JP2000281754A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2000281754A
JP2000281754A JP11093836A JP9383699A JP2000281754A JP 2000281754 A JP2000281754 A JP 2000281754A JP 11093836 A JP11093836 A JP 11093836A JP 9383699 A JP9383699 A JP 9383699A JP 2000281754 A JP2000281754 A JP 2000281754A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
crystalline
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11093836A
Other languages
Japanese (ja)
Inventor
Naoko Toyosawa
尚子 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11093836A priority Critical patent/JP2000281754A/en
Publication of JP2000281754A publication Critical patent/JP2000281754A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition having excellent moldability, suited for use in, especially, a thin semiconductor device, and developing excellent soldering resistance when cured by mixing an epoxy resin composition containing crystalline and noncrystalline epoxy resins in a specified ratio with a phenolic resin, a fused silica powder, a cure accelerator, and a long-chain fatty acid amide. SOLUTION: The epoxy resin mixture used is a mixture containing 10-60 wt.% crystalline epoxy resin selected from among a biphenol epoxy resin of formula I, a bisphenol F epoxy resin of formula II, and a stilbene epoxy resin of formula III and 40-90 wt.% noncrystalline epoxy resin having at least three epoxy groups on the average. In the formulae, R is H, a halogen or a 1-9C alkyl. The amount of the fused silica powder used is desirably 75-93 wt.% based on the entire composition. The long-chain fatty acid amide used is exemplified by N-stearylstearamide, ethylenebisstearamide, N,N'-distearylsebacamide, or m-xylylenebisstearamide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、耐半田性に
優れ、特に薄型半導体装置に好適な半導体封止用エポキ
シ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which has excellent moldability and solder resistance and is particularly suitable for thin semiconductor devices.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂組成物のトランスファー成形による
方法が低コスト、大量生産に適した方法として採用され
て久しく、信頼性の点でもエポキシ樹脂や硬化剤である
フェノール樹脂の改良により向上が図られてきた。しか
し、近年の電子機器の小型化、軽量化、高性能化の市場
動向において、半導体の高集積化も年々進み、又、半導
体装置の表面実装化が促進されるなかで、半導体封止用
エポキシ樹脂組成物への要求は益々厳しいものとなって
きている。このため、従来からのエポキシ樹脂組成物で
は解決できない問題点も出てきている。その最大の問題
点は、半導体装置の表面実装の採用により半導体装置が
半田浸漬、或いはリフロー工程で急激に200℃以上の
高温にさらされ、吸湿した水分が爆発的気化する際の応
力により、半導体装置が割れたり、半導体素子、リード
フレーム、インナーリード上の各種メッキされた接合部
分との各界面で、剥離が生じ信頼性が著しく低下する現
象である。
2. Description of the Related Art Transfer molding of an epoxy resin composition has been employed as a method suitable for mass production at low cost as a method for encapsulating semiconductor devices such as ICs and LSIs. Improvements have been made by improving phenolic resins as curing agents. However, in the recent market trend of miniaturization, weight reduction and high performance of electronic devices, the integration of semiconductors has been increasing year by year, and the surface mounting of semiconductor devices has been promoted. Demands for resin compositions are becoming more stringent. For this reason, a problem that cannot be solved by the conventional epoxy resin composition has appeared. The biggest problem is that the semiconductor device is exposed to a high temperature of 200 ° C. or more in the solder immersion or reflow process due to the adoption of the surface mounting of the semiconductor device. This is a phenomenon in which the device breaks or peels off at each interface with various plated joints on the semiconductor element, the lead frame, and the inner lead, resulting in a significant decrease in reliability.

【0003】更に、近年半導体装置の薄型化に伴い、半
導体装置中に占める樹脂組成物の厚みが一段と薄くなっ
てきており、64M、256MDRAM用の半導体装置
は、1mm厚のTSOPが主流となりつつある。これら
薄型半導体装置には、樹脂組成物の成形時のパッケージ
充填性が良好で、金線変形が少なく、半導体素子やリー
ドフレームの変形(チップシフトやダイパッドシフトと
呼ぶ)がないことが要求され、そのため樹脂組成物は、
成形時の流動性に優れることが必要である。
Further, in recent years, as semiconductor devices have become thinner, the thickness of the resin composition occupying in the semiconductor devices has been further reduced, and for semiconductor devices for 64M and 256M DRAMs, a 1 mm thick TSOP is becoming mainstream. . These thin semiconductor devices are required to have good package filling properties at the time of molding the resin composition, to have little gold wire deformation, and to have no deformation of semiconductor elements or lead frames (referred to as chip shift or die pad shift). Therefore, the resin composition is
It is necessary to have excellent fluidity during molding.

【0004】半導体封止用エポキシ樹脂組成物として
は、従来よりオルソクレゾールノボラック型エポキシ樹
脂とフェノール樹脂及び溶融シリカに代表される無機充
填材からなる樹脂組成物が一般的である。この樹脂組成
物は、多官能樹脂同士の硬化反応を伴うため成形時の反
応性が高く、硬化後の架橋密度が高いため成形後の成形
品の硬度が高く離型性に優れ、成形品の耐熱性にも優れ
るなどの特徴を有するため広く使用されている。ところ
が、オルソクレゾールノボラック型エポキシ樹脂は、成
形温度での溶融粘度が高いため、成形時の流動性に劣
り、無機充填材を多量に配合できないため低吸湿化に限
界がある、あるいは薄型半導体装置の充填性に劣る、基
材との濡れ性が不足するため密着性に劣るなど、更なる
改良が望まれている。このためオルソクレゾールノボラ
ック型エポキシ樹脂の分子量が小さく、軟化温度の低い
樹脂を使用して成形時の流動性を向上させる試みもされ
ているが、低軟化温度の樹脂を用いるとエポキシ樹脂組
成物が常温でも粘着性を示し、製造工程、成形時の使用
工程などでエポキシ樹脂組成物の融着やタブレット変形
などの原因となり、作業性が著しく劣る。
As an epoxy resin composition for encapsulating a semiconductor, a resin composition comprising an orthocresol novolak type epoxy resin, a phenol resin and an inorganic filler represented by fused silica has been generally used. This resin composition has a high reactivity at the time of molding because it involves a curing reaction between polyfunctional resins, and has a high cross-linking density after curing. It is widely used because it has features such as excellent heat resistance. However, ortho-cresol novolak type epoxy resin has a high melt viscosity at the molding temperature, is inferior in fluidity at the time of molding, has a limit to low moisture absorption because a large amount of inorganic filler cannot be blended, or has a limit in thin semiconductor devices. Further improvements are desired, such as poor filling properties and poor adhesion due to insufficient wettability with the substrate. For this reason, the molecular weight of the ortho-cresol novolak type epoxy resin is small, and an attempt has been made to improve the fluidity during molding by using a resin having a low softening temperature. It exhibits adhesiveness even at room temperature, causing the epoxy resin composition to be fused or deformed into tablets during the manufacturing process, the use process at the time of molding, and the like, resulting in extremely poor workability.

【0005】一方、成形温度では低粘度となるが常温で
は固体であるエポキシ樹脂として3,3’,5,5’−
テトラメチル−4,4’−ジヒドロキシビフェニルジグ
リシジルエーテルに代表されるビフェニル型エポキシ樹
脂などの結晶性のエポキシ樹脂が開発され、実用化され
ている。ビフェニル型エポキシ樹脂を用いた樹脂組成物
は、無機充填材の高充填化が可能なため低吸湿化が実現
し易く、かつ成形時に高流動性を示すため薄型半導体装
置などの充填性にも優れている。しかし2官能のエポキ
シ樹脂であることの限界により、成形時の反応性が低く
硬化性や離型性に劣り、又硬化後の架橋密度が低いこと
により、成形品の耐熱性が低く半田浸漬の際の耐半田性
などの信頼性も不十分である。
On the other hand, 3,3 ', 5,5'-
Crystalline epoxy resins such as biphenyl type epoxy resins represented by tetramethyl-4,4'-dihydroxybiphenyldiglycidyl ether have been developed and put to practical use. A resin composition using a biphenyl-type epoxy resin can easily achieve low moisture absorption due to the high filling of inorganic fillers, and also has excellent filling properties for thin semiconductor devices due to high fluidity during molding. ing. However, due to the limitation of bifunctional epoxy resin, the reactivity during molding is low and the curability and releasability are inferior, and the crosslink density after curing is low, so the heat resistance of the molded product is low and solder immersion is difficult. In this case, reliability such as solder resistance is also insufficient.

【0006】[0006]

【発明が解決しようとする課題】これらの欠点を改良す
るために、ビフェニル型エポキシ樹脂よりも更に結晶性
の高いエポキシ樹脂(以後、高結晶性エポキシ樹脂と呼
ぶ)とオルソクレゾールノボラック型エポキシ樹脂の様
な1分子中に平均3個以上のエポキシ基を有する多官能
エポキシ樹脂とを併用することも検討されてきている。
特に高結晶性エポキシ樹脂と多官能エポキシ樹脂とを加
熱混合した樹脂、あるいはそれぞれのエポキシ樹脂の前
駆物質である高結晶性フェノール化合物と多官能フェノ
ール化合物とを予め加熱混合した後エピクロロヒドリン
でエポキシ化した樹脂は、高結晶性エポキシ樹脂が多官
能エポキシ樹脂中で結晶化するため、低軟化点の多官能
エポキシ樹脂を用いた場合でも、室温で粘着性を示さ
ず、エポキシ樹脂組成物の製造工程での作業性に優れ、
更に成形時には高結晶性エポキシ樹脂が溶融して低粘度
化することによりエポキシ樹脂組成物は高流動化して、
薄型半導体装置の充填性にも優れ、更に成形硬化後は高
結晶性エポキシ樹脂の剛直な構造が架橋構造を形成する
ため、耐熱性が高く、耐半田性にも優れる成形品を与え
るなど、非常に効果的である。
In order to improve these drawbacks, epoxy resins having higher crystallinity than biphenyl type epoxy resins (hereinafter referred to as highly crystalline epoxy resins) and orthocresol novolak type epoxy resins have been proposed. Use of such a polyfunctional epoxy resin having an average of three or more epoxy groups in one molecule has been studied.
In particular, a resin obtained by heating and mixing a highly crystalline epoxy resin and a polyfunctional epoxy resin, or a highly crystalline phenol compound and a polyfunctional phenol compound, which are precursors of each epoxy resin, are heated and mixed in advance and then mixed with epichlorohydrin. The epoxidized resin does not exhibit tackiness at room temperature even when a low-softening point polyfunctional epoxy resin is used because the highly crystalline epoxy resin is crystallized in the polyfunctional epoxy resin. Excellent workability in the manufacturing process,
Furthermore, at the time of molding, the epoxy resin composition becomes highly fluid by melting and lowering the viscosity of the highly crystalline epoxy resin,
It has excellent filling properties for thin semiconductor devices, and after molding and curing, the rigid structure of the highly crystalline epoxy resin forms a crosslinked structure, giving molded products with high heat resistance and excellent solder resistance. It is effective for

【0007】ところが、高結晶性エポキシ樹脂はその結
晶性の高さから、エポキシ樹脂組成物の加熱混練時に溶
融すると共に再結晶化も起こすために、加熱混練後でも
結晶性が残存し、この残存結晶が成形時に初めて溶融す
るため、硬化性が低い、バリやボイドが発生する、成形
品である半導体装置の表面にしみができ易いなどの成形
性に劣る欠点がある。又高結晶化エポキシ樹脂が加熱混
練時に結晶化する過程で、樹脂との相溶性の低いカルナ
バワックス等の離型剤成分を分離・析出させていること
も判明した。この離型剤の不均一化のため、離型性が劣
り、離型剤による金型表面の汚染も発生する。更にこの
高結晶性エポキシ樹脂の結晶残存度が加熱混練条件によ
り左右されるため、同じ配合であっても流動性が一定の
エポキシ樹脂組成物が得られ難いという製造安定性上の
問題点も有する。これらを改良することを目的として、
予め高結晶性エポキシ樹脂と多官能エポキシ樹脂と更に
フェノール樹脂とを溶融混合して、残存結晶の少ない均
一な樹脂を調製してから、他の配合成分を混合後、加熱
混練して均一なエポキシ樹脂組成物を得ることを試みて
も、混練温度である80〜110℃の温度で高結晶エポ
キシ樹脂が再結晶化し易い性質を有するため、良好な成
形性や製造安定性が得られない。以上のように、多官能
型エポキシ樹脂の硬化性・成形性及び成形後の耐熱性を
有し、かつ無機充填材を多量に配合しても成形時の低粘
度・高流動性を実現でき、かつ成形性や製造安定性に優
れるエポキシ樹脂組成物は開発されておらず、その実現
が待たれていた。
However, since the epoxy resin composition has high crystallinity, it melts and recrystallizes during the heating and kneading of the epoxy resin composition, so that the crystallinity remains even after the heating and kneading. Since the crystal is melted for the first time at the time of molding, there are drawbacks of poor moldability, such as low curability, generation of burrs and voids, and easy surface staining of the molded semiconductor device. In addition, it was also found that a release agent component such as carnauba wax having low compatibility with the resin was separated and precipitated during the process of crystallizing the highly crystallized epoxy resin during heating and kneading. Due to the non-uniformity of the release agent, the releasability is poor, and contamination of the mold surface by the release agent also occurs. Further, since the degree of crystallization of the highly crystalline epoxy resin depends on the heating and kneading conditions, there is also a problem in production stability that it is difficult to obtain an epoxy resin composition having a constant fluidity even with the same composition. . In order to improve these,
A high-crystalline epoxy resin, a polyfunctional epoxy resin, and a phenol resin are melt-mixed in advance to prepare a uniform resin with few residual crystals, and then mixed with other components, and then heated and kneaded to obtain a uniform epoxy resin. Even if an attempt is made to obtain a resin composition, good moldability and production stability cannot be obtained because the highly crystalline epoxy resin has a property of being easily recrystallized at a kneading temperature of 80 to 110 ° C. As described above, the polyfunctional epoxy resin has curability, moldability and heat resistance after molding, and can realize low viscosity and high fluidity during molding even if a large amount of inorganic filler is blended, An epoxy resin composition having excellent moldability and production stability has not been developed, and its realization has been awaited.

【0008】[0008]

【課題を解決するための手段】即ち本発明は、(A)一
般式(1)〜(3)で示される結晶性エポキシ樹脂を総
エポキシ樹脂中に10〜60重量%、かつ1分子中にエ
ポキシ基を平均3個以上有する非結晶性エポキシ樹脂を
総エポキシ樹脂中に40〜90重量%含むエポキシ樹
脂、(B)フェノール樹脂、(C)溶融シリカ粉末、
(D)硬化促進剤、及び(E)長鎖脂肪酸アミドを必須
成分とすることを特徴とする半導体封止用エポキシ樹脂
組成物、及びこれを用いて半導体素子を封止してなるこ
とを特徴とする半導体装置である。
That is, the present invention relates to (A) 10 to 60% by weight of a crystalline epoxy resin represented by the general formulas (1) to (3) in the total epoxy resin, and An epoxy resin containing 40 to 90% by weight of a non-crystalline epoxy resin having an average of three or more epoxy groups in the total epoxy resin, (B) a phenol resin, (C) a fused silica powder,
(D) a curing accelerator, and (E) a long-chain fatty acid amide as essential components, an epoxy resin composition for semiconductor encapsulation, and a semiconductor element encapsulated with the epoxy resin composition. Semiconductor device.

【化4】 Embedded image

【0009】[0009]

【化5】 Embedded image

【0010】[0010]

【化6】 (式(3)中のRは水素原子、ハロゲン原子又は炭素数
1から9までのアルキル基から選択される基であり、互
いに同一であっても、異なっていても良い)
Embedded image (R in the formula (3) is a group selected from a hydrogen atom, a halogen atom or an alkyl group having 1 to 9 carbon atoms, and may be the same or different from each other.)

【0011】[0011]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、(A)一般式(1)のビフェニル型エポキシ樹脂、
一般式(2)のビスフェノールF型エポキシ樹脂、及び
一般式(3)のスチルベン型エポキシ樹脂からなる群か
ら選択される結晶性エポキシ樹脂を総エポキシ樹脂中に
10〜60重量%含み、かつ1分子中にエポキシ基を平
均3個以上有する非結晶性エポキシ樹脂を総エポキシ樹
脂中に40〜90重量%含むエポキシ樹脂である。一般
式(3)で示される結晶性エポキシ樹脂の具体例を以下
に示すが、これらに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The epoxy resin used in the present invention comprises (A) a biphenyl type epoxy resin represented by the general formula (1):
A crystalline epoxy resin selected from the group consisting of a bisphenol F type epoxy resin of the general formula (2) and a stilbene type epoxy resin of the general formula (3) is contained in the total epoxy resin in an amount of 10 to 60% by weight, and one molecule. The epoxy resin contains 40 to 90% by weight of the total epoxy resin containing an amorphous epoxy resin having an average of three or more epoxy groups in the epoxy resin. Specific examples of the crystalline epoxy resin represented by the general formula (3) are shown below, but are not limited thereto.

【化7】 Embedded image

【0012】一般式(1)〜(3)で示される結晶性エ
ポキシ樹脂は、1分子中にエポキシ基を2個有するジエ
ポキシ樹脂であり、更にいずれも非常に強い結晶性を示
すため、融点未満の温度では固体であるが、融点以上の
温度で低粘度の液状物質となる。このため溶融シリカを
多量に配合しても樹脂組成物の成形時の溶融粘度が低
く、薄型半導体装置の充填性に優れ、半導体素子の金線
変形が少なく、又チップシフトやダイパッドシフトが少
ない。一般式式(1)〜(3)で示される結晶性エポキ
シ樹脂は、総エポキシ樹脂中に10〜60重量%含まれ
ることを必須とする。10重量%未満では低粘度化の効
果が得難く、溶融シリカを多量に配合できないため、成
形品の吸湿量が大きく、半導体パッケージの耐半田性に
劣る。又成形時の溶融粘度も大きくなり、薄型半導体装
置の成形性に劣る。又60重量%を越えると、エポキシ
樹脂組成物の成形時の硬化性が低く、更に硬化物の耐熱
性が低いため耐半田性に劣る。一方、1分子中にエポキ
シ基を平均3個以上有する非結晶性エポキシ樹脂として
は、オルソクレゾールノボラック型エポキシ樹脂、ジシ
クロペンタジエン型エポキシ樹脂、トリフェノールメタ
ン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノ
ールアラルキル型エポキシ樹脂などが挙げられる。その
一例を以下に示す。
The crystalline epoxy resins represented by the general formulas (1) to (3) are diepoxy resins having two epoxy groups in one molecule, and all have very strong crystallinity. Is a solid at the above temperature, but becomes a low-viscosity liquid at a temperature higher than the melting point. For this reason, even if a large amount of fused silica is blended, the resin composition has a low melt viscosity at the time of molding, is excellent in the filling property of a thin semiconductor device, has little gold wire deformation of a semiconductor element, and has little chip shift and die pad shift. It is essential that the crystalline epoxy resins represented by the general formulas (1) to (3) be contained in the total epoxy resin in an amount of 10 to 60% by weight. If the content is less than 10% by weight, the effect of lowering the viscosity is difficult to obtain, and a large amount of fused silica cannot be added, so that the molded product has a large moisture absorption and the semiconductor package has poor solder resistance. Further, the melt viscosity at the time of molding increases, and the moldability of the thin semiconductor device is poor. If it exceeds 60% by weight, the curability of the epoxy resin composition during molding is low, and the heat resistance of the cured product is low, so that the solder resistance is poor. On the other hand, non-crystalline epoxy resins having an average of three or more epoxy groups in one molecule include orthocresol novolak epoxy resin, dicyclopentadiene epoxy resin, triphenolmethane epoxy resin, naphthalene epoxy resin, phenol aralkyl Type epoxy resin and the like. An example is shown below.

【0013】[0013]

【化8】 Embedded image

【0014】[0014]

【化9】 これらのエポキシ樹脂は、総エポキシ樹脂中に40〜9
0重量%含まれることを必須とする。40重量%未満で
はエポキシ樹脂組成物の成形時の硬化性が低く、又硬化
物の耐熱性が低いため耐半田性に劣る。一方、90重量
%を越えると粘度が高くなり薄型半導体装置の充填性に
劣る上に基材との接着性が劣るため半田処理時に基材と
の界面で剥離が生じ易く、更に溶融シリカを多量に配合
できないため、成形品の吸湿量が大きく、半導体装置の
耐半田性に劣る。一般式(1)〜(3)で示される結晶
性エポキシ樹脂と1分子中にエポキシ基を平均3個以上
有する非結晶性エポキシ樹脂とは他の成分と混合してか
ら加熱混練して使用することができるが、結晶性エポキ
シ樹脂の残存量をより低減するためには、予めこれらの
エポキシ樹脂を加熱混合して用いるか、あるいは更に好
ましいのはそれぞれのエポキシ樹脂の前駆体であるフェ
ノール化合物を混合して、エピクロロヒドリンなどによ
り常法でエポキシ化した樹脂混合物として用いることも
できる。なお、一般式(1)〜(3)で示される結晶性
エポキシ樹脂と1分子中にエポキシ基を平均3個以上有
する非結晶性エポキシ樹脂以外のエポキシ樹脂を併用し
ても何ら差し支えはない。
Embedded image These epoxy resins contain 40 to 9 in the total epoxy resin.
It must be contained at 0% by weight. If it is less than 40% by weight, the curability of the epoxy resin composition during molding is low, and the heat resistance of the cured product is low, so that the solder resistance is poor. On the other hand, if the content exceeds 90% by weight, the viscosity becomes high, the filling property of the thin semiconductor device is poor, and the adhesiveness to the base material is poor, so that peeling is likely to occur at the interface with the base material during the soldering process. Therefore, the molded product has a large amount of moisture absorption, and the semiconductor device has poor solder resistance. The crystalline epoxy resin represented by the general formulas (1) to (3) and the non-crystalline epoxy resin having an average of three or more epoxy groups in one molecule are mixed with other components and then heated and kneaded. However, in order to further reduce the residual amount of the crystalline epoxy resin, these epoxy resins may be mixed and heated in advance, or more preferably, a phenol compound which is a precursor of each epoxy resin may be used. It can also be used as a resin mixture which is mixed and epoxidized by an ordinary method using epichlorohydrin or the like. It should be noted that there is no problem in using the crystalline epoxy resins represented by the general formulas (1) to (3) and the epoxy resins other than the non-crystalline epoxy resin having an average of three or more epoxy groups in one molecule.

【0015】本発明に用いられる(B)成分のフェノー
ル樹脂としては、エポキシ樹脂と硬化反応し、架橋構造
を形成できるフェノール性水酸基を有するモノマー、オ
リゴマー、ポリマー全般を指し、例えば、フェノールノ
ボラック樹脂、アラルキルフェノール樹脂、テルペン変
性フェノール樹脂、ジシクロペンタジエン変性フェノー
ル樹脂、ビスフェノールA、トリフェノールメタン等が
挙げられるが、これらに限定されるものではない。これ
らのフェノール樹脂は、単独もしくは混合して用いるこ
とができる。
The phenolic resin of the component (B) used in the present invention refers to all monomers, oligomers and polymers having a phenolic hydroxyl group capable of forming a crosslinked structure by curing reaction with an epoxy resin. Examples include, but are not limited to, aralkylphenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, bisphenol A, triphenolmethane, and the like. These phenolic resins can be used alone or in combination.

【0016】本発明に用いられる(C)成分の溶融シリ
カ粉末は、例えば、火炎中で溶融された天然シリカ、及
び、テトラメトキシシラン、テトラエトキシシラン等を
加水分解して得られる合成シリカを指す。又、その形状
・製法により球状シリカと破砕シリカに分類される。本
発明に用いられる(C)成分の溶融シリカ粉末の配合量
としては、全樹脂組成物中に75〜93重量%が好まし
い。75重量%未満だと、成形した半導体装置の吸湿量
が増大し、半田処理温度での強度が低下してしまうた
め、半田処理時に半導体装置にクラックが発生し易くな
り好ましくない。一方、93重量%を越えると、樹脂組
成物の成形時の流動性が低下し、未充填やチップシフ
ト、パッドシフトが発生し易くなり好ましくない。特に
溶融シリカ粉末を高充填するためには球状シリカを用
い、又、シリカ粉末の粒度分布を広くすることは成形流
動時の樹脂組成物の溶融粘度を低減するためには有効で
ある。
The fused silica powder of the component (C) used in the present invention refers to, for example, natural silica melted in a flame and synthetic silica obtained by hydrolyzing tetramethoxysilane, tetraethoxysilane and the like. . Further, they are classified into spherical silica and crushed silica according to their shapes and production methods. The blended amount of the fused silica powder of the component (C) used in the present invention is preferably 75 to 93% by weight in the whole resin composition. If the content is less than 75% by weight, the moisture absorption of the molded semiconductor device is increased, and the strength at the soldering temperature is reduced, so that the semiconductor device is likely to crack during the soldering process, which is not preferable. On the other hand, when the content exceeds 93% by weight, the fluidity during molding of the resin composition decreases, and unfilling, chip shift, and pad shift tend to occur, which is not preferable. In particular, spherical silica is used to highly fill the fused silica powder, and broadening the particle size distribution of the silica powder is effective for reducing the melt viscosity of the resin composition during molding flow.

【0017】本発明に用いられる(D)成分の硬化促進
剤は、前記エポキシ樹脂とフェノール樹脂との架橋反応
の触媒となり得るものを指し、具体例としては、トリブ
チルアミン、1,8−ジアザビシクロ(5,4,0)ウ
ンデセン−7等のアミン系化合物、トリフェニルホスフ
ィン、テトラフェニルホスホニウム・テトラフェニルボ
レート塩等の有機リン系化合物、2−メチルイミダゾー
ル等のイミダゾール化合物等が挙げられる。これらは単
独でも混合して用いても差し支えない。
The curing accelerator of the component (D) used in the present invention refers to those which can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin. Specific examples thereof include tributylamine and 1,8-diazabicyclo ( Examples thereof include amine compounds such as (5,4,0) undecene-7, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. These may be used alone or as a mixture.

【0018】本発明に用いられる(E)成分の長鎖脂肪
酸アミドとはステアリン酸、セバシン酸などの長鎖脂肪
酸とステアリルアミン、エチレンジアミン、m−キシリ
レンジアミンなどのアミノ基を有する化合物との反応生
成物、又はステアリルジアミンなどの長鎖脂肪族アミン
とステアリン酸、セバシン酸などのカルボキシル基を有
する化合物との反応生成物であり、例えば、N−ステア
リルステアリン酸アミド、エチレンビスステアリン酸ア
ミド、N,N’−ジステアリルセバシン酸アミド、m−
キシリレンビスステアリルアミドなどが挙げられる。こ
れら長鎖脂肪酸アミドは離型剤と知られ、半導体封止用
エポキシ樹脂組成物に使用されることもある。しかし、
カルナバワックスやモンタン酸エチレングリコールエス
テルなどの長鎖脂肪酸エステル、長鎖脂肪酸、長鎖脂肪
酸金属塩、酸化ポリオレフィンなど、通常使用される離
型剤と異なり、長鎖脂肪酸アミドを本発明の高結晶性エ
ポキシ樹脂と多官能非結晶性エポキシ樹脂との混合物に
用いると、これら長鎖脂肪酸アミドとエポキシ樹脂との
相溶性が良好なため、エポキシ樹脂組成物の加熱混練条
件において高結晶性エポキシ樹脂が再結晶化するのを防
止し均一な樹脂混合物を得ることができるために、硬化
性の低下が少なく、又バリやボイドの発生がなく、更に
加熱混練条件による流動性のバラツキがない。一方、他
の離型剤と異なり、長鎖脂肪酸アミドが本発明のエポキ
シ樹脂とフェノール樹脂の混合物から分離・析出し難い
性質を有することから、離型性に優れ、金型汚れや成形
品である半導体装置表面の汚れも発生し難い。なお、他
の上記離型剤と併用することも可能である。
The long-chain fatty acid amide (E) used in the present invention is a reaction between a long-chain fatty acid such as stearic acid and sebacic acid and a compound having an amino group such as stearylamine, ethylenediamine and m-xylylenediamine. Product or a reaction product of a long-chain aliphatic amine such as stearyldiamine and a compound having a carboxyl group such as stearic acid or sebacic acid. Examples thereof include N-stearylstearic acid amide, ethylenebisstearic acid amide, N , N'-distearyl sebacic amide, m-
Xylylene bisstearylamide and the like. These long-chain fatty acid amides are known as release agents and are sometimes used in epoxy resin compositions for semiconductor encapsulation. But,
Unlike long-chain fatty acid esters such as carnauba wax or montanic acid ethylene glycol ester, long-chain fatty acids, metal salts of long-chain fatty acids, and polyolefin oxides, unlike long-chain fatty acid amides of the present invention, When used in a mixture of an epoxy resin and a polyfunctional non-crystalline epoxy resin, the compatibility between the long-chain fatty acid amide and the epoxy resin is good. Since a uniform resin mixture can be obtained by preventing crystallization, there is little decrease in curability, there is no generation of burrs and voids, and there is no variation in fluidity due to heating and kneading conditions. On the other hand, unlike other release agents, the long-chain fatty acid amide has a property that it is difficult to separate and precipitate from the mixture of the epoxy resin and the phenolic resin of the present invention, so that it has excellent mold release properties, and can be used in mold stains and molded products. Dirt on the surface of a certain semiconductor device hardly occurs. In addition, it is also possible to use together with other said release agents.

【0019】本発明の樹脂組成物は、(A)〜(E)成
分の他、必要に応じて臭素化エポキシ樹脂、三酸化アン
チモン等の難燃剤、ポリシロキサン化合物に代表される
低応力剤、カップリング剤、カーボンブラックに代表さ
れる着色剤が適宜配合可能である。。成形材料とするに
は、全成分を混合後、加熱ニーダや熱ロールを用いて加
熱混練し、続いて冷却、粉砕することで目的とする樹脂
組成物が得られる。本発明の樹脂組成物を用いて、半導
体素子等の電子部品を封止し、半導体装置を製造するに
は、トランスファーモールド、コンプレッションモール
ド、インジェクションモールド等の従来の成形方法で硬
化成形すればよい
The resin composition of the present invention comprises, in addition to the components (A) to (E), a brominated epoxy resin, a flame retardant such as antimony trioxide, a low stress agent represented by a polysiloxane compound, if necessary, Coupling agents and coloring agents represented by carbon black can be appropriately compounded. . In order to obtain a molding material, after mixing all components, the mixture is heated and kneaded using a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. Using the resin composition of the present invention to encapsulate electronic components such as semiconductor elements and manufacture semiconductor devices, transfer molding, compression molding, and curing molding may be performed by conventional molding methods such as injection molding.

【0020】以下、本発明を実施例で具体的に説明す
る。 実施例1 式(4)を主成分とするエポキシ樹脂(融点103℃、
エポキシ当量225)2.9重量部
Hereinafter, the present invention will be described specifically with reference to examples. Example 1 An epoxy resin containing the formula (4) as a main component (melting point: 103 ° C.,
Epoxy equivalent 225) 2.9 parts by weight

【化10】 Embedded image

【0021】 オルソクレゾールノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量2 00) 4.5重量部 フェノールノボラック樹脂(軟化点75℃、水酸基当量103) 3.6重量部 球状溶融シリカ粉末 88.0重量部 トリフェニルホスフィン 0.2重量部 エチレンビスステアリン酸アミド 0.3重量部 カルナバワックス 0.2重量部 カーボンブラック 0.3重量部 の各成分をミキサーを用いて混合した後、表面温度が9
0℃と45℃の2本ロールを用いて30回混練し、得ら
れた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価し
た。結果を表1に示す。
Orthocresol novolak type epoxy resin (softening point 55 ° C., epoxy equivalent 200) 4.5 parts by weight Phenol novolak resin (softening point 75 ° C., hydroxyl equivalent 103) 3.6 parts by weight Spherical fused silica powder 88.0 Parts by weight triphenylphosphine 0.2 parts by weight ethylene bisstearic acid amide 0.3 parts by weight carnauba wax 0.2 parts by weight Carbon black 0.3 parts by weight After mixing using a mixer, the surface temperature was 9 parts by weight.
The mixture was kneaded 30 times using two rolls at 0 ° C. and 45 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain a resin composition. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the results.

【0022】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力70kg/cm2、硬化時間2分で測定した。 チップシフト量:32ピンのリードオンチップ構造TS
OP(パッケージサイズは、10×21mm、厚み1.
0mm、シリコンチップはサイズ9×18mm、リード
フレームは鉄/ニッケル合金(42アロイ)製、チップ
とインナーリード間は厚み100μmのポリイミドテー
プで接着されている)を175℃の金型温度、75kg
/cm2の成形圧力で2分間トランスファー成形を行っ
た。成形品を樹脂組成物の注入方向に沿ってパッケージ
中心で切断し、断面を観察することでチップ両端のパッ
ケージ成形品下面からの距離を求め、その差をチップシ
フト量としてμm単位で表示した。 バリ量:チップシフト量を測定したリードオンチップ構
造TSOPの成形時にエアベント部に発生したバリの長
さをmm単位で表示した。 ガラス転移温度(Tg):175℃、2分間トランスフ
ァー成形したテストピースを更に175℃、4時間後硬
化し、熱機械分析装置〔セイコー電子(株)・製TMA
−120、昇温速度5℃/分〕により測定した。 熱時強度:240℃での曲げ強さをJIS−K6911
の試験条件で測定した。 耐半田性:100ピンTQFPパッケージ(パッケージ
サイズは14×14mm、厚み1.4mm、シリコンチ
ップサイズは8.0×8.0mm、リードフレームは4
2アロイ製)を175℃の金型温度、75kg/cm2
の射出圧力で2分間トランスファー成形を行い、175
℃で8時間の後硬化をした。成形品パッケージを85
℃、相対湿度85%の環境下で168時間放置し、その
後240℃の半田槽に10秒間浸漬した。顕微鏡でパッ
ケージを観察し、外部クラック((クラック発生パッケ
ージ数)/(全パッケージ数)×100)を%で表示し
た。又、チップと樹脂組成物との剥離面積の割合を超音
波探傷装置を用いて測定し、剥離率((剥離面積)/
(チップ面積)×100)を%で表示した。 離型性:耐半田性を評価した100ピンTQFPを成形
する際に、金型が開いた際の金型からの離型性を評価し
た。○は離型性良好を示し、×は金型付着、又はランナ
ー折れが発生したことを示す。 金型汚れ:離型性を評価した金型で、エポキシ樹脂組成
物を上記条件で連続100回成形し、成形後の金型の表
面を目視で観察した。金型表面に変色が認められた場合
を×、変化がなかった場合に○で表示した。
Evaluation method Spiral flow: Using a mold for measuring spiral flow according to EMMI-I-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. Chip shift amount: 32-pin lead-on-chip structure TS
OP (package size is 10 × 21 mm, thickness 1.
0 mm, silicon chip size 9 × 18 mm, lead frame made of iron / nickel alloy (42 alloy), the chip and inner lead are adhered with 100 μm-thick polyimide tape), mold temperature of 175 ° C., 75 kg
Transfer molding was performed at a molding pressure of / cm 2 for 2 minutes. The molded product was cut at the center of the package along the injection direction of the resin composition, and by observing the cross section, the distance from the lower surface of the package molded product at both ends of the chip was obtained, and the difference was displayed as a chip shift amount in μm. Burr amount: The length of the burr generated in the air vent portion during molding of the lead-on-chip structure TSOP in which the chip shift amount was measured was indicated in mm. Glass transition temperature (Tg): A test piece obtained by transfer molding at 175 ° C. for 2 minutes was further cured at 175 ° C. for 4 hours, and a thermomechanical analyzer [TMA manufactured by Seiko Electronics Co., Ltd.
-120, a heating rate of 5 ° C / min]. Heat strength: Flexural strength at 240 ° C. is determined according to JIS-K6911.
The test conditions were as follows. Solder resistance: 100-pin TQFP package (package size is 14 x 14 mm, thickness is 1.4 mm, silicon chip size is 8.0 x 8.0 mm, lead frame is 4
2 alloy) at a mold temperature of 175 ° C., 75 kg / cm 2
Transfer molding at an injection pressure of 2 minutes, and 175
Post-curing was performed at 8 ° C. for 8 hours. 85 molded product packages
It was left for 168 hours in an environment of 85 ° C. and a relative humidity of 85%, and then immersed in a solder bath at 240 ° C. for 10 seconds. The package was observed with a microscope, and external cracks ((number of packages in which cracks occurred) / (number of all packages) × 100) were displayed in%. In addition, the ratio of the peeling area between the chip and the resin composition was measured using an ultrasonic flaw detector, and the peeling rate ((peeling area) /
(Chip area) × 100) was expressed in%. Releasability: When molding a 100-pin TQFP evaluated for solder resistance, the releasability from the mold when the mold was opened was evaluated. ○ indicates good releasability, and × indicates occurrence of mold adhesion or runner breakage. Mold stain: The epoxy resin composition was continuously molded 100 times under the above conditions using a mold evaluated for mold release properties, and the surface of the mold after molding was visually observed. When the discoloration was recognized on the mold surface, it was indicated by x, and when there was no change, it was indicated by ○.

【0023】実施例2〜4、比較例1〜4 実施例1の配合に代えて、表1に示す割合で各成分を配
合し、実施例1と同様に混合・混練して樹脂組成物を得
た。実施例1と同様に評価した結果を表1に示した。な
お、実施例2〜4、比較例3、4で用いたエポキシ樹脂
A〜Cの内容を以下に示す。エポキシ樹脂Aは、式
(5)のスチルベン型フェノール樹脂と軟化点70℃の
オルソクレゾールノボラックとの重量比1:1の混合物
をエピクロロヒドリンにより常法でエポキシ化したエポ
キシ樹脂(エポキシ当量193)である。
Examples 2 to 4 and Comparative Examples 1 to 4 Instead of the composition of Example 1, each component was blended in the ratio shown in Table 1, and mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Obtained. Table 1 shows the results of the evaluation performed in the same manner as in Example 1. The contents of the epoxy resins A to C used in Examples 2 to 4 and Comparative Examples 3 and 4 are shown below. Epoxy resin A is an epoxy resin obtained by epoxidizing a mixture of a stilbene-type phenol resin of the formula (5) and orthocresol novolak having a softening point of 70 ° C at a weight ratio of 1: 1 with epichlorohydrin by an ordinary method (epoxy equivalent 193) ).

【化11】 Embedded image

【0024】エポキシ樹脂Bは、4,4’−ビフェノー
ルと軟化点70℃のオルソクレゾールノボラックとの重
量比2:8の混合物をエピクロロヒドリンにより常法で
エポキシ化したエポキシ樹脂(エポキシ当量190)で
ある。エポキシ樹脂Cは、ビスフェノールFと式(6)
のフェノール樹脂(軟化点90℃)との重量比3:7の
混合物をエピクロロヒドリンにより常法でエポキシ化し
たエポキシ樹脂(エポキシ当量260)である。
Epoxy resin B is an epoxy resin obtained by epoxidizing a mixture of 4,4′-biphenol and orthocresol novolak having a softening point of 70 ° C. in a weight ratio of 2: 8 with epichlorohydrin by an ordinary method (epoxy equivalent: 190). ). Epoxy resin C is bisphenol F and formula (6)
Is an epoxy resin (epoxy equivalent: 260) obtained by epoxidizing a mixture having a weight ratio of 3: 7 with a phenol resin (softening point: 90 ° C.) by epichlorohydrin in a conventional manner.

【化12】 Embedded image

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明の樹脂組成物を用いると、成形時
の硬化性、薄型半導体装置の充填性及び離型性に優れ、
かつ封止された半導体装置は耐熱性、低吸湿性に優れて
おり吸湿後の耐半田性にも優れる。
The resin composition of the present invention is excellent in curability at the time of molding, filling property and releasing property of a thin semiconductor device,
The sealed semiconductor device has excellent heat resistance, low moisture absorption, and excellent solder resistance after moisture absorption.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 63/00 C08L 63/00 C H01L 23/29 H01L 23/30 R 23/31 Fターム(参考) 4J002 CC032 CC082 CD051 CD061 CD071 DJ016 EP017 EP027 FB016 FD167 GQ05 4J036 AD04 AD05 AD08 AD09 AD10 AJ02 AJ14 DA04 FA05 FA12 FB08 JA07 4M109 EA06 EB03 EB04 EB06 EB07 EB08 EB09 EB13 EB19 EC01 EC03 EC05 EC20 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 63/00 C08L 63/00 C H01L 23/29 H01L 23/30 R 23/31 F-term (Reference) 4J002 CC032 CC082 CD051 CD061 CD071 DJ016 EP017 EP027 FB016 FD167 GQ05 4J036 AD04 AD05 AD08 AD09 AD10 AJ02 AJ14 DA04 FA05 FA12 FB08 JA07 4M109 EA06 EB03 EB04 EB06 EB07 EB08 EB09 EB13 EC05 EC05 EC03 EC05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)〜(3)で示される
結晶性エポキシ樹脂を総エポキシ樹脂中に10〜60重
量%、かつ1分子中にエポキシ基を平均3個以上有する
非結晶性エポキシ樹脂を総エポキシ樹脂中に40〜90
重量%含むエポキシ樹脂、(B)フェノール樹脂、
(C)溶融シリカ粉末、(D)硬化促進剤、及び(E)
長鎖脂肪酸アミドを必須成分とすることを特徴とする半
導体封止用エポキシ樹脂組成物。 【化1】 【化2】 【化3】 (式(3)中のRは水素原子、ハロゲン原子又は炭素数
1から9までのアルキル基から選択される基であり、互
いに同一であっても、異なっていても良い)
(A) A non-polymer having a crystalline epoxy resin represented by the general formulas (1) to (3) in an amount of 10 to 60% by weight in the total epoxy resin and having an average of three or more epoxy groups in one molecule. Crystalline epoxy resin in total epoxy resin 40-90
Weight percent epoxy resin, (B) phenolic resin,
(C) fused silica powder, (D) curing accelerator, and (E)
An epoxy resin composition for encapsulating a semiconductor, comprising a long-chain fatty acid amide as an essential component. Embedded image Embedded image Embedded image (R in the formula (3) is a group selected from a hydrogen atom, a halogen atom or an alkyl group having 1 to 9 carbon atoms, and may be the same or different from each other.)
【請求項2】 請求項1記載の半導体封止用エポキシ樹
脂組成物を用いて半導体素子を封止してなることを特徴
とする半導体装置。
2. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP11093836A 1999-03-31 1999-03-31 Epoxy resin composition and semiconductor device Pending JP2000281754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11093836A JP2000281754A (en) 1999-03-31 1999-03-31 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11093836A JP2000281754A (en) 1999-03-31 1999-03-31 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000281754A true JP2000281754A (en) 2000-10-10

Family

ID=14093487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093836A Pending JP2000281754A (en) 1999-03-31 1999-03-31 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000281754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008568A1 (en) * 2004-06-21 2006-01-26 Hexcel Composites, Ltd. Crystalline resin sandwich films
WO2019087986A1 (en) * 2017-10-30 2019-05-09 日立化成株式会社 Epoxy resin composition for encapsulation and electronic component device
JP7188828B1 (en) 2022-02-01 2022-12-13 イイダ産業株式会社 epoxy resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008568A1 (en) * 2004-06-21 2006-01-26 Hexcel Composites, Ltd. Crystalline resin sandwich films
US7854964B2 (en) 2004-06-21 2010-12-21 Hexcel Composites, Ltd. Crystalline resin sandwich films
US8304080B2 (en) 2004-06-21 2012-11-06 Hexcel Composites Ltd. Crystalline resin sandwich films
WO2019087986A1 (en) * 2017-10-30 2019-05-09 日立化成株式会社 Epoxy resin composition for encapsulation and electronic component device
JPWO2019087986A1 (en) * 2017-10-30 2020-11-26 昭和電工マテリアルズ株式会社 Epoxy resin composition for sealing and electronic component equipment
JP7226328B2 (en) 2017-10-30 2023-02-21 株式会社レゾナック Epoxy resin composition for encapsulation and electronic component device
JP7188828B1 (en) 2022-02-01 2022-12-13 イイダ産業株式会社 epoxy resin composition
JP2023112643A (en) * 2022-02-01 2023-08-14 イイダ産業株式会社 Epoxy resin-based composition

Similar Documents

Publication Publication Date Title
JP2000281750A (en) Epoxy resin composition and semiconductor device
JPH06345847A (en) Epoxy resin composition and semiconductor device
JP2000281870A (en) Epoxy resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP3479812B2 (en) Epoxy resin composition and semiconductor device
JP2000281754A (en) Epoxy resin composition and semiconductor device
JP2000327883A (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2658755B2 (en) Epoxy resin composition and semiconductor device
JP2000273147A (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition
JP2000273277A (en) Epoxy resin composition and semiconductor device
JP2658752B2 (en) Epoxy resin composition and semiconductor device
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP3611002B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device
JPH04300915A (en) Epoxy resin composition and semiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2000344858A (en) Epoxy resin composition and semiconductor device sealed therewith