JP2000279792A - Vacuum load locking mechanism - Google Patents

Vacuum load locking mechanism

Info

Publication number
JP2000279792A
JP2000279792A JP11087092A JP8709299A JP2000279792A JP 2000279792 A JP2000279792 A JP 2000279792A JP 11087092 A JP11087092 A JP 11087092A JP 8709299 A JP8709299 A JP 8709299A JP 2000279792 A JP2000279792 A JP 2000279792A
Authority
JP
Japan
Prior art keywords
valve
sample
chamber
load lock
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11087092A
Other languages
Japanese (ja)
Inventor
Munehiro Ogasawara
宗博 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11087092A priority Critical patent/JP2000279792A/en
Publication of JP2000279792A publication Critical patent/JP2000279792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • H01J37/185Means for transferring objects between different enclosures of different pressure or atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Abstract

PROBLEM TO BE SOLVED: To eliminate the desorption of particles from filters and to suppress the adhesion of the particles to a sample by providing the two opposite points of the spaces enclosing the sample with the filters and arranging these filters in such a manner that the directions of the air flow at the time of vacuum evacuation and at the time of restoration to the atmospheric pressure are the same. SOLUTION: A load locking chamber 3 is separated to the three spaces 11 to 13 by two sheets of the air permeable filters 14 and 15 for blocking dust. A vacuum pump 5 is connected via a valve 7 to the low-pressure chamber 12 and air piping 10 is connected via a valve 9 to the high-pressure chamber 13. The middle chamber 11 is mounted with a valve 8 on the vacuum side and a valve 6 on the atmospheric side, respectively. At the time of the vacuum evacuation of the load locking chamber, the respective valves 6, 8 and 9 are closed and the valve 7 is opened. At this time, the air flows toward an arrow. Then, the particles soaring up in the middle chamber 11 are removed by the filter 14. The particles soaring up in the high-pressure chamber 13 are blocked by the filter 15 and cannot infiltrate the inside of the middle chamber 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料を大気中と真
空中との間を移動させる為の真空ロードロック機構に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum load lock mechanism for moving a sample between the atmosphere and a vacuum.

【0002】[0002]

【従来の技術】半導体製造プロセスにおいて、ウエファ
表面に付着する粒子は素子構造の欠陥の原因となる。近
年のULSIパターンの微細化と高集積化によりこの問
題はますます深刻となっている。多くの場合には試料は
フィルターを通したダウンフロー雰囲気において処理す
ることにより試料への粒子の付着を避けている。しかし
ながら、試料を真空中で処理する場合には次の様な問題
が生ずる。
2. Description of the Related Art In a semiconductor manufacturing process, particles adhering to a wafer surface cause defects in an element structure. This problem has become more serious due to recent miniaturization and high integration of ULSI patterns. In many cases, the sample is treated in a down-flow atmosphere through a filter to avoid particle adhesion to the sample. However, when a sample is processed in a vacuum, the following problems occur.

【0003】以下、図4は電子ビーム描画装置の構成の
例を示している。電子ビームを発生し試料にパターンを
描画する為の電子光学鏡筒1、描画中の試料4を保持す
る為の描画容器2、試料4を大気から真空に移動する或
いは真空から大気中に戻す為のロードロック室3、ロー
ドロック室には真空排気する為のポンプ5、ロードロッ
ク室に大気を導入する為のガス配管10が接続され、そ
れぞれバルブ6〜9によって接続及び遮断がなされる。
試料4にパターン描画する際には次の様な手順がとられ
る。まず、バルブ6〜8が閉じた状態で、バルブ9を開
きロードロック室3が大気圧になるまで空気を導入す
る。大気化がなされた時点でバルブ6を開き、試料4を
ロードロック室に移動させる。その後バルブ6、9を閉
じ、バルブ7を開いてロードロック室を真空排気する。
ロードロック室の圧力が十分下がった時点でバルブ8を
開き試料4を描画容器2に移動させ、バルブ8を閉じて
描画を開始する。描画が終了した後はバルブ8を開いて
試料をロードロック室に移動し、バルブ7、8を閉じた
状態でバルブ9を開き大気を導入する。ロードロック室
が大気化された後バルブ6を開いて試料4を装置外部に
取り出す。ここで、試料4を大気中から真空排気する時
点及び、真空中から大気に戻す時点においてロードロッ
ク室内には乱れた気流が発生し、ロードロック室3の内
壁に付着した粒子が気流により壁面より脱離して試料4
の表面に付着することがある。
FIG. 4 shows an example of the configuration of an electron beam writing apparatus. An electron optical column 1 for generating an electron beam to draw a pattern on a sample, a drawing container 2 for holding a sample 4 being drawn, and moving the sample 4 from the atmosphere to a vacuum or returning the sample 4 from the vacuum to the atmosphere. The load lock chamber 3 is connected to a pump 5 for evacuating the load lock chamber, and a gas pipe 10 for introducing air into the load lock chamber. The connection and cutoff are performed by valves 6 to 9, respectively.
The following procedure is performed when pattern writing is performed on the sample 4. First, with the valves 6 to 8 closed, the valve 9 is opened and air is introduced until the load lock chamber 3 reaches atmospheric pressure. The valve 6 is opened at the time when the gasification is performed, and the sample 4 is moved to the load lock chamber. Thereafter, the valves 6 and 9 are closed, the valve 7 is opened, and the load lock chamber is evacuated.
When the pressure in the load lock chamber is sufficiently reduced, the valve 8 is opened to move the sample 4 to the drawing container 2, and the valve 8 is closed to start drawing. After the drawing is completed, the valve 8 is opened to move the sample to the load lock chamber. With the valves 7 and 8 closed, the valve 9 is opened to introduce air. After the load lock chamber is evacuated, the valve 6 is opened and the sample 4 is taken out of the apparatus. Here, when the sample 4 is evacuated from the atmosphere and returned to the atmosphere from the vacuum, a turbulent airflow is generated in the load lock chamber, and particles adhering to the inner wall of the load lock chamber 3 are removed from the wall by the air flow. Sample 4 after detachment
May adhere to the surface.

【0004】この問題に対応する為に真空排気あるいは
大気化を非常に長い時間をかけて行うことにより気流の
乱れを小さくすることが行われるが、あまりに長い時間
を真空排気、大気化に費やすことは製造の効率を大きく
低下させる。また、時間をかけて真空排気する場合には
空気の断熱膨張に伴う試料の冷却がおこり、これにより
試料の寸法変動が生じ、高精度が要求される電子ビーム
描画装置では精度の劣化を招く。これに対して最近、試
料をフィルター付の小容器に納めてこの容器ごと真空排
気、大気化を行うという発明がなされている(特開平1
0−261560)。これによれば高速に真空排気、大
気化の際に気流がみだれても真空容器壁面からの粒子の
試料への付着を小さくできる。しかしながらこの方法に
よっても次の様な問題が生じうる。即ち、本発明におい
て、小容器フィルターを組み立てた時点で付着していた
粒子が、大気化の際にフィルターより脱離し、試料に付
着することがありうる。
In order to cope with this problem, the turbulence of the air flow is reduced by performing evacuation or atmosphericization for a very long time. However, it takes too long time to evacuate or atmosphericize. Greatly reduces manufacturing efficiency. In addition, when evacuation is performed over a long period of time, the sample is cooled due to adiabatic expansion of the air, which causes a dimensional change of the sample, which causes a deterioration in accuracy in an electron beam lithography apparatus requiring high accuracy. On the other hand, an invention has recently been proposed in which a sample is placed in a small container with a filter, and the entire container is evacuated and atmosphericized (Japanese Unexamined Patent Application Publication No. Hei 1 (1999)).
0-261560). According to this, even if an air current is seen at the time of evacuation and atmosphericization at high speed, the adhesion of particles from the wall surface of the vacuum vessel to the sample can be reduced. However, this method can also cause the following problem. That is, in the present invention, the particles adhered at the time of assembling the small container filter may be detached from the filter during atmosphericization and adhere to the sample.

【0005】[0005]

【発明が解決しようとする課題】以上説明した如く、こ
れまでに考えられたロードロック機構では実用的な時間
で真空排気、大気化を行う場合に試料に粒子の付着する
問題があった。
As described above, the load lock mechanism considered up to now has a problem that particles adhere to the sample when evacuating and atmosphericizing in a practical time.

【0006】[0006]

【課題を解決するための手段】本発明に含まれるロード
ロック機構においては試料を囲む空間の対向する二個所
にフィルターが設けてあり、真空排気時及び大気化時の
気流の向きが同じになる様にしてある。 [作用]上記のロードロック機構においてはフィルター
に対して気流の向きが真空排気時と大気化時とで同じで
あるのでフィルターからの粒子の脱離がなく、試料への
粒子付着を抑制できる。
In the load lock mechanism included in the present invention, filters are provided at two opposing positions in the space surrounding the sample, so that the direction of the air flow at the time of evacuation and at the time of atmosphericization are the same. It is like. [Operation] In the above-mentioned load lock mechanism, since the direction of the air flow with respect to the filter is the same between when the vacuum is evacuated and when the gas is atmosphericized, there is no detachment of the particles from the filter, and the adhesion of the particles to the sample can be suppressed.

【0007】[0007]

【発明の実施の形態】[実施例]以下図を用いて本発明
の実施例を説明する。図1.は本発明の第一の実施例を
示す。図1はロードロック室3の構成を示している。ロ
ードロック室3は2枚の通気性がある塵埃阻止用フィル
ター14、15によって3つの空間11〜13に分離さ
れている。以下それぞれ、中室、低圧室、高圧室と呼ぶ
こととする。低圧室12にはバルブ7を介して真空ポン
プ5が接続されており、高圧室13にはバルブ9を介し
て空気配管10が接続されている。また、中室11はバ
ルブ8は真空側、バルブ6は大気側に取り付けられてい
る。ロードロック室を真空排気する際にはバルブ6、
8、9が閉じられてバルブ7が開かれる。このとき空気
の流れは図中で矢印で示した方向となる。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. Shows a first embodiment of the present invention. FIG. 1 shows the configuration of the load lock chamber 3. The load lock chamber 3 is separated into three spaces 11 to 13 by two air-permeable dust blocking filters 14 and 15. Hereinafter, they will be referred to as a middle chamber, a low pressure chamber, and a high pressure chamber, respectively. The vacuum pump 5 is connected to the low-pressure chamber 12 via a valve 7, and the air pipe 10 is connected to the high-pressure chamber 13 via a valve 9. In the middle chamber 11, the valve 8 is attached to the vacuum side, and the valve 6 is attached to the atmosphere side. When evacuating the load lock chamber, the valve 6,
8, 9 are closed and valve 7 is opened. At this time, the air flow is in the direction indicated by the arrow in the figure.

【0008】従って、中室11内で舞い上がった粒子は
フィルター14によって取り込まれる。高圧室13中で
舞い上がった粒子はフィルター15の働きにより中室1
1内には入らない。ロードロック室3を大気化する際に
はバルブ6、7、8が閉じられてバルブ9が開かれる。
この場合も空気の流れはほぼ、矢印で示される方向とな
る。ここで、低圧室12にバルブ16を介して補助ポン
プ17を接続しておき、バルブ16を開いて低圧室が常
に中室11よりも若干低圧力になる様にしておき、中室
の空気の流れを矢印の方向に為るように制御することが
望ましい。この様にすることによりフィルター14、1
5に対して空気の流れは真空排気時、大気化時共に同方
向となるため、フィルター14からの粒子の脱離を最小
限に抑えることが可能となる。また、システム運用上は
ロードロック室3の大気化と真空排気とを予め繰り返し
ておき、中室11内での粒子の舞い上がりが十分少なく
なってから試料4を導入することが望ましい。
[0008] Therefore, the particles soared in the inner chamber 11 are taken in by the filter 14. The particles soared in the high pressure chamber 13 are filtered by the filter
Do not enter 1. When the load lock chamber 3 is evacuated, the valves 6, 7, 8 are closed and the valve 9 is opened.
Also in this case, the flow of the air is almost in the direction indicated by the arrow. Here, an auxiliary pump 17 is connected to the low-pressure chamber 12 via a valve 16, and the valve 16 is opened so that the low-pressure chamber always has a slightly lower pressure than the middle chamber 11. It is desirable to control the flow to be in the direction of the arrow. By doing so, the filters 14, 1
In contrast, the air flow is the same in both directions during evacuation and atmosphericization, so that desorption of particles from the filter 14 can be minimized. From the viewpoint of system operation, it is desirable to repeat the atmosphericization of the load lock chamber 3 and the evacuation beforehand, and to introduce the sample 4 after the soaring of particles in the middle chamber 11 is sufficiently reduced.

【0009】図2は第二の実施例を示す。この実施例で
は試料4はフィルター14、15を取り付けた容器18
に納められる。容器18の下部には着脱可能な底板19
が固定されており、試料4は底板19に載せられてい
る。試料4を真空内に移動させる手順は次の様にする。
バルブ6を開けてロードロック室3に容器18を移動さ
せる。ここで、ロードロック室にの天井側ではパッキン
20が効果して容器18の上部に達し、ロードロック室
をロードロック室を3つの空間に仕切る。この状態でバ
ルブ6を閉め、バルブ7を開いてロードロック室を真空
排気する。
FIG. 2 shows a second embodiment. In this embodiment, the sample 4 is a container 18 provided with filters 14 and 15.
Put in. A removable bottom plate 19 is provided at the lower part of the container 18.
Are fixed, and the sample 4 is placed on the bottom plate 19. The procedure for moving the sample 4 into a vacuum is as follows.
The container 6 is moved to the load lock chamber 3 by opening the valve 6. Here, on the ceiling side of the load lock chamber, the packing 20 works to reach the upper portion of the container 18 and divides the load lock chamber into three spaces. In this state, the valve 6 is closed, the valve 7 is opened, and the load lock chamber is evacuated.

【0010】このとき空気の流れは図1で示した様に空
間22から空間23に向うものとなる。ロードロック室
3の下部にはエレベータ機構21が設けられており、試
料4を底板19ごと真空排気されたエレベータ室24に
降下させる。エレベータ室24において試料4は取り出
される。エレベータ室24は図示していない排気用の配
管と大気化用の配管とが接続されており、ロードロック
室を真空排気する際に真空排気され、真空側にバルブ8
を設けてあり、バルブ8を開けて真空側に試料4を運ぶ
ことができる。その後エレベータ機構21が上昇して底
板19が容器18に固定される。試料4を大気中に取り
出す時の手順は以下の様にする。エレベータ機構21を
降下させて底板19を容器18より外す。バルブ8を開
けて試料を底板19に移動させる。エレベータ機構21
を上昇させて容器18に固定する。バルブ8を閉じた後
バルブ9を開けてロードロック室3を大気化する。この
時図1の例と同様に気流の向きを制御することが望まし
い。ロードロック室とエレベータ室24が大気化された
後バルブ6を開けて容器18を取り出す。
At this time, the air flows from the space 22 to the space 23 as shown in FIG. An elevator mechanism 21 is provided below the load lock chamber 3, and lowers the sample 4 together with the bottom plate 19 into the evacuated elevator chamber 24. The sample 4 is taken out in the elevator room 24. The elevator chamber 24 is connected to an exhaust pipe (not shown) and an atmospheric pipe, and is evacuated when the load lock chamber is evacuated.
The sample 8 can be carried to the vacuum side by opening the valve 8. Thereafter, the elevator mechanism 21 moves up, and the bottom plate 19 is fixed to the container 18. The procedure for removing the sample 4 into the atmosphere is as follows. The elevator mechanism 21 is lowered to remove the bottom plate 19 from the container 18. The sample is moved to the bottom plate 19 by opening the valve 8. Elevator mechanism 21
Is raised and fixed to the container 18. After closing the valve 8, the valve 9 is opened to evacuate the load lock chamber 3. At this time, it is desirable to control the direction of the airflow as in the example of FIG. After the load lock chamber and the elevator chamber 24 are evacuated, the valve 6 is opened and the container 18 is taken out.

【0011】また、本機構は装置を大気と真空との間を
移動させる場合のみならず、エッチング装置の様にガス
雰囲気に試料を移動させるあるいは異なるガス雰囲気の
間を移動させる場合にも使用できるのは明らかである。
この場合は補助ポンプを働かして気流の向きを調整しな
がらガスの置換を行うことも可能であるが、試料環境を
一旦真空に排気した後ガスを導入することが望ましい。
The mechanism can be used not only when the apparatus is moved between the atmosphere and vacuum, but also when the sample is moved to a gas atmosphere or between different gas atmospheres like an etching apparatus. It is clear.
In this case, it is possible to perform gas replacement while adjusting the direction of air flow by operating the auxiliary pump, but it is desirable to introduce the gas after once evacuating the sample environment to vacuum.

【0012】[0012]

【発明の効果】以上の説明から明らかな様に、本発明に
よれば、試料の大気中と真空中との移動において試料へ
の粒子の付着を抑制できる。
As is apparent from the above description, according to the present invention, particles can be prevented from adhering to the sample when the sample moves between the atmosphere and the vacuum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のロードロック機構の一つの実施例を示
す断面図。
FIG. 1 is a sectional view showing one embodiment of a load lock mechanism of the present invention.

【図2】別の実施例で用いる容器の構成を示す断面図。FIG. 2 is a cross-sectional view showing a configuration of a container used in another embodiment.

【図3】(a)小容器を納めたロードロック室を示す断
面図。 (b)エレベータ機構を下げた断面図。
FIG. 3A is a cross-sectional view showing a load lock chamber containing a small container. (B) Sectional view with the elevator mechanism lowered.

【図4】従来例を示す断面図。FIG. 4 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 電子光学鏡筒 2 描画容器 3 ロードロック室 4 試料 6,7,8,9 バルブ 10 ガス配管 11 中室 12 低圧室 13 高圧室 14,15 塵埃阻止用フィルター 16 バルブ 17 補助ポンプ 18 容器 19 底板 21 エレベータ機構 24 エレベータ室 DESCRIPTION OF SYMBOLS 1 Electro-optical column 2 Drawing container 3 Load lock room 4 Sample 6, 7, 8, 9 Valve 10 Gas piping 11 Middle room 12 Low pressure room 13 High pressure room 14, 15 Dust prevention filter 16 Valve 17 Auxiliary pump 18 Container 19 Bottom plate 21 elevator mechanism 24 elevator room

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料を気密に仕切られた空間の間を移動
させる為のロードロック機構であって、試料を囲む空間
の少なくとも二個所に通気性がある塵埃を透過させない
為のフィルターA,Bが該空間でほぼ対向する様に設け
てあり、該空間の排気はフィルターA側から行い、ガス
導入はフィルターB側から行う様にしてあることを特徴
とする真空ロードロック機構。
1. A load lock mechanism for moving a sample between airtightly partitioned spaces, and filters A and B for preventing air-permeable dust from passing through at least two places in a space surrounding the sample. Are provided so as to substantially oppose each other in the space, and the space is evacuated from the filter A side, and gas is introduced from the filter B side.
【請求項2】 試料を納めた容器ごと装置に出し入れす
る様にした真空ロードロック機構であって、該容器の二
個所にフィルターが設けてあることを特徴とする特許請
求項第一項記載の真空ロードロック機構。
2. A vacuum load lock mechanism for putting a sample containing a container into and out of the apparatus, wherein filters are provided at two positions of the container. Vacuum load lock mechanism.
JP11087092A 1999-03-29 1999-03-29 Vacuum load locking mechanism Pending JP2000279792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087092A JP2000279792A (en) 1999-03-29 1999-03-29 Vacuum load locking mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087092A JP2000279792A (en) 1999-03-29 1999-03-29 Vacuum load locking mechanism

Publications (1)

Publication Number Publication Date
JP2000279792A true JP2000279792A (en) 2000-10-10

Family

ID=13905325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087092A Pending JP2000279792A (en) 1999-03-29 1999-03-29 Vacuum load locking mechanism

Country Status (1)

Country Link
JP (1) JP2000279792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134586A (en) * 2005-11-11 2007-05-31 Hitachi High-Technologies Corp Vacuum exhaust device
CN112289667A (en) * 2020-10-14 2021-01-29 北京烁科中科信电子装备有限公司 Two-dimensional door opening and closing device for interaction of atmospheric end and vacuum end of ion implanter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134586A (en) * 2005-11-11 2007-05-31 Hitachi High-Technologies Corp Vacuum exhaust device
CN112289667A (en) * 2020-10-14 2021-01-29 北京烁科中科信电子装备有限公司 Two-dimensional door opening and closing device for interaction of atmospheric end and vacuum end of ion implanter

Similar Documents

Publication Publication Date Title
US5139459A (en) Clean transfer method and system therefor
US6750155B2 (en) Methods to minimize moisture condensation over a substrate in a rapid cycle chamber
US5795355A (en) Integrated micro-environment container loader apparatus having a semipermeable barrier
JP5030410B2 (en) Vacuum processing equipment
JP2000279792A (en) Vacuum load locking mechanism
JP2746179B2 (en) Vacuum processing apparatus and vacuum processing method
JPH1154400A (en) Charged beam image drawing equipment and method
JP2004087781A (en) Vacuum processing method and apparatus
JPH05149443A (en) Magnetic fluid seal device
JP3276382B2 (en) Vacuum processing device and vacuum processing method
JP2012114456A (en) Transfer vessel
JP3154144B2 (en) Method of changing pressure in chamber and apparatus having chamber with changed pressure
JPS631035A (en) Method and apparatus for reduced pressure processing
JP3173681B2 (en) Evacuation apparatus and method
JP2939378B2 (en) Vacuum processing equipment
JPH11219908A (en) Substrate processor and method therefor
JPH025774A (en) Semiconductor base board processing device
JPS6067664A (en) Dust removal of vapor deposition apparatus
JP2005116890A (en) Cassette for storing therein exposure mask, cassette cleaning apparatus, and regulator for atmospheric pressure in same cassette
KR20030018491A (en) Apparatus for manufacturing semiconductor device having loadrock chamber
JP2664216B2 (en) Control method of vacuum processing equipment
KR20000011076A (en) Low-pressure processing device
JP3215984B2 (en) Vacuum apparatus and method of using the same
JPH0513002Y2 (en)
KR20000075300A (en) Wafer fabrication chamber system