JP2000275201A - Gas sensor, manufacture thereof, and gas detecting method - Google Patents

Gas sensor, manufacture thereof, and gas detecting method

Info

Publication number
JP2000275201A
JP2000275201A JP7726399A JP7726399A JP2000275201A JP 2000275201 A JP2000275201 A JP 2000275201A JP 7726399 A JP7726399 A JP 7726399A JP 7726399 A JP7726399 A JP 7726399A JP 2000275201 A JP2000275201 A JP 2000275201A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide semiconductor
silicon compound
gas
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7726399A
Other languages
Japanese (ja)
Other versions
JP3988909B2 (en
Inventor
Yasuhiro Setoguchi
泰弘 瀬戸口
Tomohiro Kawaguchi
智博 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP07726399A priority Critical patent/JP3988909B2/en
Publication of JP2000275201A publication Critical patent/JP2000275201A/en
Application granted granted Critical
Publication of JP3988909B2 publication Critical patent/JP3988909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors

Abstract

PROBLEM TO BE SOLVED: To sensitively detect molodor gas such as hydrogen sulfide, ammonia by exposing metal oxide semiconductor in silicon compound vapor to deposit it thereon. SOLUTION: The film thickness of a metal oxide semiconductor film such as SnO2, In2O3, ZnO is set to be about 0.01-30 μm, silicon compound is stuck to it in gas phase, a gas sensor is used in the atmoshere containing silicon compound, and the silicon compound is decomposed by pulse heating. The concentration of silicon compound to be stuck is set to be about 10-1000 ppm (gas phase concentration), and the exposure time is set to be about 10 min-10 day. The width of heating pulse is about 5 msec-4 sec, the period is about 200 msec-300 sec, and the width of the heating pulse is set to be about 0.01-10% of the period. The range in which hydrogen sulfide, ammonia, or the derivative can be sensitively detected is the range after the sensor temperature is lowered under about room temperature +30 deg.C after completing the heating pulse, or during heating pulse, the range at the beginning of the pulse until the sensor temperature reaches about 100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、金属酸化物半導体ガス
センサを用いた、悪臭ガスの検出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to detection of an odorous gas using a metal oxide semiconductor gas sensor.

【0002】[0002]

【従来技術】金属酸化物半導体ガスセンサをトリメチル
クロルシラン等の珪素の有機化合物の蒸気にさらし、水
素選択性のセンサを得ることが知られている(特公昭6
1−31422号公報)。ところで悪臭の検出が注目さ
れており、アンモニアや硫化水素は周知のように代表的
な悪臭ガスである。硫化水素はチオールやチオフェノー
ル等の有機系の含硫黄悪臭物質をも代表し、アンモニア
は、各種アミン類等の悪臭物質も代表する。そして一般
に硫化水素系の臭いは、アンモニア系の臭いよりも強
い。しかしながら、従来の金属酸化物半導体ガスセンサ
では、硫化水素への感度に対してアンモニアへの感度が
低すぎ、悪臭の強弱へのバランスが取れていない。次に
エタノール等のガスへの感度が高すぎ、悪臭の検出を妨
害する。発明者は、パルス駆動型のガスセンサをシリコ
ーン蒸気(珪素化合物の蒸気)で処理すると、水素への
増感ではなく、硫化水素やアンモニア等の悪臭ガスへの
増感が生じることを見出し、この発明に到った。
2. Description of the Related Art It is known that a metal oxide semiconductor gas sensor is exposed to a vapor of an organic compound of silicon such as trimethylchlorosilane to obtain a hydrogen-selective sensor.
1-33142). By the way, attention has been paid to detection of odor, and ammonia and hydrogen sulfide are typical odor gases as is well known. Hydrogen sulfide also represents organic sulfur-containing malodorous substances such as thiol and thiophenol, and ammonia represents malodorous substances such as various amines. In general, the smell of hydrogen sulfide is stronger than the smell of ammonia. However, in the conventional metal oxide semiconductor gas sensor, the sensitivity to ammonia is too low with respect to the sensitivity to hydrogen sulfide, and the balance between the odor and the intensity is not balanced. Secondly, the sensitivity to gases such as ethanol is too high and hinders the detection of odors. The inventor of the present invention has found that when a pulse-driven gas sensor is treated with silicone vapor (silicon compound vapor), sensitization to malodorous gas such as hydrogen sulfide or ammonia occurs instead of sensitization to hydrogen. Reached.

【0003】[0003]

【発明の課題】この発明の課題は、パルス駆動型の金属
酸化物半導体ガスセンサを用いて、硫化水素やアンモニ
ア等の悪臭ガスを高感度で、特に1ppm程度の濃度
で、検出することにある。
SUMMARY OF THE INVENTION An object of the present invention is to detect a malodorous gas such as hydrogen sulfide or ammonia with high sensitivity, particularly at a concentration of about 1 ppm, using a pulse-driven metal oxide semiconductor gas sensor.

【0004】[0004]

【発明の構成】この発明は、ガス検出用の金属酸化物半
導体とヒータとを備えて、該ヒータにより前記金属酸化
物半導体を、周期的にかつパルス的に加熱して、該パル
スとパルスとの間は、前記金属酸化物半導体を室温付近
の温度に放置するようにしたガスセンサにおいて、前記
金属酸化物半導体が、珪素化合物に暴露されて、珪素化
合物を付着させたものとしたことを特徴とする。
The present invention comprises a metal oxide semiconductor for gas detection and a heater, and the heater heats the metal oxide semiconductor periodically and in a pulsed manner. In the meantime, in the gas sensor in which the metal oxide semiconductor is left at a temperature around room temperature, the metal oxide semiconductor is exposed to a silicon compound, and the silicon compound is attached. I do.

【0005】この発明はまた、ガス検出用の金属酸化物
半導体とヒータとを所定の形状に組み付けた後に、該金
属酸化物半導体を珪素化合物にさらして、金属酸化物半
導体に付着した珪素化合物を、前記ヒータからの発熱で
分解する、ガスセンサの製造方法にある。好ましくは、
珪素の有機化合物の蒸気を含む雰囲気に金属酸化物半導
体を暴露して、前記ヒータにより前記金属酸化物半導体
に付着した珪素化合物を分解することにより、悪臭物質
への感度を増感する。
According to the present invention, after assembling a metal oxide semiconductor for gas detection and a heater into a predetermined shape, the metal oxide semiconductor is exposed to a silicon compound to remove the silicon compound attached to the metal oxide semiconductor. And a method of manufacturing a gas sensor, which is decomposed by heat generated from the heater. Preferably,
The sensitivity to the malodorous substance is sensitized by exposing the metal oxide semiconductor to an atmosphere containing a vapor of an organic compound of silicon and decomposing the silicon compound attached to the metal oxide semiconductor by the heater.

【0006】この発明はまた、ガス検出用の金属酸化物
半導体とヒータとを備えたガスセンサを用いて、該ヒー
タにより前記金属酸化物半導体を、周期的にかつパルス
的に加熱して、該パルスとパルスとの間は前記金属酸化
物半導体の温度を室温付近とするようにしたガス検出方
法において、前記金属酸化物半導体を珪素化合物にさら
して、該金属酸化物半導体に珪素化合物を付着させたガ
スセンサを用いて、室温付近ないし加熱パルスの初期で
の、前記金属酸化物半導体の抵抗値から悪臭成分を検出
することを特徴とする。好ましくは、前記珪素化合物の
蒸気を含有する雰囲気中にガスセンサを置いて、ガスセ
ンサのヒータの発熱により金属酸化物半導体に付着した
珪素化合物を分解した後、悪臭ガスを検出する。
The present invention also provides a gas sensor having a metal oxide semiconductor for gas detection and a heater, wherein the heater heats the metal oxide semiconductor periodically and in a pulsed manner. In the gas detection method in which the temperature of the metal oxide semiconductor is set to around room temperature between the pulse and the pulse, the metal oxide semiconductor is exposed to a silicon compound, and the silicon compound is attached to the metal oxide semiconductor. A gas sensor is used to detect an odor component from the resistance value of the metal oxide semiconductor near room temperature or at the beginning of a heating pulse. Preferably, the gas sensor is placed in an atmosphere containing the vapor of the silicon compound, and after the silicon compound attached to the metal oxide semiconductor is decomposed by the heat generated by the heater of the gas sensor, the odorous gas is detected.

【0007】[0007]

【発明の作用と効果】パルス駆動型の金属酸化物半導体
ガスセンサを、珪素化合物にさらして珪素化合物を付着
させると、(以下この処理をシリコーン処理と呼ぶ)、
水素への増感ではなく、アンモニアや硫化水素等のガス
への増感が生じる。珪素化合物は原則として蒸気として
ガスセンサに付着させ、珪素化合物の蒸気を含む雰囲気
中でガスセンサを例えば通常条件で使用し、パルス加熱
により付着した珪素化合物を分解するのが好ましい。分
解した珪素化合物の状態は、シリカあるいは珪素化合物
をシリカへ分解する過程の物質と考えられる。付着させ
る珪素化合物は例えば、HMDS(ヘキサメチルジシロ
キサン),SiH3Cl,SiHCl3,CH3SiCl
2,SiCl(CH3)3等とし、処理濃度と処理時間は
例えば(10ppm〜1000ppm)×(10分間〜
1時間)、あるいは(10ppm×100ppm)×
(10分間〜10日間)等とする。
When the pulse-driven metal oxide semiconductor gas sensor is exposed to a silicon compound to cause the silicon compound to adhere thereto (hereinafter, this processing is referred to as silicone processing),
Instead of sensitization to hydrogen, sensitization to gases such as ammonia and hydrogen sulfide occurs. Preferably, the silicon compound is adhered to the gas sensor as vapor in principle, and the gas sensor is used in an atmosphere containing the vapor of the silicon compound under, for example, ordinary conditions, and the silicon compound adhered is decomposed by pulse heating. The state of the decomposed silicon compound is considered to be silica or a substance in the process of decomposing the silicon compound into silica. Silicon compounds to be attached are, for example, HMDS (hexamethyldisiloxane), SiH3Cl, SiHCl3, CH3SiCl
2, SiCl (CH3) 3, etc., and the processing concentration and processing time are, for example, (10 ppm to 1000 ppm) × (10 minutes to
1 hour) or (10 ppm x 100 ppm) x
(10 minutes to 10 days).

【0008】パルス駆動型の場合、シリコーン処理での
水素の増感は生じないか、生じてもごく僅かでである。
臭いの検出では、アンモニア感度とエタノール感度とが
類似し、アンモニアをエタノールから区別して検出する
ことが難しい。しかしパルス駆動型ガスセンサのシリコ
ーン処理では、エタノール感度は一般に低下する。これ
らの一方で、シリコーン処理により、硫化水素感度はや
や増加し、アンモニア感度が著しく増加する。これらの
ため悪臭の検出が容易になり、人の嗅覚に応じた割合の
悪臭ガスへの感度が得られる。
In the case of the pulse drive type, sensitization of hydrogen during the silicone treatment does not occur or occurs only slightly.
In the detection of odor, ammonia sensitivity and ethanol sensitivity are similar, and it is difficult to detect ammonia separately from ethanol. However, in the silicone treatment of the pulse-driven gas sensor, the ethanol sensitivity generally decreases. On the other hand, the silicone treatment causes a slight increase in hydrogen sulfide sensitivity and a marked increase in ammonia sensitivity. For these reasons, the detection of offensive odor becomes easy, and the sensitivity to the offensive odor gas according to the human sense of smell is obtained.

【0009】パルス駆動型の金属酸化物半導体ガスセン
サをシリコーン処理すると、水素ではなく、アンモニア
や硫化水素への増感が生じるが、この原因は不明であ
る。パルス駆動型のガスセンサをシリコーン処理する場
合、一定温度への連続加熱型のガスセンサ(以下、連続
駆動型のガスセンサと呼ぶ)で水素の増感が生じるより
も、弱いシリコーン処理の条件で、アンモニアや硫化水
素への増感が生じる。また水素への増感が生じるか、硫
化水素やアンモニアへの増感が生じるかは、ガスセンサ
の材料や形状,構造によるものではなく、連続駆動かパ
ルス駆動かの、駆動条件の違いによる。
When a pulse-driven metal oxide semiconductor gas sensor is subjected to silicone treatment, sensitization is caused not to hydrogen but to ammonia or hydrogen sulfide, but the cause is unknown. When a pulse-driven gas sensor is subjected to silicone treatment, ammonia or ammonia is used under a weaker silicone treatment condition than when a hydrogen sensor is sensitized by a continuously heated gas sensor to a constant temperature (hereinafter, referred to as a continuously-driven gas sensor). Sensitization to hydrogen sulfide occurs. Whether the sensitization to hydrogen or the sensitization to hydrogen sulfide or ammonia occurs does not depend on the material, shape, or structure of the gas sensor, but depends on the difference in driving conditions between continuous driving and pulse driving.

【0010】パルス駆動のガスセンサでは、加熱パルス
の期間内でも、それ以外の期間でも、アンモニアや硫化
水素への増感が生じる。ここで高感度でアンモニアや硫
化水素を検出するには、加熱パルス終了後に金属酸化物
半導体が室温+30℃以下の温度へ冷却された時点以降
から、加熱パルスの初期で金属酸化物半導体の温度が1
00℃以下の時間範囲の信号を用いるのが好ましい。即
ちこの範囲で、硫化水素やアンモニアへの感度が高く、
1ppm程度のアンモニアや1ppm未満の硫化水を検
出できる。
In a pulse-driven gas sensor, sensitization to ammonia and hydrogen sulfide occurs during the heating pulse period and other periods. Here, in order to detect ammonia and hydrogen sulfide with high sensitivity, the temperature of the metal oxide semiconductor is changed at the beginning of the heating pulse after the metal oxide semiconductor is cooled to a temperature of room temperature + 30 ° C. or less after the end of the heating pulse. 1
It is preferable to use a signal in a time range of 00 ° C. or less. That is, within this range, the sensitivity to hydrogen sulfide and ammonia is high,
About 1 ppm of ammonia and less than 1 ppm of sulfided water can be detected.

【0011】[0011]

【実施例】ガスセンサの製造条件、センサ信号のサンプ
リング条件、ガスセンサの特性の順に説明する。図1
に、実施例のガスセンサ1を示すと、2はアルミナ等の
耐熱絶縁基板、4はガラス膜等の断熱膜で、断熱膜4は
基板2がガラス等の断熱材料で構成されている場合は不
要である。6はPt膜やRuO2膜等のヒータ膜、8は
ガラス膜やシリカ膜等の絶縁膜で無くても良く、10は
SnO2膜やIn2O3膜、ZnO膜等の金属酸化物半導
体膜である。金属酸化物半導体膜10の材質は限定され
ないが好ましくはSnO2とし、膜厚は0.01〜30
μm程度とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing conditions of a gas sensor, sampling conditions of a sensor signal, and characteristics of a gas sensor will be described in this order. FIG.
In the gas sensor 1 of the embodiment, reference numeral 2 denotes a heat-resistant insulating substrate such as alumina, 4 denotes a heat insulating film such as a glass film, and the heat insulating film 4 is unnecessary when the substrate 2 is made of a heat insulating material such as glass. It is. 6 is a heater film such as a Pt film or a RuO2 film, and 8 is not necessarily an insulating film such as a glass film or a silica film, and 10 is a metal oxide semiconductor film such as a SnO2 film, an In2O3 film, or a ZnO film. The material of the metal oxide semiconductor film 10 is not limited, but is preferably SnO2, and the thickness is 0.01 to 30.
It is about μm.

【0012】珪素化合物は原則として気相でガスセンサ
に付着させ、珪素化合物を含む雰囲気でガスセンサを通
常条件で使用し、パルス加熱で金属酸化物半導体に付着
した珪素化合物を分解する。珪素化合物の分解はパルス
加熱でなく、ガスセンサのヒータによる連続加熱で行っ
ても良い。分解生成物はシリカや、付着させた珪素化合
物からシリカへの分解過程の中間的な物質と考えられ
る。金属酸化物半導体に付着させる珪素化合物の濃度
(気相での濃度で、容量ppm単位)は、例えば10p
pm〜1000ppmとし、暴露時間は10分〜10日
間程度の範囲とする。暴露濃度と暴露時間との組み合わ
せでは、例えば(10ppm〜1000ppm)×(1
0分間〜1時間)、あるいは(10ppm×100pp
m)×(10分間〜10日間)とする。また暴露時間×
暴露濃度の積では、100ppm・分〜144,000
ppm・分が好ましい。
The silicon compound is deposited on the gas sensor in a gas phase in principle, and the gas sensor is used under an ordinary atmosphere in an atmosphere containing the silicon compound, and the silicon compound attached to the metal oxide semiconductor is decomposed by pulse heating. The decomposition of the silicon compound may be performed not by pulse heating but by continuous heating by a heater of the gas sensor. The decomposition products are considered to be intermediate substances in the process of decomposing silica and the silicon compound attached to silica. The concentration of the silicon compound to be attached to the metal oxide semiconductor (concentration in the gas phase in ppm by volume) is, for example, 10 p
pm to 1000 ppm, and the exposure time is in the range of about 10 minutes to 10 days. In a combination of the exposure concentration and the exposure time, for example, (10 ppm to 1000 ppm) × (1
0 minutes to 1 hour) or (10 ppm x 100 pp)
m) × (10 minutes to 10 days). Exposure time x
The product of the exposure concentration is 100 ppm · min.
ppm / min is preferred.

【0013】ガスセンサの金属酸化物半導体の材質は任
意で、構造は図1のものに限らず、例えばヒータ兼用電
極のコイルの中心に中心電極を配置し、これらをビード
状に金属酸化物半導体で覆ったものや、この構造から中
心電極を除き、コイル状のヒータ兼用電極を金属酸化物
半導体でビード状に覆ったものなどでも良い。またシリ
カの薄膜のブリッジ等に、ヒータ膜と金属酸化物半導体
の薄膜とを成膜したものでも良い。これらのセンサはい
ずれも小型で、パルス駆動が可能である。
The material of the metal oxide semiconductor of the gas sensor is arbitrary, and the structure is not limited to the one shown in FIG. A covered electrode or a coil-shaped heater / electrode covered with a metal oxide semiconductor in a bead shape may be used, except for the center electrode. Further, a heater film and a metal oxide semiconductor thin film may be formed on a bridge of a silica thin film or the like. Each of these sensors is small and can be pulsed.

【0014】ガスセンサの構造は、パルス駆動型、即ち
大部分の期間で金属酸化物半導体が室温付近に放置さ
れ、周期的にパルス加熱されるものであればよい。加熱
パルスの幅は例えば5m秒〜4秒とし、周期は200m
秒〜300秒程度とし、加熱パルスの幅は周期の、0.
01%〜10%程度、好ましくは0.02〜5%程度と
する。またパルス駆動での加熱パルスが、デューテイ比
制御による微細なサブパルスの集まりで構成されても良
い。
The structure of the gas sensor may be of a pulse drive type, that is, a type in which the metal oxide semiconductor is left near room temperature for most of the period and is pulse-heated periodically. The width of the heating pulse is, for example, 5 ms to 4 seconds, and the cycle is 200 m.
Seconds to 300 seconds, and the width of the heating pulse is 0.1
It is set to about 01% to 10%, preferably about 0.02 to 5%. Further, the heating pulse in the pulse driving may be constituted by a group of fine sub-pulses by duty ratio control.

【0015】図2にサンプリング条件を示す。センサの
動作周期(パルス周期)をT1とし、パルス幅をT2と
する。硫化水素やアンモニア、あるいはそれらの誘導体
を高感度で検出できる範囲は、加熱パルス終了後では、
センサ温度(金属酸化物半導体膜10の温度)が室温+
30℃以下に低下した後の区間である。また加熱パルス
の中では、パルスの初期でセンサ温度が100℃に達す
るまでの範囲である。代表的なサンプリング点は、加熱
パルスの直前、あるいは加熱パルス終了後にセンサ温度
がほぼ室温まで低下した点である。
FIG. 2 shows sampling conditions. The operation cycle (pulse cycle) of the sensor is T1 and the pulse width is T2. The range in which hydrogen sulfide, ammonia, or their derivatives can be detected with high sensitivity,
Sensor temperature (temperature of metal oxide semiconductor film 10) is room temperature +
This is a section after the temperature has dropped to 30 ° C. or lower. In addition, the heating pulse is in a range until the sensor temperature reaches 100 ° C. at the beginning of the pulse. A typical sampling point is a point where the sensor temperature has dropped to almost room temperature immediately before the heating pulse or after the end of the heating pulse.

【0016】図3に、比較に用いた連続駆動型のガスセ
ンサ11の構造を示す。2はアルミナ等の基板、6はヒ
ータ膜、10は金属酸化物半導体膜(SnO2×20μ
m)である。ここに連続駆動とは、ヒータ膜6に一定の
電力を加えて、金属酸化物半導体膜10の温度を一定に
して駆動することをいう。連続駆動型のガスセンサのデ
ータは図18〜図21に示し、センサ温度は約400
℃、図19,20は珪素処理無しの特性で、図18,図
21は珪素処理後の特性である。珪素処理条件はHMD
S 1000ppm×40分間で、珪素処理の間、セン
サは通電して400℃に加熱して用いた。
FIG. 3 shows the structure of a continuously driven gas sensor 11 used for comparison. 2 is a substrate of alumina or the like, 6 is a heater film, 10 is a metal oxide semiconductor film (SnO2 × 20 μm).
m). Here, the continuous driving refers to driving the metal oxide semiconductor film 10 with a constant temperature by applying a constant power to the heater film 6. The data of the continuously driven gas sensor is shown in FIGS.
19 and 20 show the characteristics without silicon treatment, and FIGS. 18 and 21 show the characteristics after silicon treatment. Silicon treatment conditions are HMD
At 1000 ppm × S for 40 minutes, the sensor was energized and heated to 400 ° C. during the silicon treatment.

【0017】図4〜図21のデータでは、パルス駆動型
のガスセンサとして、図1のセンサを用い、金属酸化物
半導体膜にはSnO2(厚さ約20μm)を用いた。駆
動条件は1秒周期で、加熱パルス幅が14m秒、最高温
度が300℃強では、センサ温度は加熱パルスのスター
トから2.8m秒で約70℃、加熱パルス終了後16m
秒で約100℃、加熱パルス終了後88m秒後で室温+
約10℃、加熱パルス終了後488m秒後で室温であ
る。パルス幅を14m秒に保った場合、パルス周期を例
えば0.25秒〜60秒程度の範囲で変化させても良
い。加熱パルス幅は5m秒ないし4秒程度の範囲で変化
させても良く、この場合加熱パルス幅の変更に応じて、
加熱周期も200m秒〜300秒程度に変化させても良
い。各図でのデータは、図20,図21を除き、空気中
の抵抗値との比で示す。
In the data of FIGS. 4 to 21, the sensor of FIG. 1 was used as a pulse-driven gas sensor, and SnO 2 (about 20 μm thick) was used for the metal oxide semiconductor film. When the driving condition is a 1 second cycle, the heating pulse width is 14 ms, and the maximum temperature is over 300 ° C., the sensor temperature is about 70 ° C. 2.8 ms from the start of the heating pulse, and 16 m after the end of the heating pulse.
About 100 ° C in seconds, and room temperature + 88 msec after the end of the heating pulse
Room temperature is about 10 ° C., and 488 msec after the end of the heating pulse. When the pulse width is kept at 14 ms, the pulse cycle may be changed in a range of, for example, about 0.25 seconds to 60 seconds. The heating pulse width may be changed in a range of about 5 ms to 4 seconds. In this case, according to the change of the heating pulse width,
The heating cycle may be changed to about 200 ms to 300 seconds. The data in each figure is shown as a ratio to the resistance value in air except for FIGS.

【0018】比較用の連続駆動のガスセンサには図3の
センサを用い、金属酸化物半導体には厚さ約20μmの
SnO2を用いた。結果は、図18〜図21に示す。
The sensor shown in FIG. 3 was used as a comparatively continuously driven gas sensor, and SnO 2 having a thickness of about 20 μm was used as a metal oxide semiconductor. The results are shown in FIGS.

【0019】シリコーン処理(珪素処理)にはHMDS
(ヘキサメチルジシロキサン)を用い、処理条件は図4
の場合、HMDS 10ppm×40分間で、その間セ
ンサを1秒周期でパルス駆動し、シリコーン処理後空気
中で3日間通電した後に、特性を測定した。図4,図5
でのセンサ数は3個である。図5は、図4の比較用のデ
ータを示し、シリコーン処理無しのセンサの結果であ
る。また図4、図5でのサンプリングポイントは次の加
熱パルスの10m秒前である。
HMDS for silicone treatment (silicon treatment)
(Hexamethyldisiloxane) and the processing conditions are shown in FIG.
In the case of (1), the sensor was pulse-driven at a cycle of 1 second at HMDS 10 ppm × 40 minutes, and after the silicon treatment, the sensor was energized in air for 3 days, and then the characteristics were measured. 4 and 5
Is 3 sensors. FIG. 5 shows the comparative data of FIG. 4 and is the result of the sensor without silicone treatment. The sampling point in FIGS. 4 and 5 is 10 ms before the next heating pulse.

【0020】図4,図5を比較すると、シリコーン処理
により、水素感度はほとんど増加せず、エタノール感度
は1/10程度に減少している。この一方で、硫化水素
感度はやや増加し、アンモニア感度は著しく増加してい
る。このようにパルス加熱での珪素処理は、硫化水素感
度の増加とアンモニア感度の激増とをもたらした。
4 and 5, the sensitivity to hydrogen hardly increases and the sensitivity to ethanol decreases to about 1/10 due to the silicone treatment. On the other hand, the sensitivity to hydrogen sulfide is slightly increased, and the sensitivity to ammonia is significantly increased. Thus, silicon treatment with pulse heating resulted in an increase in hydrogen sulfide sensitivity and a sharp increase in ammonia sensitivity.

【0021】図4,図5との比較のために、図18,図
19に、図3の連続駆動型のガスセンサを同じ条件でシ
リコーン処理した際の特性を示す。図18が処理後の特
性、図19が未処理のセンサの特性である。この条件で
は、水素感度の増加は見られず、硫化水素感度の増加も
アンモニア感度の増加も見られない。パルス駆動型ガス
センサでアンモニアや硫化水素への高感度化が生じる条
件でのシリコーン処理では、連続駆動型のガスセンサは
特性がほとんど変化しない。
For comparison with FIGS. 4 and 5, FIGS. 18 and 19 show the characteristics of the continuously driven gas sensor of FIG. 3 when subjected to silicone treatment under the same conditions. FIG. 18 shows the characteristics after processing, and FIG. 19 shows the characteristics of the unprocessed sensor. Under these conditions, there is no increase in hydrogen sensitivity, no increase in hydrogen sulfide sensitivity, and no increase in ammonia sensitivity. In the silicon treatment under the condition that the sensitivity to ammonia or hydrogen sulfide is increased in the pulse-driven gas sensor, the characteristics of the continuously-driven gas sensor hardly change.

【0022】図6〜図11は、HMDS10ppm中で
パルス駆動型ガスセンサ(図1)を1日通電した後に、
3日間空気中で通電した後の特性である。図12〜図1
7は、上記の比較用の、シリコーン処理無しのセンサの
特性である。各図において、センサ数は3個で、平均値
と最大最小の範囲を示す。サンプリングポイントは、図
6,12が加熱パルスの10m秒前(SnO2温度は室
温)、図7,図13が加熱パルス開始から2.8m秒後
(SnO2温度は約70℃)、図8,図14が加熱パル
ス開始から14m秒後(SnO2温度は300℃強)、
図9,図15が加熱パルス終了後16m秒後(約100
℃)、図10,図16が加熱パルス終了後88m秒後
(室温+10℃)、図11,図17が加熱パルス終了後
488m秒後(室温)である。
FIGS. 6 to 11 show that a pulse-driven gas sensor (FIG. 1) was energized for one day in 10 ppm of HMDS.
This is the characteristic after energizing in air for three days. 12 to 1
Reference numeral 7 denotes the characteristics of the above-described comparative sensor without silicone treatment. In each figure, the number of sensors is three, and the average value and the maximum and minimum ranges are shown. Sampling points are 10 ms before the heating pulse (SnO2 temperature is room temperature) in FIGS. 6 and 12, 2.8 ms after the start of the heating pulse (SnO2 temperature is about 70 ° C.) in FIGS. 14 is 14 ms after the start of the heating pulse (SnO2 temperature is slightly over 300 ° C.)
9 and 15 show 16 ms after the end of the heating pulse (about 100 ms).
10 and 88 are 88 ms after the end of the heating pulse (room temperature + 10 ° C.), and FIGS. 11 and 17 are 488 msec after the end of the heating pulse (room temperature).

【0023】いずれの場合も、シリコーン処理により、
硫化水素感度がやや増加し、アンモニア感度が著しく増
加する。水素感度は変化せず、CO感度やエタノール感
度は減少する。これらの結果、悪臭の主成分である硫黄
系化合物(硫化水素やメルカプタン化合物やチオフェノ
ール化合物等)や、アンモニア系化合物(アンモニアや
アミン系化合物)への感度がまし、かつ硫黄系化合物に
対してアンモニア系化合物への感度が低いとの問題を解
消できる。そしてCOやエタノールによる妨害が解消す
る。
In any case, by silicone treatment,
The hydrogen sulfide sensitivity increases slightly, and the ammonia sensitivity increases significantly. Hydrogen sensitivity does not change, CO sensitivity and ethanol sensitivity decrease. As a result, the sensitivity to sulfur-based compounds (hydrogen sulfide, mercaptan compounds, thiophenol compounds, etc.) and ammonia-based compounds (ammonia and amine-based compounds), which are the main components of malodor, is improved. The problem of low sensitivity to ammonia-based compounds can be solved. And the interference by CO and ethanol is eliminated.

【0024】図6〜図11の内で、パルスの終了時(図
8)やパルス終了直後でセンサ温度が高い場合(図
9)、硫化水素やアンモニアへの感度は低い。一方パル
スの初期(図7)やパルス終了後室温付近まで冷却した
後(図6,図10,図11)では、硫化水素やアンモニ
アへの感度は高い。これらのことから、サンプリング
は、加熱パルス終了後にセンサ温度が室温+30℃以下
に低下した後か、加熱パルスの初期でセンサ温度が10
0℃に達するまでに行うのが好ましい。
In FIGS. 6 to 11, when the sensor temperature is high at the end of the pulse (FIG. 8) or immediately after the end of the pulse (FIG. 9), the sensitivity to hydrogen sulfide and ammonia is low. On the other hand, the sensitivity to hydrogen sulfide and ammonia is high at the beginning of the pulse (FIG. 7) or after cooling to near room temperature after the end of the pulse (FIGS. 6, 10 and 11). From these facts, the sampling is performed after the sensor temperature drops to room temperature + 30 ° C. or less after the end of the heating pulse, or when the sensor temperature is 10
It is preferable to carry out until the temperature reaches 0 ° C.

【0025】図20,図21に、図3の連続駆動型のガ
スセンサを用いて、1000ppmのHMDS中で40
分間通電した際の特性を示す。センサ数は1個、図20
はシリコーン処理(珪素処理)無しでの結果で、図21
は処理後の結果で、ガス濃度は各2000ppmであ
る。先行技術で知られているように、水素感度が増加す
る。このように、シリコーン処理で悪臭ガスへの感度が
増し、アルコール類等の妨害ガスへの感度が減少するの
は、パルス加熱センサに特有の現象である。実施例では
パルス加熱センサの形状を特定したが、金属酸化物半導
体がパルス的に加熱されて大部分の期間は室温付近に放
置されている使用条件が重要である。従って、用いるセ
ンサは金属酸化物半導体を用いたパルス加熱型センサで
有れば良く、図1等の特定の形状に限定されるものでは
ない。
FIGS. 20 and 21 show that the continuous drive type gas sensor of FIG.
This shows the characteristics when energized for one minute. One sensor, FIG.
FIG. 21 shows the results without silicone treatment (silicon treatment).
Is the result after the treatment, and the gas concentration is 2000 ppm each. As is known in the prior art, hydrogen sensitivity is increased. As described above, it is a phenomenon peculiar to the pulse heating sensor that the sensitivity to the odorous gas is increased by the silicone treatment and the sensitivity to the interfering gas such as alcohol is decreased. In the embodiment, the shape of the pulse heating sensor is specified, but it is important to use conditions in which the metal oxide semiconductor is heated in a pulsed manner and is left near room temperature for most of the period. Therefore, the sensor to be used may be a pulse heating type sensor using a metal oxide semiconductor, and is not limited to the specific shape shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例のガスセンサの断面図FIG. 1 is a cross-sectional view of a gas sensor according to an embodiment.

【図2】 実施例のガスセンサの駆動タイミングを示
す図
FIG. 2 is a diagram showing driving timings of the gas sensor according to the embodiment.

【図3】 比較に用いた連続駆動型ガスセンサの断面
FIG. 3 is a cross-sectional view of a continuously driven gas sensor used for comparison.

【図4】 シリコーン処理後のガスセンサの特性図
で、処理条件はHMDS10ppm×40分間通電
FIG. 4 is a characteristic diagram of the gas sensor after the silicone treatment. The treatment condition is HMDS 10 ppm × 40 minutes energization.

【図5】 シリコーン処理無しのガスセンサの特性図FIG. 5 is a characteristic diagram of a gas sensor without silicone treatment.

【図6】 実施例での加熱パルス直前(次の加熱パル
スの10m秒前)のガス濃度特性を示す図で、処理条件
はHMDS 10ppm×1日通電
FIG. 6 is a graph showing gas concentration characteristics immediately before a heating pulse (10 ms before the next heating pulse) in the example, and the processing condition is HMDS 10 ppm × 1 day energization.

【図7】 実施例での加熱パルス内の初期(パルス加
熱開始から2.8m秒)でのガス濃度特性を示す図で、
処理条件はHMDS 10ppm×1日通電
FIG. 7 is a diagram showing gas concentration characteristics at an initial stage (2.8 msec from the start of pulse heating) in a heating pulse in the embodiment.
Processing conditions are HMDS 10 ppm x 1 day

【図8】 実施例での加熱パルス終了時(パルス加熱
開始から14m秒)のガス濃度特性を示す図で、処理条
件はHMDS 10ppm×1日通電
FIG. 8 is a diagram showing gas concentration characteristics at the end of a heating pulse (14 msec from the start of pulse heating) in the example, and the processing conditions were HMDS 10 ppm × 1 day energization.

【図9】 実施例での加熱パルス終了後16m秒後の
ガス濃度特性を示す図で、処理条件はHMDS 10p
pm×1日通電
FIG. 9 is a graph showing gas concentration characteristics 16 ms after the end of a heating pulse in the example, and the processing condition is HMDS 10p
pm x 1 day

【図10】 実施例での加熱パルス終了後88m秒後の
ガス濃度特性を示す図で、処理条件はHMDS 10p
pm×1日通電
FIG. 10 is a graph showing gas concentration characteristics 88 msec after the end of a heating pulse in the example, and the processing condition is HMDS 10p
pm x 1 day

【図11】 実施例での加熱パルス終了後488m秒後
のガス濃度特性を示す図で、処理条件はHMDS 10
ppm×1日通電
FIG. 11 is a graph showing gas concentration characteristics 488 msec after the end of a heating pulse in the example.
ppm x 1 day

【図12】 シリコーン処理無しのガスセンサでの、加
熱パルス直前(次の加熱パルスの10m秒前)のガス濃
度特性を示す図
FIG. 12 is a graph showing gas concentration characteristics immediately before a heating pulse (10 ms before the next heating pulse) in a gas sensor without silicone treatment.

【図13】 シリコーン処理無しのガスセンサでの、加
熱パルス内の初期(パルス加熱開始から2.8m秒)で
のガス濃度特性を示す図
FIG. 13 is a diagram showing gas concentration characteristics at an initial stage (2.8 msec from the start of pulse heating) in a heating pulse in a gas sensor without silicone treatment.

【図14】 シリコーン処理無しのガスセンサでの、加
熱パルス終了時(パルス加熱開始から14m秒)のガス
濃度特性を示す図
FIG. 14 is a view showing gas concentration characteristics of a gas sensor without silicone treatment at the end of a heating pulse (14 msec from the start of pulse heating).

【図15】 シリコーン処理無しのガスセンサでの、加
熱パルス終了後16m秒後のガス濃度特性を示す図
FIG. 15 is a graph showing gas concentration characteristics of a gas sensor without silicone treatment after 16 msec from the end of a heating pulse.

【図16】 シリコーン処理無しのガスセンサでの、加
熱パルス終了後88m秒後のガス濃度特性を示す図
FIG. 16 is a view showing gas concentration characteristics of a gas sensor without silicone treatment after 88 msec from the end of a heating pulse.

【図17】 シリコーン処理無しのガスセンサでの、加
熱パルス終了後488m秒後のガス濃度特性を示す図
FIG. 17 is a diagram showing gas concentration characteristics of a gas sensor without silicone treatment after 488 msec after the end of a heating pulse.

【図18】 連続駆動形ガスセンサでのシリコーン処理
後のガス濃度特性を示す図で、処理条件はHMDS 1
0ppm×40分通電
FIG. 18 is a view showing gas concentration characteristics after silicone treatment with a continuously driven gas sensor, and the treatment conditions are HMDS 1
0 ppm x 40 minutes

【図19】 連続駆動形ガスセンサでのシリコーン処理
無しでのガス濃度特性を示す図
FIG. 19 is a graph showing gas concentration characteristics of a continuously driven gas sensor without silicone treatment.

【図20】 連続駆動形ガスセンサでのシリコーン処理
無しでの、ガス感度を示す図
FIG. 20 is a graph showing gas sensitivity of a continuously driven gas sensor without silicone treatment.

【図21】 連続駆動形ガスセンサでのシリコーン処理
後のガス感度を示す図で、処理条件はHMDS 100
0ppm×40分通電
FIG. 21 is a view showing gas sensitivity after silicone treatment with a continuously driven gas sensor, and the treatment condition is HMDS 100
0 ppm x 40 minutes

【符号の説明】[Explanation of symbols]

1 ガスセンサ 2 基板 4 断熱膜 6 ヒータ膜 8 絶縁膜 10 金属酸化物半導体膜 DESCRIPTION OF SYMBOLS 1 Gas sensor 2 Substrate 4 Heat insulation film 6 Heater film 8 Insulation film 10 Metal oxide semiconductor film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス検出用の金属酸化物半導体とヒータ
とを備えて、該ヒータにより前記金属酸化物半導体を、
周期的にかつパルス的に加熱して、該パルスとパルスと
の間は、前記金属酸化物半導体を室温付近の温度に放置
するようにしたガスセンサにおいて、 前記金属酸化物半導体が、珪素化合物に暴露されて、珪
素化合物を付着させたものとしたことを特徴とする、ガ
スセンサ。
1. A semiconductor device comprising: a metal oxide semiconductor for detecting gas; and a heater.
In a gas sensor in which the metal oxide semiconductor is heated periodically and in a pulsed manner, and the pulse is left between the pulses, the metal oxide semiconductor is exposed to a silicon compound. A gas sensor to which a silicon compound is attached.
【請求項2】 ガス検出用の金属酸化物半導体とヒータ
とを所定の形状に組み付けた後に、該金属酸化物半導体
を珪素化合物にさらして、金属酸化物半導体に付着した
珪素化合物を、前記ヒータからの発熱で分解する、ガス
センサの製造方法。
2. After assembling a metal oxide semiconductor for gas detection and a heater into a predetermined shape, exposing the metal oxide semiconductor to a silicon compound to remove the silicon compound attached to the metal oxide semiconductor into the heater. A method of manufacturing a gas sensor that decomposes due to heat generated from the gas.
【請求項3】 珪素の有機化合物の蒸気を含む雰囲気に
金属酸化物半導体を暴露して、前記ヒータにより前記金
属酸化物半導体に付着した珪素化合物を分解することに
より、悪臭物質への感度を増感することを特徴とする、
請求項2のガスセンサの製造方法。
3. The sensitivity to malodorous substances is increased by exposing the metal oxide semiconductor to an atmosphere containing a vapor of an organic compound of silicon and decomposing the silicon compound attached to the metal oxide semiconductor by the heater. Characterized by feeling,
A method for manufacturing the gas sensor according to claim 2.
【請求項4】 ガス検出用の金属酸化物半導体とヒータ
とを備えたガスセンサを用いて、該ヒータにより前記金
属酸化物半導体を、周期的にかつパルス的に加熱して、
該パルスとパルスとの間は前記金属酸化物半導体の温度
を室温付近とするようにしたガス検出方法において、 前記金属酸化物半導体を珪素化合物にさらして、該金属
酸化物半導体に珪素化合物を付着させたガスセンサを用
いて、 室温付近ないし加熱パルスの初期での、前記金属酸化物
半導体の抵抗値から悪臭成分を検出することを特徴とす
る、ガス検出方法。
4. Using a gas sensor provided with a metal oxide semiconductor for gas detection and a heater, the heater heats the metal oxide semiconductor periodically and in a pulsed manner,
In a gas detection method in which the temperature of the metal oxide semiconductor is set to around room temperature between the pulses, the metal oxide semiconductor is exposed to a silicon compound, and the silicon compound is attached to the metal oxide semiconductor. A gas detection method, comprising: detecting a malodorous component from the resistance value of the metal oxide semiconductor near room temperature or at an early stage of a heating pulse using the gas sensor.
【請求項5】 前記珪素化合物の蒸気を含有する雰囲気
中にガスセンサを置いて、ガスセンサのヒータの発熱に
より金属酸化物半導体に付着した珪素化合物を分解した
後、悪臭ガスを検出することを特徴とする、請求項4に
記載のガス検出方法。
5. A gas sensor is placed in an atmosphere containing a vapor of the silicon compound, and after the silicon compound attached to the metal oxide semiconductor is decomposed by heat generated by a heater of the gas sensor, an odor gas is detected. The gas detection method according to claim 4, wherein
JP07726399A 1999-03-23 1999-03-23 Gas sensor manufacturing method and gas detection method Expired - Lifetime JP3988909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07726399A JP3988909B2 (en) 1999-03-23 1999-03-23 Gas sensor manufacturing method and gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07726399A JP3988909B2 (en) 1999-03-23 1999-03-23 Gas sensor manufacturing method and gas detection method

Publications (2)

Publication Number Publication Date
JP2000275201A true JP2000275201A (en) 2000-10-06
JP3988909B2 JP3988909B2 (en) 2007-10-10

Family

ID=13628968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07726399A Expired - Lifetime JP3988909B2 (en) 1999-03-23 1999-03-23 Gas sensor manufacturing method and gas detection method

Country Status (1)

Country Link
JP (1) JP3988909B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046734A1 (en) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Gas sensor and detection method and device for gas.concentration
JP2010256049A (en) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd Gas sensor, and combustion equipment and gas alarm with the gas sensor
JP2013508000A (en) * 2009-10-16 2013-03-07 レキット アンド コールマン (オーヴァーシーズ) リミテッド Air treatment agent dispensing device with improved odor sensor function
RU2700035C1 (en) * 2019-03-29 2019-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Microimpurities of ammonia sensor
JP2021012110A (en) * 2019-07-08 2021-02-04 フィガロ技研株式会社 Reforming method of wo3-based gas sensor
CN114235903A (en) * 2020-09-09 2022-03-25 中国科学院苏州纳米技术与纳米仿生研究所 Gas sensor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474487B (en) 2009-10-16 2012-03-21 Reckitt & Colman Overseas Air treatment agent dispenser with improved odour sensor functionality

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046734A1 (en) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Gas sensor and detection method and device for gas.concentration
JP2010256049A (en) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd Gas sensor, and combustion equipment and gas alarm with the gas sensor
JP2013508000A (en) * 2009-10-16 2013-03-07 レキット アンド コールマン (オーヴァーシーズ) リミテッド Air treatment agent dispensing device with improved odor sensor function
RU2700035C1 (en) * 2019-03-29 2019-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Microimpurities of ammonia sensor
JP2021012110A (en) * 2019-07-08 2021-02-04 フィガロ技研株式会社 Reforming method of wo3-based gas sensor
JP7245466B2 (en) 2019-07-08 2023-03-24 フィガロ技研株式会社 Modification method for WO3-based gas sensor
CN114235903A (en) * 2020-09-09 2022-03-25 中国科学院苏州纳米技术与纳米仿生研究所 Gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3988909B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
Ionescu et al. Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors
Kiriakidis et al. Ultra-low gas sensing utilizing metal oxide thin films
JP3988909B2 (en) Gas sensor manufacturing method and gas detection method
Kato et al. Temperature-dependent dynamic response enables the qualification and quantification of gases by a single sensor
JP2829416B2 (en) Gas sensing element
Datta et al. Vacuum deposited WO3 thin films based sub-ppm H2S sensor
Endres et al. A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation
US11977043B2 (en) MEMS type semiconductor gas detection element
Dhawale et al. Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance
JP2000294530A (en) Method for cleaning semiconductor substrate and its cleaner
Tyagi et al. Swift heavy ion irradiated SnO2 thin film sensor for efficient detection of SO2 gas
Lentka et al. Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications
JPH09288076A (en) Meat freshness measuring apparatus using gas sensor, measuring method therefor and manufacture of gas sensor
Matsumiya et al. Poisoning of platinum thin film catalyst by hexamethyldisiloxane (HMDS) for thermoelectric hydrogen gas sensor
Tripathy et al. Carbon monoxide sensitivity of tin oxide thin film synthesized by sol gel method
JP7245466B2 (en) Modification method for WO3-based gas sensor
JP2008544829A (en) Mechanism for treating contaminated air with ultraviolet light
JP2004028952A (en) Gas detector
AU2021380715A1 (en) Two-dimensional-material-based field-effect transistor for detection of pathogens and methods for manufacturing
JP2002518673A (en) Detector for one or several pollutant gases and method of using same
JPH03185351A (en) Detection of gas
CN110088607B (en) Gas sensor for detecting gas components
WO2024090156A1 (en) Smell identification method and smell identification system
JP3036612B2 (en) Ozone sensor manufacturing method
JPH11258206A (en) Method and device for evaluating photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term