JP2000275016A - Measurement method and measuring apparatus for film characteristic value distribution - Google Patents

Measurement method and measuring apparatus for film characteristic value distribution

Info

Publication number
JP2000275016A
JP2000275016A JP11084827A JP8482799A JP2000275016A JP 2000275016 A JP2000275016 A JP 2000275016A JP 11084827 A JP11084827 A JP 11084827A JP 8482799 A JP8482799 A JP 8482799A JP 2000275016 A JP2000275016 A JP 2000275016A
Authority
JP
Japan
Prior art keywords
sample
light
thickness
convergent
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11084827A
Other languages
Japanese (ja)
Inventor
Ichiro Yamaguchi
口 一 郎 山
Katsuichi Kitagawa
川 克 一 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
RIKEN Institute of Physical and Chemical Research
Original Assignee
Toray Industries Inc
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, RIKEN Institute of Physical and Chemical Research filed Critical Toray Industries Inc
Priority to JP11084827A priority Critical patent/JP2000275016A/en
Publication of JP2000275016A publication Critical patent/JP2000275016A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a measurement method and a measuring apparatus for a film characteristic value distribution whereby a thickness distribution of a thin film sample can be linearly obtained without scanning a light. SOLUTION: A convergent slit light passing through a cylindrical lens 17 is irradiated to a sample 11 and a reflecting light from the sample 11 enters a, CCD camera 20. The CCD camera 20 consists of a two-dimensional image sensor having one axis agreed with an axis direction of the convergent slit light and the other axis agreed with a direction of an angle of incidence. Information from the CCD camera 20 is input to a computer 21. The computer 21 fits a reflectance R related to a thickness (d) of the sample 11 and an angle of incidence (q) with a reflectance R1 related to a thickness (d1) and an angle of incidence (q1) and, obtains the thickness (d) of the sample 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜試料の少なくと
も直線状に沿った膜厚を求める膜特性値分布の測定方法
および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a film characteristic value distribution for obtaining a film thickness of a thin film sample along at least a straight line.

【0002】[0002]

【従来の技術】薄膜の膜厚はその光学的性質を知る上で
重要なパラメータであり、マイクロエレクトロニクス、
オプトエレクトロニクス、光学の分野での薄膜技術の進
展とともに数多くの膜厚測定法が提案されている。その
中で薄膜試料の反射率の入射角依存性R (θ) を測定
し、その結果をフレネル式に基づくアルゴリズムで解析
して膜厚を得るVariable anglereflectometry (VAR )
は、そのときどきの現場の要求に合わせて様々な形に応
用されている。
2. Description of the Related Art The thickness of a thin film is an important parameter for knowing its optical properties.
With the development of thin film technology in the fields of optoelectronics and optics, a number of film thickness measurement methods have been proposed. Variable angle reflection (VAR), which measures the incident angle dependence R (θ) of the reflectivity of the thin film sample and analyzes the result using an algorithm based on the Fresnel equation to obtain the film thickness
Has been applied in various forms to meet the needs of the site at that time.

【0003】近年要求の高い「高速な」測定に対して
は、VAR から入射角走査のための機械的駆動部分をなく
したBeam profile reflectometry(BPR) が提案されて
いる。これは薄膜に収束光を入射し、反射光を一次元の
イメージセンサでうけることによりR (θ) を一度に測
定するという手法である。
For recently demanded "high-speed" measurement, a beam profile reflectometry (BPR) has been proposed in which the VAR eliminates a mechanical drive for scanning the incident angle. This is a method in which convergent light is incident on a thin film and reflected light is received by a one-dimensional image sensor to measure R (θ) at a time.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近では測定
の高速化だけでなく、光学素子の反射防止膜など膜厚コ
ーテイングの際の膜厚ムラを調べるために、膜厚分布測
定したいという要求も高まっている。これに対して、BP
Rも含め一般的な膜厚測定法は、ポイント測定方式の手
法をとっている。そのため膜厚を分布で求めるためには
試料もしくは測定模様の位置走査が必要となるが、測定
時間の増大や測定精度の低下につながってしまう。
However, recently, there has been a demand not only for speeding up the measurement but also for measuring the film thickness distribution in order to examine the film thickness unevenness in the film coating such as the antireflection film of the optical element. Is growing. In contrast, BP
The general film thickness measurement method including R employs a point measurement method. Therefore, in order to obtain the film thickness by distribution, position scanning of the sample or the measurement pattern is required, but this leads to an increase in measurement time and a decrease in measurement accuracy.

【0005】本発明はこのような点を考慮してなされた
ものであり、機械的走査を行うことなく、少なくとも薄
膜試料の直線状に沿った膜厚を求めることができる膜特
性値分布の測定方法および測定装置を提供することを目
的とする。
The present invention has been made in view of the above points, and is intended to measure a film characteristic value distribution capable of obtaining at least a film thickness along a straight line of a thin film sample without performing mechanical scanning. It is an object to provide a method and a measuring device.

【0006】[0006]

【課題を解決するための手段】本発明は、円筒レンズを
経た収束スリット光を薄膜試料に照射する工程と、試料
からの反射光を、一方の軸を収束スリット光の長軸方向
に一致させ、他方の入射角依存特性検出方向に一致させ
てなる二次元イメージセンサにより検出する工程と、二
次元イメージセンサからの情報に基づいて、スリット上
での位置(y) と、試料の厚み(d) と、試料への入射角
(θ)とに係る反射率R(y,θ)と、試料の厚み(d)と、屈折
率(n) と、入射角(θ)とに係る理論上の反射率(RT(θ:
n,d)とをフィッティングして少なくとも試料の収束スリ
ット光の軸方向に沿う厚みd(y)を求める工程と、を備え
たことを特徴とする膜特性値分布の測定方法、および薄
膜試料を保時する薄膜試料保持部と、光源と、光源から
の光を収束させ、薄膜試料保持部上の薄膜試料に対して
収束光を投光する円筒レンズと、試料からの反射光を受
けるとともに、一方の軸を収束光の長軸方向に一致さ
せ、他方の軸を入射角依存特性検出方向に一致させてな
る二次元イメージセンサと、二次元イメージセンサから
の情報に基づいて、スリット上での位置yと、試料への
入射角(θ)とに係る反射率R(y,θ)と、試料の厚み(d)
と、試料の屈折率(n)と、入射角(θ)とに係る理論上の
反射率RT(θ:n,d)とをフィッティングして少なくとも試
料の収束スリット光の長軸方向に沿う厚みd(y)を求める
演算部と、を備えたことを特徴とする膜特性値分布の測
定装置である。
According to the present invention, a thin film sample is irradiated with convergent slit light passing through a cylindrical lens, and light reflected from the sample is made to coincide with one axis in the major axis direction of the convergent slit light. A step of detecting with a two-dimensional image sensor that is made to coincide with the other incident angle dependent characteristic detection direction, based on information from the two-dimensional image sensor, the position on the slit (y), and the thickness of the sample (d ) And the angle of incidence on the sample
(θ) and the reflectance R (y, θ), the thickness (d) of the sample, the refractive index (n), and the theoretical reflectance (RT (θ:
n, d) and a step of determining at least the thickness d (y) along the axial direction of the convergent slit light of the sample, and a method for measuring a film characteristic value distribution, and a thin film sample. A thin-film sample holding unit to be held, a light source, a cylindrical lens that converges light from the light source and projects convergent light onto the thin-film sample on the thin-film sample holding unit, and receives reflected light from the sample, A two-dimensional image sensor in which one axis is made to coincide with the long axis direction of the convergent light and the other axis is made coincident with the incident angle dependent characteristic detection direction. Position y, the reflectance R (y, θ) according to the incident angle (θ) to the sample, and the thickness of the sample (d)
And the refractive index (n) of the sample and the theoretical reflectance RT (θ: n, d) related to the incident angle (θ) by fitting at least the thickness of the sample along the major axis direction of the convergent slit light. and a calculation unit for calculating d (y).

【0007】本発明によれば、薄膜試料の厚みを直線に
沿って容易に求めることができる。
According to the present invention, the thickness of a thin film sample can be easily obtained along a straight line.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1乃至図7は、本発明に
よる膜特性値分布の測定方法および測定装置を示す図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 are views showing a method and apparatus for measuring a film characteristic value distribution according to the present invention.

【0009】図1に示すように、膜特性値分布の測定装
置10は薄膜試料11を保持する薄膜試料保持部12
と、光源13と、偏光方向切替部(偏光子)14と、ス
ペーシャルフィルタ15と、レンズ16と、光源13か
らの光を収束させて薄膜試料11に対して収束スリット
光を投光する円筒レンズ17とを備えている。
As shown in FIG. 1, a film characteristic value measuring device 10 includes a thin film sample holder 12 for holding a thin film sample 11.
, A light source 13, a polarization direction switching unit (polarizer) 14, a spatial filter 15, a lens 16, and a cylinder that converges light from the light source 13 and emits convergent slit light to the thin film sample 11. And a lens 17.

【0010】試料11からの反射光は円筒レンズ18、
19を経てCCDカメラからなる二次元イメージセンサ2
0により検出される。この二次元イメージセンサ20は
一方の軸を、試料11への収束スリット光の長軸方向y
(図1)に一致させ、他方の軸を入射角依存特性検出方
向θ(図2)に一致させるように構成されている。ここ
で入射角依存特性検出方向θは、試料11に対する法線
Nと入反射光とのなす角度である。
The reflected light from the sample 11 is
2D image sensor 2 consisting of CCD camera after 19
0 is detected. The two-dimensional image sensor 20 has one axis oriented in the major axis direction y of the convergent slit light to the sample 11.
(FIG. 1) and the other axis coincides with the incident angle dependent characteristic detection direction θ (FIG. 2). Here, the incident angle dependent characteristic detection direction θ is a normal to the sample 11.
This is the angle between N and the reflected light.

【0011】また二次元イメージセンサ20には、それ
からの情報に基づいて試料11の厚みおよび屈折率を求
める演算部(コンピュータ)21が接続されている。
The two-dimensional image sensor 20 is connected to an arithmetic unit (computer) 21 for calculating the thickness and the refractive index of the sample 11 based on information from the two-dimensional image sensor 20.

【0012】次にこのような構成からなる本実施の形態
の作用について説明する。図1において、光源13には
波長632.8nmのHe-Neレーザーが用いられている。光
源13を出た光は偏光素子14を用いて直線偏光とな
り、スペーシャルフィルタ15とレンズ16(f=25
0、f=30mm)によりビーム径が広げられる。ここで偏
光素子14は時間的に偏光方向をp偏光とs偏光とに切
換える偏光子または波長板からなっている。
Next, the operation of the embodiment having the above-described configuration will be described. In FIG. 1, a He-Ne laser having a wavelength of 632.8 nm is used as the light source 13. The light emitted from the light source 13 is converted into linearly polarized light by using the polarizing element 14, and the spatial filter 15 and the lens 16 (f = 25
0, f = 30 mm) to increase the beam diameter. Here, the polarizing element 14 is composed of a polarizer or a wave plate that switches the polarization direction between p-polarized light and s-polarized light temporally.

【0013】光は円筒レンズ17(f=50mm、30x 3
0mm2 )を通って、試料11に例えば角度幅θw=±14m
で入射する。試料11上では幅0.75mm、長さ(y
方向)30mmの収束スリット光が得られる。試料11か
らの反射光は、円筒レンズ18(f=50mm、30x 30m
m2 )で平行光に変換され、対で円筒レンズ19(f=50m
m、30x 30mm2 )で2次元CCDカメラ20でとらえた
反射率分布像はy方向480画素 x θ 方向512画素
の画像データとしてコンピュータ21に取り込まれる。
このような光学系で、入射収束光の試料11に対する中
心入射角を50°に設定し、入射角(θ)36°から64
°に対する各試料位置 y の反射率曲線を機械的走査せ
ずに測定する。測定時間は1枚の画像読み取りに要する
時間で決まり1/30秒となる。
The light passes through a cylindrical lens 17 (f = 50 mm, 30 × 3).
0 mm 2 ) and the sample 11 has an angular width θw = ± 14 m, for example.
Incident. On sample 11, 0.75 mm width and length (y
Direction) 30 mm convergent slit light is obtained. The reflected light from the sample 11 is reflected by the cylindrical lens 18 (f = 50 mm, 30 × 30 m
m2), the light is converted into a parallel light, and a pair of cylindrical lenses 19 (f = 50 m
m, 30 × 30 mm 2), the reflectance distribution image captured by the two-dimensional CCD camera 20 is taken into the computer 21 as image data of 480 pixels in the y direction × 512 pixels in the θ direction.
With such an optical system, the central incident angle of the incident convergent light with respect to the sample 11 is set to 50 °, and the incident angle (θ) is changed from 36 ° to 64 °.
Measure the reflectance curve for each sample position y against ° without mechanical scanning. The measurement time is determined by the time required for reading one image, and is 1/30 second.

【0014】得られた反射率分布像はコンピュータ21
によりスリット像上の各点の反射率角度依存性および膜
厚を求めるための解析処理を行う。解析に要する時間は
実験で用いたy方向480画素 x θ 方向441画素の
データに対して約4分である。
The obtained reflectance distribution image is stored in a computer 21.
Is performed to obtain the reflectance angle dependency and the film thickness of each point on the slit image. The time required for the analysis is about 4 minutes for the data of 480 pixels in the y direction and 441 pixels in the θ direction used in the experiment.

【0015】コンピュータ21における膜厚および屈折
率を求める解析は以下のように行われる。すなわちCCD
カメラ20からの情報を基づいて、試料11の各点yに
おいて試料への入射角(θ)に係る反射率R(y,θ)を求
め、同時に試料11の厚み(d)と、屈折率(n.)と、入射
角(θ)とに係る理論上の反射率RT(θ:n,d)を求める。次
にRとRTとを以下の式を用いてフィッテイングすること
により、試料11の収束スリット光の長軸方向yに沿う
厚みd(y)と屈折率n(y)とを求めることができる。
The analysis for obtaining the film thickness and the refractive index in the computer 21 is performed as follows. Ie CCD
Based on the information from the camera 20, the reflectance R (y, θ) related to the incident angle (θ) to the sample at each point y of the sample 11 is obtained, and at the same time, the thickness (d) of the sample 11 and the refractive index ( n.) and the theoretical reflectance RT (θ: n, d) relating to the incident angle (θ). Next, by fitting R and RT using the following equation, the thickness d (y) and the refractive index n (y) of the sample 11 along the major axis direction y of the convergent slit light can be obtained. .

【0016】[0016]

【数1】 ただし、は単層膜の反射率の理論式で二つの界面での反
射係数ρおよび透過係数τ、さらに膜の往復による位相
シフト2ψに関して次のようになる(図2)。
(Equation 1) However, is a theoretical expression of the reflectance of the single-layer film, and the following is given with respect to the reflection coefficient ρ and the transmission coefficient τ at the two interfaces and the phase shift 2ψ due to the reciprocation of the film (FIG. 2).

【0017】[0017]

【数2】 ここで右辺の各変数は空気の屈折率を1、基板の屈折率
をn0、膜と基板での屈折角をそれぞれφ, φ0として次
のように与えられる。まず入射角と屈折角の間には屈折
の法則が成り立つ。
(Equation 2) Here, the variables on the right side are given as follows, where the refractive index of air is 1, the refractive index of the substrate is n0, and the refractive angles of the film and the substrate are φ and φ0, respectively. First, the law of refraction is established between the incident angle and the refraction angle.

【0018】[0018]

【数3】 膜の往復による位相シフトは(Equation 3) The phase shift due to film reciprocation is

【0019】[0019]

【数4】 そして反射係数はp偏光については(Equation 4) And the reflection coefficient is

【0020】[0020]

【数5】 またs偏光については(Equation 5) For s-polarized light

【0021】[0021]

【数6】 透過係数はp偏光については(Equation 6) The transmission coefficient for p-polarized light is

【0022】[0022]

【数7】 またs偏光については(Equation 7) For s-polarized light

【0023】[0023]

【数8】 なお上記において、試料11の屈折率nが予めわかって
いる場合は、屈折率(n)を求めることなく、試料11
の厚さ(d)のみを求めてもよい。
(Equation 8) In the above, when the refractive index n of the sample 11 is known in advance, the refractive index (n) of the sample 11 is not determined.
May be determined only for the thickness (d).

【0024】また偏光子14を用いて円筒レンズ17か
ら試料11に入射する収束光の偏光方向をs偏光および
p偏光に切換えることにより、コンピュータ21におい
て、s偏光の場合のRとRTとのフィッテイングとp偏光
の場合のRとRTとのフィッテイングを行うことができ、
これにより、フィッテイング精度をより向上させること
ができる。
The polarizer 14 is used to switch the polarization direction of the convergent light incident on the sample 11 from the cylindrical lens 17 to s-polarized light and p-polarized light. And R and RT for P-polarized light
Thereby, fitting accuracy can be further improved.

【0025】次にコンピュータ21内における測定デー
タの校正について説明する。反射率分布像はCCDカメラ
20で取り込まれた時点では収束スリット光の長軸方向
yの位置の情報と入射角θの情報は画素番号(P,Q)で表さ
れているため、それらをθやyに換算する必要がある。
スリット軸方向yに関しては、円筒レンズ18、19は
結像作用を持たないので、y方向の画素数(480画
素)と1画素の長さ(13mm)とから6.24mmに相当
する直線上の膜厚分布が測定できることがわかり、Qと
の絶対的な関係は試料を固定する位置から求められる。
Next, the calibration of the measurement data in the computer 21 will be described. When the reflectance distribution image is captured by the CCD camera 20, the long axis direction of the convergent slit light
Since the information on the position of y and the information on the incident angle θ are represented by pixel numbers (P, Q), it is necessary to convert them to θ and y.
In the slit axis direction y, since the cylindrical lenses 18 and 19 do not have an image forming action, the number of pixels in the y direction (480 pixels) and the length of one pixel (13 mm) indicate a straight line corresponding to 6.24 mm. It can be seen that the film thickness distribution can be measured, and the absolute relationship with Q can be determined from the position where the sample is fixed.

【0026】入射角θに関しては、得られた反射率曲線
を理論式にフィッテイングして膜厚を求める際の精度お
よび結果に直接関わってくるので、Pとの絶対的な関係
を正確に求める必要がある。そこで、試料11として校
正用に採用したカバーグラス(厚さd=149mm、屈折率
n=1.52)を用い、同じ試料位置に対して本発明によ
る方法で測定した反射率曲線と、VARで測定した反射率
曲線を対応させて変換式を導出した。得られた変換式は
次のようになる。 θ=51.122+(P-260)×0.035214+(P-255)3×6.9
×10-8 ここで、第3項はレンズの収差の影響を補正するために
つけ加えられている。上式で正しく変換できる範囲はθ
=43〜60°(画素番号47〜488)であり、膜厚
解析には、この角度範囲のデータが用いられる。
The angle of incidence θ is directly related to the accuracy and result of obtaining the film thickness by fitting the obtained reflectance curve to a theoretical formula, and therefore the absolute relationship with P is accurately obtained. There is a need. The cover glass (thickness d = 149 mm, refractive index)
Using n = 1.52), a conversion equation was derived by associating the reflectance curve measured by the method of the present invention with the same sample position with the reflectance curve measured by VAR. The obtained conversion equation is as follows. θ = 51.122 + (P-260) × 0.035214 + (P-255) 3 × 6.9
× 10 −8 Here, the third term is added to correct the influence of lens aberration. The range that can be correctly converted by the above equation is θ
= 43 to 60 ° (pixel numbers 47 to 488), and the data in this angle range is used for the film thickness analysis.

【0027】また、本方法では試料から得られた反射率
データを、予め、基板のみを用いて得られた反射率デー
タで割り算処理する。これにより入射光の強度分布ムラ
や光学系に起因するノイズの影響を抑えることができ
る。
In this method, the reflectance data obtained from the sample is divided by the reflectance data obtained using only the substrate in advance. Thereby, it is possible to suppress the influence of the intensity distribution unevenness of the incident light and the noise caused by the optical system.

【0028】次にR(θ)の膜厚依存性について説明す
る。ここで試料11はSiO(n=1.46)単層膜から
なり、試料11を支持する基板にはSi(複素屈折率
n=3.85-i0.024)を仮定し、入射角度は35°〜65
°、入射光の波長は632.8nmとし、SiO膜の膜
厚を0〜1000nm の間で変化させたときに得られる反射率
曲線を理論計算した結果を図3に示す。ただし上記の測
定の場合と同様に基板の反射率で割り算している。a)は
s偏光、b)はp偏光の場合を示す。膜厚が薄いときは反射
率曲線の変化の周期が長く変動幅が小さくなり、厚くな
るにつれ変化の周期が短く変動幅が大きくなるという傾
向がわかる。さらに、p偏光とs偏光では変化の周期は
変わらないが、s偏光の方が変化量の絶対値が大きいこ
とがわかる。
Next, the film thickness dependence of R (θ) will be described. Here, the sample 11 is made of a single-layer film of SiO 2 (n = 1.46), and the substrate supporting the sample 11 is Si (complex refractive index).
n = 3.85-i0.024), and the incident angle is 35 ° to 65 °.
FIG. 3 shows the result of theoretical calculation of a reflectance curve obtained when the incident light wavelength was 632.8 nm and the thickness of the SiO 2 film was changed between 0 and 1000 nm. However, it is divided by the reflectance of the substrate as in the case of the above measurement. a) is
s-polarized light and b) show the case of p-polarized light. It can be seen that when the film thickness is small, the period of change of the reflectance curve is long and the fluctuation width is small, and as the film thickness is large, the fluctuation period is short and the fluctuation width is large. Further, it can be seen that the period of change does not change between p-polarized light and s-polarized light, but the absolute value of the amount of change is larger for s-polarized light.

【0029】[0029]

【実施例】次に本発明の具体的実施例について説明す
る。 (実施例1) Si上の楔状のSiO膜 Siウエハー上にSiO膜を厚く成膜した後にエッチ
ング液に浸し、そこから一定の速度で引き上げることに
より作製された膜厚0〜1200nmのほぼリニアな膜厚
分布を持つ楔状のSiO膜11を用いて膜厚分布測定
を試みた。図4に膜厚600nm付近に対する反射率分布
像の測定例を示す。ただし、y方向480画素×θ方向
441画素のデータをy方向に対し1/2に縮小してグ
レイスケール(0(黒)〜225(白))表示してあ
る。図4(a)のs偏光の場合では、y方向での各位置での
膜厚の違いにより反射率極小点の位置がシフトし、それ
が斜めに走る黒線として現れている。これに対し、図4
(b)のp偏光の場合では反射率曲線の変動幅が小さくな
っており、図3の理論計算で示した結果と一致する。
EXAMPLES Next, specific examples of the present invention will be described. (Example 1) Wedge-shaped SiO 2 film on Si A thick SiO 2 film was formed on a Si wafer, immersed in an etching solution, and pulled up at a constant speed from the SiO 2 film. An attempt was made to measure the film thickness distribution using a wedge-shaped SiO 2 film 11 having a linear film thickness distribution. FIG. 4 shows an example of measurement of a reflectance distribution image near a film thickness of 600 nm. However, the data of 480 pixels in the y direction × 441 pixels in the θ direction is reduced to に 対 し in the y direction and is displayed in gray scale (0 (black) to 225 (white)). In the case of the s-polarized light in FIG. 4A, the position of the reflectance minimum point shifts due to the difference in the film thickness at each position in the y direction, which appears as a black line running obliquely. In contrast, FIG.
In the case of the p-polarized light shown in FIG. 3B, the fluctuation range of the reflectance curve is small, which coincides with the result shown by the theoretical calculation in FIG.

【0030】反射率分布像から求めた膜厚分布をs偏光
の場合を図5に示す。測定ラインをスリット長さ方向y
での範囲を変えずに試料上で0.75mm間隔で平行移動して
得られた3本の膜厚分布を同時に示している。また、比
較のためにBPRを用いて測定した結果を◇で示した。全
ての結果がよく一致している。それに対してp偏光の場
合には一致が得られなかった。これは反射率曲線の変動
幅が小さくなったことにより、フィッティング精度が低
下したためと思われる。
FIG. 5 shows a case where the film thickness distribution obtained from the reflectance distribution image is s-polarized light. Measurement line is slit length direction y
The three film thickness distributions obtained by moving the sample in parallel at intervals of 0.75 mm on the sample without changing the range of are also shown. For comparison, the results measured using BPR are shown by Δ. All results are in good agreement. On the other hand, no coincidence was obtained in the case of p-polarized light. This is presumably because the accuracy of the fitting was reduced due to the smaller variation range of the reflectance curve.

【0031】次に膜厚1100nm付近でs偏光を用いて
前と同様に測定ラインを平行移動して得られた3本の膜
厚分布を図6に示す。測定ラインによって、またはBPR
の結果ともわずかずつ異なる結果が得られた。これは測
定部分が試料の端部であり、そこでは作製された膜厚分
布がリニアではなく場所により差があると予想されるこ
とから説明できる。
Next, FIG. 6 shows three film thickness distributions obtained by translating the measurement line in the same manner as before using s-polarized light near the film thickness of 1100 nm. By measuring line or BPR
And slightly different results were obtained. This can be explained by the fact that the measurement portion is the end of the sample, where the film thickness distribution produced is expected to be not linear but vary from place to place.

【0032】(実施例2)BK7上のスピンコートTefl
on 膜 BKプリズム(n=1.52)上にスピンコート法で作製し
た膜厚が不均一なテフロン(Teflon)膜(n=1.30)か
ら得られた試料11の膜厚分布を図7に示す。膜厚1290
〜1340nmの傾斜が変化する膜厚分布が得られた。
(Example 2) Spin coat Tefl on BK7
FIG. 7 shows the film thickness distribution of the sample 11 obtained from a Teflon film (n = 1.30) having a non-uniform film thickness formed on the BK prism (n = 1.52) by the spin coating method. Film thickness 1290
A film thickness distribution with a change in slope of 11340 nm was obtained.

【0033】(実施例3)Si上の均一ポジレジスト膜
と均一SiO膜 膜厚が均一な試料11としてSi上のポジレジスト膜(n
=1.62、d=1000nm)に対してs偏光を用いて測定した反
射率分布像を図8に示す。膜厚が一定であるためy方向
の各試料位置における反射率曲線は同じになり、y方向
には反射率が変化していない。得られた膜厚分布は974.
42±0.12nmとなり、結果のばらつきは±0.012%以内であ
った。また、5回測定を繰り返した結果、各点で0.039%
以内の再現性があった。
(Example 3) Uniform positive resist film and uniform SiO 2 film on Si A positive resist film (n
FIG. 8 shows a reflectance distribution image measured using s-polarized light for (= 1.62, d = 1000 nm). Since the film thickness is constant, the reflectance curves at the sample positions in the y direction are the same, and the reflectance does not change in the y direction. The obtained film thickness distribution is 974.
42 ± 0.12 nm, and the variation in the results was within ± 0.012%. In addition, as a result of repeating the measurement five times, 0.039%
There was reproducibility within.

【0034】(結論)上記各実施例において機械的走査
なしに1/30 秒のデータ取得時間で、0.039%以内の再現
性で膜厚分布を測定できた。さらなる精度向上や測定範
囲の拡大には、次のような手段が考えられる。 (1)入射角度幅を広げて情報量を増やすために、収束
光を形成する円筒レンズ17を高NAのものに変える。 (2)校正用標準サンプルを用いて画素番号から入射角
への校正式の精度を上げる。 (3)反射膜防止の付いたレンズを用いて反射率測定の
S/Nを上げる。
(Conclusion) In each of the above embodiments, the film thickness distribution could be measured with a reproducibility of 0.039% or less with a data acquisition time of 1/30 second without mechanical scanning. The following means can be considered for further improving the accuracy and expanding the measurement range. (1) In order to increase the amount of information by increasing the incident angle width, the cylindrical lens 17 that forms the convergent light is changed to one with a high NA. (2) The accuracy of the calibration formula from the pixel number to the incident angle is increased using the calibration standard sample. (3) Raise the S / N of the reflectance measurement by using a lens with a reflection film prevention.

【0035】[0035]

【発明の効果】以上のように本発明によれば、光の機械
的走査を行うことなく、薄膜試料の厚み分布を直線に沿
って容易に求めることができる。
As described above, according to the present invention, the thickness distribution of a thin film sample can be easily obtained along a straight line without performing mechanical scanning of light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による膜特性値分布の測定装置を示す概
略図。
FIG. 1 is a schematic diagram showing an apparatus for measuring a film characteristic value distribution according to the present invention.

【図2】反射率を求めるための諸量。FIG. 2 shows various quantities for determining the reflectance.

【図3】s偏光とp偏光の場合の反射率を示す図。FIG. 3 is a diagram showing reflectance in the case of s-polarized light and p-polarized light.

【図4】s偏光とp偏光の場合の反射率分布像を示す
図。
FIG. 4 is a diagram showing a reflectance distribution image in the case of s-polarized light and p-polarized light.

【図5】s偏光反射率分布像から得たSiO2の膜厚分布
(600nm付近)を示す図。
FIG. 5 is a view showing a SiO2 film thickness distribution (around 600 nm) obtained from an s-polarized reflectance distribution image.

【図6】s偏光反射率分布像から得たSiO2の膜厚分布
(1100nm付近)を示す図。
FIG. 6 is a view showing a SiO2 film thickness distribution (around 1100 nm) obtained from an s-polarized reflectance distribution image.

【図7】s偏光反射率分布像から得たテフロン膜の膜厚
分布を示す図。
FIG. 7 is a view showing a film thickness distribution of a Teflon film obtained from an s-polarized light reflectance distribution image.

【図8】s偏光を用いて測定したポジレジスト膜の反射
率分布像を示す図。
FIG. 8 is a view showing a reflectance distribution image of a positive resist film measured using s-polarized light.

【符号の説明】[Explanation of symbols]

10 膜特性値分布の測定装置 11 薄膜試料 12 薄膜試料保持部 13 光源 14 偏光子 17 円筒レンズ 20 CCD カメラ 21 コンピュータ Reference Signs List 10 Measurement device for film characteristic value distribution 11 Thin film sample 12 Thin film sample holder 13 Light source 14 Polarizer 17 Cylindrical lens 20 CCD camera 21 Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北 川 克 一 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 2F065 AA30 BB22 BB25 CC02 CC19 CC31 DD06 FF04 FF50 GG05 HH04 HH05 HH09 JJ03 JJ26 LL08 LL12 LL30 LL33 LL36 QQ00 QQ24 SS02 UU01 UU05 2G059 AA02 AA03 BB10 EE02 EE05 FF01 GG01 HH02 JJ11 JJ19 JJ20 KK04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsuichi Kitagawa 1-1-1, Sonoyama, Otsu-shi, Shiga F-term in the Shiga Plant of Toray Industries (reference) 2F065 AA30 BB22 BB25 CC02 CC19 CC31 DD06 FF04 FF50 GG05 HH04 HH05 HH09 JJ03 JJ26 LL08 LL12 LL30 LL33 LL36 QQ00 QQ24 SS02 UU01 UU05 2G059 AA02 AA03 BB10 EE02 EE05 FF01 GG01 HH02 JJ11 JJ19 JJ20 KK04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】円筒レンズを経た収束スリット光を薄膜試
料に照射する工程と、 試料からの反射光を、一方の軸を収束スリット光の長軸
方向に一致させ、他方の軸を入射角特性検出方向に一致
させてなる二次元イメージセンサにより検出する工程
と、 二次元イメージセンサからの情報に基づいて、スリット
上の位置yと、試料への入射角(θ)とに係る反射率R
(y、θ)と、試料の厚み(d)と、試料の屈折率(n)と、
入射角(θ)とに係る理論上の反射率RTとをフィッティ
ングして少なくとも試料の収束スリット光の長軸方向に
沿う厚みを求める工程と、を備えたことを特徴とする膜
特性値分布の測定方法。
1. A step of irradiating a thin film sample with convergent slit light passing through a cylindrical lens, and making the reflected light from the sample coincide with one axis in the major axis direction of the convergent slit light and the other axis as incident angle characteristics. A step of detecting with a two-dimensional image sensor matched with the detection direction; and a reflectance R relating to a position y on the slit and an incident angle (θ) to the sample based on information from the two-dimensional image sensor.
(Y, θ), sample thickness (d), sample refractive index (n),
Obtaining a thickness of the sample along the long axis direction of the convergent slit light by fitting the theoretical reflectance RT according to the incident angle (θ) and at least the sample. Measuring method.
【請求項2】収束スリット光の長軸方向に沿う厚みを求
める際、同時に試料の収束スリット光の長軸方向に沿う
屈折率を求めることを特徴とする請求項1記載の膜特性
値分布の測定方法。
2. The film characteristic value distribution according to claim 1, wherein, when the thickness along the major axis direction of the convergent slit light is determined, the refractive index along the major axis direction of the convergent slit light of the sample is determined at the same time. Measuring method.
【請求項3】薄膜試料を保時する薄膜試料保持部と、光
源と、光源からの光を収束させ、薄膜試料保持部上の薄
膜試料に対して収束光を投光する円筒レンズと、試料か
らの反射光を受けるとともに、一方の軸を収束光の長軸
方向に一致させ、他方の軸を入射角依存特性検出方向に
一致させてなる二次元イメージセンサと、二次元イメー
ジセンサからの情報に基づいて、スリット上の位置y
と、試料への入射角(θ)とに係る反射率R(y、θ)
と、試料の厚み(d)と、試料の屈折率(n)と、入射角(θ)
とに係る理論上の反射率RTとをフィッティングして少
なくとも試料の収束スリット光の長軸方向に沿う厚みd
(y)を求める演算部と、を備えたことを特徴とする膜特
性値分布の測定装置。
3. A thin film sample holder for holding a thin film sample, a light source, a cylindrical lens for converging light from the light source and projecting convergent light onto the thin film sample on the thin film sample holder, A two-dimensional image sensor that receives reflected light from the sensor and makes one axis coincide with the long axis direction of the convergent light, and the other axis coincides with the incident angle dependent characteristic detection direction, and information from the two-dimensional image sensor. Based on the position y on the slit
And the reflectance R (y, θ) according to the incident angle (θ) to the sample
, The thickness of the sample (d), the refractive index of the sample (n), and the incident angle (θ)
And at least the thickness d along the long axis direction of the convergent slit light of the sample by fitting the theoretical reflectance RT of
and a calculation unit for calculating (y).
【請求項4】演算部は試料の収束スリット光の長軸方向
に沿う厚みを求める際、同時に試料の収束スリット光の
長軸方向に沿う屈折率n(y)を求めることを特徴とする請
求項3記載の膜特性値分布の測定装置。
4. The method according to claim 1, wherein the calculating section calculates the refractive index n (y) of the sample along the long axis direction of the convergent slit light when obtaining the thickness of the sample along the long axis direction. Item 3. A measuring device for film characteristic value distribution according to item 3.
【請求項5】光源は直線偏光レーザとなっており、光源
と円筒レンズとの間に、円筒レンズからの収束スリット
光の偏光方向をP偏光とS偏光とに切換える偏光方向切替
部を設けたことを特徴とする請求項3記載の膜特性値分
布の測定装置。
5. The light source is a linearly polarized laser, and a polarization direction switching unit for switching the polarization direction of convergent slit light from the cylindrical lens between P-polarized light and S-polarized light is provided between the light source and the cylindrical lens. 4. The apparatus for measuring film characteristic value distribution according to claim 3, wherein:
【請求項6】偏光方向切替部は、偏光子または波長板か
らなっていることを特徴とする請求項5記載の膜特性値
分布の測定装置。
6. The apparatus according to claim 5, wherein the polarization direction switching unit is formed of a polarizer or a wave plate.
JP11084827A 1999-03-26 1999-03-26 Measurement method and measuring apparatus for film characteristic value distribution Pending JP2000275016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11084827A JP2000275016A (en) 1999-03-26 1999-03-26 Measurement method and measuring apparatus for film characteristic value distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11084827A JP2000275016A (en) 1999-03-26 1999-03-26 Measurement method and measuring apparatus for film characteristic value distribution

Publications (1)

Publication Number Publication Date
JP2000275016A true JP2000275016A (en) 2000-10-06

Family

ID=13841610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11084827A Pending JP2000275016A (en) 1999-03-26 1999-03-26 Measurement method and measuring apparatus for film characteristic value distribution

Country Status (1)

Country Link
JP (1) JP2000275016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279296A (en) * 2003-03-18 2004-10-07 Japan Science & Technology Agency Film thickness acquiring method
JP6285597B1 (en) * 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP6371926B1 (en) * 2018-01-29 2018-08-08 大塚電子株式会社 Optical measuring apparatus and optical measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279296A (en) * 2003-03-18 2004-10-07 Japan Science & Technology Agency Film thickness acquiring method
JP6285597B1 (en) * 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP2018205132A (en) * 2017-06-05 2018-12-27 大塚電子株式会社 Optical measuring device and optical measuring method
US10288412B2 (en) 2017-06-05 2019-05-14 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method
US10309767B2 (en) 2017-06-05 2019-06-04 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method
JP6371926B1 (en) * 2018-01-29 2018-08-08 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP2018205295A (en) * 2018-01-29 2018-12-27 大塚電子株式会社 Optical measuring device and optical measuring method

Similar Documents

Publication Publication Date Title
US10145785B2 (en) Optical element rotation type Mueller-matrix ellipsometer and method for measuring Mueller-matrix of sample using the same
US5101111A (en) Method of measuring thickness of film with a reference sample having a known reflectance
US4999014A (en) Method and apparatus for measuring thickness of thin films
KR100326302B1 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
US8334986B2 (en) Methods and apparatus for the measurement of film thickness
EP0577399A2 (en) Apparatus and method for performing thin film layer thickness metrology on a thin film layer having shape deformations and local slope variations
CN106595501A (en) Method of measuring thickness or uniformity of optical thin film
US20050128481A1 (en) System and method for measuring birefringence in an optical material
CN109341554A (en) A kind of device and method measuring film thickness
JP4358982B2 (en) Spectroscopic ellipsometer
CN220250940U (en) Film thickness optical measurement device
CN109580182A (en) Curved optical device refractive index measurement method and device based on Brewster's law
JP2000035315A (en) Method and apparatus for measurement of thickness of transparent material
JP2000275016A (en) Measurement method and measuring apparatus for film characteristic value distribution
CN116642412A (en) Optical measurement method and device for film thickness
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
KR102570084B1 (en) The thickness measurement method using a three-dimensional reflectance surface
CN113820051B (en) Complementary interference stress measuring device for material
JPH08152307A (en) Method and apparatus for measuring optical constants
Astrua et al. Prism refractive index measurement at INRiM
KR100416497B1 (en) Pattern Inspection System
TW201018867A (en) Method and device for measuring object surface topography and defects using phase-type surface plasma resonance method
JP3219223B2 (en) Characteristic value measuring method and device
JP3325078B2 (en) Non-contact three-dimensional shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325