices
JPH0652695A (en) Semiconductor storage device
KR100295065B1 (en) Output device for semiconductor memory device
JP2946960B2 (en) Semiconductor storage device
US20070109022A1 (en) Differential amplifier circuit
JPH09282874A (en) Semiconductor integrated circuit apparatus
JP3369706B2 (en) Semiconductor storage device
KR100444316B1 (en) Input buffer with delay reduction part of semiconductor memory device to reduce delay of each inverter node
JPH02220294A (en) Output circuit for semiconductor device
JPH05128857A (en) Semiconductor memory
KR0149576B1 (en) Semiconductor memory device having multi-input buffers with same ttl level input signal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606