JP2000274969A - Exterior heat exchanger for circulation fluid layer furnace - Google Patents

Exterior heat exchanger for circulation fluid layer furnace

Info

Publication number
JP2000274969A
JP2000274969A JP11077130A JP7713099A JP2000274969A JP 2000274969 A JP2000274969 A JP 2000274969A JP 11077130 A JP11077130 A JP 11077130A JP 7713099 A JP7713099 A JP 7713099A JP 2000274969 A JP2000274969 A JP 2000274969A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid
fluidized bed
furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11077130A
Other languages
Japanese (ja)
Inventor
Satoshi Kuroishi
智 黒石
Masaru Kawashima
勝 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11077130A priority Critical patent/JP2000274969A/en
Publication of JP2000274969A publication Critical patent/JP2000274969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive properly to maintain a temperature of fluid to be heated at an outlet of an exterior heat exchanger and control fluid layers in a circulation fluid layer furnace at the same time, in the circulation fluid layer furnace provided on a particle-circulating path for circulating fluid layer-forming particles collected by a particle-collecting mechanism from the same to the inside of the furnace. SOLUTION: This exterior heat exchanger is provided with a heat exchange pipeline 11 provided inside a heat exchanger body 9 so as to enable heat exchange with fluid layer-forming particles P, a fluid-to-be-heated supplying pipeline 10 connected with an inlet side of the heat exchange pipeline 11, a fluid-to-be-heated discharging pipeline 12 connected with an outlet side of the heat exchange pipeline 11, and a branch pipeline 13 connected with the discharging pipeline 12 from the supplying pipeline 10 without passing through the heat exchange pipeline 11 and provided outside the heat exchanger body 9. Distributing amount-adjusting means C are provided for adjusting amounts to be distributed and supplied of fluid F to be heated from the fluid-to-be-heated supplying pipeline 10 to the heat exchange pipeline 11 and the branch pipeline 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、循環流動層炉の外
部熱交換器に関し、詳しくは、粒体捕集機構で捕集され
た流動層形成粒体を、前記粒体捕集機構から炉内へ環流
する粒体環流路に設けられた循環流動層炉の外部熱交換
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external heat exchanger of a circulating fluidized-bed furnace, and more particularly, to a fluidized bed-forming granule collected by a granule collecting mechanism from a furnace. The present invention relates to an external heat exchanger of a circulating fluidized-bed furnace provided in a granular fluid channel that recirculates inside.

【0002】[0002]

【従来の技術】従来、循環流動層炉においては、図4に
示すように、炉本体2の炉頂部2bには、炉内からの排
出される排ガスGと流動層形成粒体Pである砂とを外部
に導く排出ダクト5に粒体捕集機構6を接続してあり、
この粒体捕集機構6で前記排ガスGから分離捕集された
流動層形成粒体Pを炉内へ環流する粒体環流路7に、ル
ープシール17と、そのループシール17の上流側から
分岐した分岐還流路7Aに接続した外部熱交換器8とを
外部に設けてあった。図5に外観図を示すように、前記
ループシール17は、下方に備える循環用散気管19か
らの散気により、前記粒体環流路7から供給されて本体
容器18内に堆積する前記流動層形成粒体Pを流動化し
て炉内へ環流するものであり、前記循環用散気管19か
らの散気量の調節により、前記炉内に環流する流動層形
成粒体Pの量を調節するようにしてある。流動層形成粒
体Pは、前記流体環流路7内、前記外部熱交換器8から
の排出管路16内及び前記ループシール17からの粒体
還流路20内を降下する。従って、前記外部熱交換器8
からの排出管路16を経ての前記流動層形成粒体Pの還
流量は、前記外部熱交換器8の排出用散気管15からの
散気量によって調節され、前記ループシール17からの
粒体還流路20を経ての前記流動層形成粒体Pの環流量
は、前記ループシール17の循環用散気管19からの散
気量により調節される。前記炉本体2からの排出ダクト
5を経ての流動層形成粒体Pの排出量は、前記炉本体2
の炉底部2aに設けられた流動用散気管3からの散気量
により調節される。つまり、各散気量は、夫々の内部に
おける流動化の程度を決める。この流動化の程度によ
り、排出管路16或いは粒体還流路20からの流動層形
成粒体Pの流出量が定まるのである。
2. Description of the Related Art Conventionally, in a circulating fluidized bed furnace, as shown in FIG. 4, exhaust gas G discharged from the furnace and sand as fluidized bed forming particles P are placed on the furnace top 2b of the furnace body 2. And a particle collecting mechanism 6 is connected to a discharge duct 5 for guiding
A loop seal 17 and a branch from the upstream side of the loop seal 17 are diverted to a granule annular flow path 7 for recirculating the fluidized bed forming granules P separated and collected from the exhaust gas G by the granule collecting mechanism 6 into the furnace. An external heat exchanger 8 connected to the branched return line 7A was provided outside. As shown in an external view in FIG. 5, the loop seal 17 is provided with the fluidized bed which is supplied from the granular ring channel 7 and accumulates in the main body container 18 by air diffusion from the circulation air diffusion pipe 19 provided below. The forming granules P are fluidized and circulated into the furnace, and the amount of the fluidized bed forming granules P circulating in the furnace is adjusted by adjusting the amount of air diffused from the circulation diffuser tube 19. It is. The fluidized bed forming particles P descend in the fluid ring channel 7, the discharge line 16 from the external heat exchanger 8, and the particle return line 20 from the loop seal 17. Therefore, the external heat exchanger 8
The amount of reflux of the fluidized-bed forming particles P through the discharge pipe 16 from is controlled by the amount of air diffused from the discharge air diffuser 15 of the external heat exchanger 8, The annular flow rate of the fluidized-bed forming particles P through the reflux path 20 is adjusted by the amount of air diffused from the circulation air diffusion pipe 19 of the loop seal 17. The discharge amount of the fluidized-bed forming particles P from the furnace main body 2 through the discharge duct 5 is
Is adjusted by the amount of air diffused from the air diffusion tube 3 provided in the furnace bottom 2a. That is, each diffused amount determines the degree of fluidization inside each. The amount of the fluidized-bed particles P flowing out from the discharge pipe 16 or the particulate recirculation path 20 is determined by the degree of fluidization.

【0003】前記外部熱交換器8は、例えば図6に示す
ように、箱形の熱交換器本体9内に熱交換管路11を、
前記熱交換管路11内を流通する被加熱流体Fと、前記
粒体捕集機構6で捕集された流動層形成粒体Pとの間で
熱交換可能に配置して、前記流動層形成粒体Pの保有熱
を回収するように構成されている。前記熱交換器本体9
へは、前記粒体環流路7を上部の一隅部に接続し、前記
流動層形成粒体Pの炉内への排出管路16を上部の前記
粒体環流路7の配置個所に対して対角の隅部に接続して
ある。前記熱交換器本体9を流通する前記流動層形成粒
体Pの流通量は、前記熱交換器本体9の底部に配置され
た排出用散気管15からの散気量によって調節される。
前記排出用散気管15からの散気量は、前記熱交換管路
11出口の被加熱流体Fの温度に応じて調節される。つ
まり、前記被加熱流体Fの温度が所定温度よりも高けれ
ば、前記散気量を少なくして、前記流動層形成粒体Pの
流通量を減じ、前記被加熱流体Fの温度が所定温度より
も低くなれば、前記散気量を多くして、前記流動層形成
粒体Pの流通量を増加するのである。ここで、前記熱交
換器本体9への流動層形成粒体Pの供給量を調節するた
めに、前記排出用散気管15からの散気量を増大する際
には、前記ループシール17の循環用散気管19からの
散気量を減少し、前記排出用散気管15からの散気量を
減少する際には、前記循環用散気管19からの散気量を
増加させる。
As shown in FIG. 6, for example, the external heat exchanger 8 is provided with a heat exchange pipe 11 inside a box-shaped heat exchanger body 9.
The fluid to be heated F is circulated between the fluid F to be heated flowing through the heat exchange pipe 11 and the fluidized bed forming particles P collected by the particle collecting mechanism 6 so as to exchange the fluidized bed. It is configured to recover the retained heat of the granules P. The heat exchanger body 9
The granule ring channel 7 is connected to one corner of the upper part, and the discharge line 16 for the fluidized bed forming granules P into the furnace is connected to the upper part of the granular ring channel 7 where it is arranged. It is connected to the corner of the corner. The flow rate of the fluidized-bed forming particles P flowing through the heat exchanger body 9 is adjusted by the amount of air diffused from the discharge air diffuser 15 disposed at the bottom of the heat exchanger body 9.
The amount of air diffused from the exhaust air diffuser 15 is adjusted according to the temperature of the fluid F to be heated at the outlet of the heat exchange pipeline 11. That is, if the temperature of the fluid to be heated F is higher than a predetermined temperature, the amount of air diffusion is reduced to reduce the flow rate of the fluidized bed forming particles P, and the temperature of the fluid to be heated F is higher than the predetermined temperature. If the temperature is also low, the amount of the diffused air is increased, and the flow amount of the fluidized-bed forming particles P is increased. Here, when the amount of air diffused from the discharge air diffuser 15 is increased in order to adjust the amount of the fluidized bed forming particles P supplied to the heat exchanger body 9, the circulation of the loop seal 17 is performed. When the amount of air diffused from the air diffuser 19 is reduced and the amount of air diffused from the discharge air diffuser 15 is reduced, the amount of air diffused from the circulation air diffuser 19 is increased.

【0004】一方、前記ループシール17の循環用散気
管19からの散気量は、流動層炉1の炉内における塔圧
の変化に応じて調節される。つまり、前記塔圧が所定圧
力よりも高くなれば、炉内の流動層形成粒体Pの密度が
高くなりすぎているから、前記循環用散気管19からの
散気量を減じて、前記ループシール17からの前記流動
層形成粒体Pの還流量を減少させ、前記塔圧が所定圧力
よりも低くなれば、炉内の流動層形成粒体Pが不足して
いるから、前記循環用散気管19からの散気量を増大し
て、前記ループシール17からの前記流動層形成粒体P
の還流量を増加するのである。
On the other hand, the amount of air diffused from the circulation air diffusion pipe 19 of the loop seal 17 is adjusted according to a change in tower pressure in the fluidized bed furnace 1. In other words, if the tower pressure is higher than a predetermined pressure, the density of the fluidized bed forming particles P in the furnace is too high, so that the amount of air diffused from the circulation diffusion pipe 19 is reduced, If the flow rate of the fluidized-bed forming particles P from the seal 17 is reduced and the tower pressure becomes lower than a predetermined pressure, the fluidized-bed forming particles P in the furnace are insufficient. The amount of air diffused from the trachea 19 is increased, and the fluidized bed forming particles P from the loop seal 17 are increased.
This increases the amount of reflux.

【0005】炉内温度は通常850〜900℃であり、
前記粒体捕集機構6で捕集される流動層形成粒体Pの温
度は約850℃である。従って、前記熱交換器本体9内
で前記被加熱流体Fと熱交換した後に、前記排出管路1
6から炉内に戻される流動層形成粒体Pの温度は約60
0℃である。尚、前記ループシール17から環流される
流動層形成粒体Pの温度は、殆ど冷却されないから、約
850℃である。
[0005] The furnace temperature is usually 850-900 ° C,
The temperature of the fluidized-bed forming particles P collected by the particle collecting mechanism 6 is about 850 ° C. Therefore, after exchanging heat with the fluid F to be heated in the heat exchanger body 9, the discharge pipe 1
The temperature of the fluidized bed forming granules P returned to the furnace from Step 6 is about 60
0 ° C. The temperature of the fluidized bed forming particles P circulated from the loop seal 17 is about 850 ° C. because it is hardly cooled.

【0006】[0006]

【発明が解決しようとする課題】上記従来の循環流動層
炉の外部熱交換器においては、前記粒体環流路7を上部
の一方の隅部に接続し、前記排出管路16を上部の前記
粒体環流路7の配置個所に対して対角の隅部に接続して
あるから、例えば図7に示すように、他の隅部には、前
記流動層形成粒体Pの平断面三角形状で下方の拡がった
停滞部Sが形成され、前記停滞部Sにおいては、前記流
動層形成粒体Pと前記被加熱流体Fとの間の熱交換効率
が極めて低くなるため、外部熱交換器8自体の容積効率
が大きく低下しており、前記熱交換器本体9が嵩高にな
るという問題を有している。また、例えば、炉内の温度
が高くなり、前記流動層形成粒体Pの循環量を増加させ
る場合には、前記ループシール17からの流動層形成粒
体Pの循環量を増加させれば、冷却されない流動層形成
粒体Pの循環量が増す結果、炉内の温度がさらに上昇す
る。これを回避するために、前記ループシール17から
の循環量を減少させ、排出用散気管15からの散気量を
増加させれば、前記熱交換器本体9における熱交換管路
11内の被加熱流体Fの温度が高まり、被加熱流体排出
管路12における被加熱流体Fの温度が高くなりすぎる
という問題を有している。また、炉内の塔圧が高くなり
すぎた場合には、粒体環流路7からの流動層形成粒体P
の環流量を減少させる必要があり、このために、前記ル
ープシール17における循環用散気管19からの散気量
を減少した場合には、前記ループシール17における流
動層形成粒体Pの蓄積量が増加すると共に、前記外部熱
交換器8への流動層形成粒体Pの供給量が増加するが、
このために前記熱交換管路11における交換熱量が増大
して、前記被加熱流体排出管路12における被加熱流体
Fの温度が必要以上に上昇するという問題が生ずる。こ
れらの問題は、従来の構成においては、前記流動層形成
粒体Pの循環量制御において、炉内における制御応答
と、外部熱交換器における制御応答との間に背反的な一
面を有していることに起因している。そこで、本発明の
循環流動層炉の外部熱交換器は、上記の問題点を解決
し、外部熱交換器出口における被加熱流体の温度を適正
に維持できるようにしながら、同時に循環流動層炉にお
ける炉内の流動層の制御を適正に行えるようにすること
を目的とする。
In the conventional external heat exchanger of the circulating fluidized bed furnace, the granular annular flow path 7 is connected to one upper corner, and the discharge pipe 16 is connected to the upper upper corner. Since it is connected to a diagonal corner with respect to the location of the granular material ring channel 7, for example, as shown in FIG. A stagnation portion S that extends downward is formed at the stagnation portion S. In the stagnation portion S, the heat exchange efficiency between the fluidized bed forming granules P and the fluid to be heated F is extremely low. The volume efficiency of the heat exchanger itself is greatly reduced, and there is a problem that the heat exchanger body 9 becomes bulky. Further, for example, when the temperature in the furnace increases and the amount of circulation of the fluidized bed forming particles P is increased, if the amount of circulation of the fluidized bed forming particles P from the loop seal 17 is increased, As a result of an increase in the amount of the fluidized bed forming particles P that are not cooled, the temperature in the furnace is further increased. In order to avoid this, if the amount of circulation from the loop seal 17 is reduced and the amount of air diffused from the discharge air diffuser 15 is increased, the amount of heat in the heat exchange pipe 11 in the heat exchanger body 9 is reduced. There is a problem that the temperature of the heated fluid F increases and the temperature of the heated fluid F in the heated fluid discharge pipe 12 becomes too high. If the tower pressure in the furnace becomes too high, the fluidized bed-forming particles P
When the amount of air diffused from the circulation air diffusion pipe 19 in the loop seal 17 is reduced, the accumulated amount of the fluidized bed forming particles P in the loop seal 17 is required. Increases, the supply amount of the fluidized bed forming granules P to the external heat exchanger 8 increases,
For this reason, the amount of heat exchanged in the heat exchange pipeline 11 increases, causing a problem that the temperature of the heated fluid F in the heated fluid discharge pipeline 12 rises more than necessary. These problems have a contradictory aspect between the control response in the furnace and the control response in the external heat exchanger in controlling the circulation amount of the fluidized bed-forming particles P in the conventional configuration. Is caused by that. Therefore, the external heat exchanger of the circulating fluidized bed furnace of the present invention solves the above-mentioned problems, and simultaneously maintains the temperature of the fluid to be heated at the outlet of the external heat exchanger at the same time. An object of the present invention is to appropriately control a fluidized bed in a furnace.

【0007】[0007]

【課題を解決するための手段】〔第1特徴構成〕上記の
目的のための本発明の循環流動層炉の外部熱交換器の第
1特徴構成は、請求項1に記載の如く、流動層形成粒体
と熱交換可能に熱交換器本体内に配置された熱交換管路
と、前記熱交換管路の入口側に接続された被加熱流体供
給管路と、前記熱交換管路の出口側に接続された被加熱
流体排出管路と、前記被加熱流体供給管路から前記熱交
換管路を介さずに前記被加熱流体排出管路に接続され、
前記熱交換器本体外に配置された分岐管路とを設けて、
前記被加熱流体供給管路から前記熱交換管路と前記分岐
管路への被加熱流体の分配供給量を調節する分配量調節
手段を設けてある点にある。 〔第1特徴構成の作用効果〕上記第1特徴構成によれ
ば、熱交換器における熱交換量とは独立して被加熱流体
排出管路における被加熱流体の温度を調節できるから、
常に循環流動層炉における流動層を適正な条件に制御で
きるようになる。つまり、熱交換器本体外に設けられた
分岐管路を流通する被加熱流体は、被加熱流体供給管路
内の温度を維持しているから、例えば、熱交換管路にお
ける熱伝達量が過大になる場合には、分配量調節手段に
よって前記分岐管路への被加熱流体の供給量を調節し、
流動層形成粒体の冷却を維持しながら、前記熱交換管路
の出口で、前記被加熱流体供給管路内の温度を維持して
いる前記分岐管路からの低温の被加熱流体を混合するこ
とで、前記出口における被加熱流体の温度を所定温度に
維持できるようになる。しかも、前記熱交換管路に接触
して冷却された流動層形成粒体が炉内に還流されるか
ら、炉内の温度を適正に維持できるようになる。従っ
て、従来の構成のように炉内の流動層を適正に維持でき
るように流動層形成粒体の循環量を制御している場合に
も、外部熱交換器の下流側における被加熱流体の温度を
適正に維持できるのである。
Means for Solving the Problems The first characteristic structure of the external heat exchanger of the circulating fluidized bed furnace of the present invention for the above purpose is a fluidized bed. A heat exchange pipe arranged in the heat exchanger body so as to be able to exchange heat with the formed granules, a fluid supply pipe to be heated connected to an inlet side of the heat exchange pipe, and an outlet of the heat exchange pipe The heated fluid discharge pipeline connected to the side, the heated fluid supply pipeline is connected to the heated fluid discharge pipeline without passing through the heat exchange pipeline,
Providing a branch pipe disposed outside the heat exchanger body,
The present invention is characterized in that distribution amount adjusting means for adjusting the distribution and supply amount of the heated fluid from the heated fluid supply pipeline to the heat exchange pipeline and the branch pipeline is provided. [Function and Effect of First Characteristic Configuration] According to the first characteristic configuration, the temperature of the heated fluid in the heated fluid discharge pipe can be adjusted independently of the heat exchange amount in the heat exchanger.
The fluidized bed in the circulating fluidized bed furnace can always be controlled to appropriate conditions. That is, since the fluid to be heated flowing through the branch pipe provided outside the heat exchanger main body maintains the temperature in the pipe to be heated, the heat transfer amount in the heat exchange pipe is excessive, for example. In the case, the supply amount of the fluid to be heated to the branch pipe line is adjusted by the distribution amount adjusting means,
At the outlet of the heat exchange conduit, a low-temperature heated fluid from the branch conduit, which maintains the temperature in the heated fluid supply conduit, is mixed at the outlet of the heat exchange conduit while maintaining the cooling of the fluidized bed forming granules. Thus, the temperature of the fluid to be heated at the outlet can be maintained at a predetermined temperature. In addition, since the fluidized bed forming particles cooled by contact with the heat exchange pipe are recirculated into the furnace, the temperature in the furnace can be appropriately maintained. Therefore, even in the case where the circulation amount of the fluidized bed forming granules is controlled so that the fluidized bed in the furnace can be appropriately maintained as in the conventional configuration, the temperature of the fluid to be heated downstream of the external heat exchanger can be reduced. Can be maintained properly.

【0008】〔第2特徴構成〕上記の目的のための本発
明の循環流動層炉の外部熱交換器の第2特徴構成は、請
求項2に記載の如く、上記第1特徴構成における熱交換
管路に、管路内の被加熱流体より低温の被加熱流体を添
加自在な被加熱流体追加機構を設けてある点にある。 〔第2特徴構成の作用効果〕上記第2特徴構成によれ
ば、上記第1特徴構成における作用効果に加えて、外部
熱交換器における熱交換量を独立に制御できるようにな
る。つまり、被加熱流体追加機構の下流側における被加
熱流体の温度を低下させることができるから、結果とし
て、外部熱交換器から還流する流動層形成粒体の温度を
さらに低下させることが可能であり、炉内の異常な温度
上昇を抑制できながら、熱交換管路出口における流動層
形成粒体の温度の異常上昇を防止できるようになる。さ
らに、被加熱流体が熱交換する対象である流動層形成粒
体は、一般に砂粒で形成されており、一般に水蒸気であ
る被加熱流体に比して熱容量が大きいから、温度差が大
きくなれば、容易に被加熱流体の温度を上昇させること
ができるから、被加熱流体排出管路における被加熱流体
の量を増量することも可能である。
[Second feature configuration] A second feature configuration of the external heat exchanger of the circulating fluidized bed furnace of the present invention for the above purpose is as described in claim 2, wherein the heat exchange in the first feature configuration is performed. The present invention is characterized in that a heating fluid addition mechanism that can add a heating fluid at a temperature lower than the heating fluid in the pipeline is provided in the pipeline. [Function and Effect of Second Feature Configuration] According to the second feature configuration, in addition to the function and effect of the first feature configuration, the amount of heat exchange in the external heat exchanger can be controlled independently. That is, since the temperature of the heated fluid on the downstream side of the heated fluid addition mechanism can be reduced, as a result, the temperature of the fluidized bed forming particles refluxed from the external heat exchanger can be further reduced. In addition, it is possible to prevent an abnormal increase in temperature of the fluidized bed forming particles at the heat exchange pipe outlet while suppressing an abnormal increase in temperature in the furnace. Further, the fluidized bed forming particles to which the fluid to be heated undergoes heat exchange are generally formed of sand particles, and have a large heat capacity as compared to the fluid to be heated, which is generally water vapor. Since the temperature of the fluid to be heated can be easily increased, it is possible to increase the amount of the fluid to be heated in the heated fluid discharge pipe.

【0009】〔第3特徴構成〕上記の目的のための本発
明の循環流動層炉の外部熱交換器の第3特徴構成は、請
求項3に記載の如く、上記第1又は第2特徴構成におけ
る被加熱流体排出管路に、管路内の被加熱流体より低温
の被加熱流体を添加自在な被加熱流体追加機構を設けて
ある点にある。 〔第3特徴構成の作用効果〕上記第3特徴構成によれ
ば、上記第1及び第2特徴構成の何れかの作用効果に加
えて、被加熱流体排出管路における被加熱流体の温度を
独立に調節できるようになる。つまり、熱交換管路出口
における被加熱流体と分岐管路からの被加熱流体とを混
合してもなお前記混合後の被加熱流体の温度が高すぎる
場合にも、被加熱流体追加機構からの被加熱流体により
その温度を低下させることができるから、炉内に還流す
る流動層形成粒体の温度を低くでき、炉内の異常な温度
上昇を防止することが可能となる。
[Third characteristic configuration] A third characteristic configuration of the external heat exchanger of the circulating fluidized bed furnace of the present invention for the above purpose is as described in claim 3 above. Is provided with a heated fluid addition mechanism capable of adding a heated fluid at a lower temperature than the heated fluid in the pipeline. [Function and Effect of Third Feature Configuration] According to the third feature configuration, in addition to the function and effect of any of the first and second feature configurations, the temperature of the fluid to be heated in the heated fluid discharge pipe is independently controlled. Can be adjusted. In other words, even if the fluid to be heated at the outlet of the heat exchange pipe and the fluid to be heated from the branch pipe are still mixed and the temperature of the fluid to be heated after mixing is too high, the temperature of the fluid to be heated is also increased. Since the temperature can be lowered by the fluid to be heated, the temperature of the fluidized bed forming particles flowing back into the furnace can be lowered, and abnormal temperature rise in the furnace can be prevented.

【0010】[0010]

【発明の実施の形態】上記本発明の循環流動層炉の外部
熱交換器の実施の形態の一例について、以下に、図面を
参照しながら説明する。図1は本発明に係る外部熱交換
器を備える循環流動層炉の一例を示す構成説明図であ
り、図2は図1に示した循環流動層炉の斜視図である。
尚、前記従来の技術において図4乃至図7を参照して説
明した要素と同じ要素並びに同等の機能を有する要素に
関しては、先の図4乃至図7に付したと同一の符号を付
し、詳細の説明の一部は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the external heat exchanger of the circulating fluidized bed furnace of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration explanatory view showing an example of a circulating fluidized bed furnace provided with an external heat exchanger according to the present invention, and FIG. 2 is a perspective view of the circulating fluidized bed furnace shown in FIG.
Note that, in the above-described conventional technology, the same elements as those described with reference to FIGS. 4 to 7 and elements having the same functions are denoted by the same reference numerals as those in FIGS. A part of the detailed description is omitted.

【0011】循環流動層炉は、例えば図1に示すよう
に、塔内に流動層を形成する縦型の炉本体2を備え、炉
底部2aには、塔内での流動層形成粒体Pを流動化させ
るための流動用散気管3を配置し、炉頂部2bには、炉
内で燃焼した排ガスGを、前記流動層形成粒体Pと共に
排出する排出ダクト5を設けてあり、炉内の上方に水管
壁4を形成して、廃熱ボイラとしてある。前記排出ダク
ト5には、排出される排ガスGから同伴する流動層形成
粒体Pを分離する、サイクロンで構成された粒体捕集機
構6を接続してある。さらに、前記粒体捕集機構6で捕
集された流動層形成粒体Pを、前記粒体捕集機構6から
炉内へ環流する、前記炉本体2の外部に配置した粒体環
流路7にループシール17を接続してあり、その上流側
の前記粒体環流路7から分岐した分岐環流路7Aに接続
して外部熱交換器8を設けてある。前記外部熱交換器8
には、前記流動層形成粒体Pと熱交換可能に熱交換器本
体9内に配置された熱交換管路11を備えている。この
外部熱交換器8の下端部には、前記ループシール17と
同様に構成してあり、排出用散気管15からの散気量に
よって排出管路16からの流動層形成粒体Pの排出量が
調節され、従って、前記外部熱交換器8を流通する流動
層形成粒体Pの流量が、前記排出用散気管15からの散
気量によって定まるようにしてある。また、前記ループ
シール17には本体容器18の底部に循環用散気管19
を備えており、前記ループシール17の循環用散気管1
9からの散気量で粒体環流路20から炉内に還流する流
動層形成粒体Pの量を調節可能に構成してある。前記流
動層形成粒体Pとしては、砂粒が用いられる。前記流動
層形成粒体Pの炉内への還流量の全体は、前記排出用散
気管15及び循環用散気管19夫々からの散気量の調節
により調整される。
As shown in FIG. 1, for example, a circulating fluidized-bed furnace has a vertical furnace body 2 for forming a fluidized bed in a tower, and a furnace bed 2a has a fluidized bed-forming particle P in the tower. And a discharge duct 5 for discharging the exhaust gas G burned in the furnace together with the fluidized bed forming particles P is provided at the furnace top 2b. A water pipe wall 4 is formed above the water pipe to form a waste heat boiler. The discharge duct 5 is connected to a particle collection mechanism 6 composed of a cyclone that separates the accompanying fluidized bed forming particles P from the discharged exhaust gas G. Furthermore, the fluidized-bed forming particles P collected by the particle collecting mechanism 6 are recirculated from the particle collecting mechanism 6 into the furnace. And an external heat exchanger 8 connected to a branch ring channel 7A branched from the granular ring channel 7 on the upstream side of the loop seal 17. The external heat exchanger 8
Is provided with a heat exchange pipe 11 arranged in the heat exchanger body 9 so as to be able to exchange heat with the fluidized bed forming particles P. The lower end of the external heat exchanger 8 is configured in the same manner as the loop seal 17, and the amount of fluidized bed forming particles P discharged from the discharge pipe 16 is determined by the amount of air diffused from the discharge air diffuser 15. Therefore, the flow rate of the fluidized bed forming particles P flowing through the external heat exchanger 8 is determined by the amount of air diffused from the discharge air diffuser 15. Further, the loop seal 17 is provided with a circulation air diffuser 19 at the bottom of the main body container 18.
The air diffuser 1 for circulation of the loop seal 17 is provided.
The amount of the fluidized-bed forming particles P that recirculates into the furnace from the particle ring channel 20 with the amount of air diffused from the nozzle 9 is configured to be adjustable. Sand particles are used as the fluidized bed forming particles P. The entire reflux amount of the fluidized bed forming particles P into the furnace is adjusted by adjusting the amount of air diffused from each of the exhaust diffuser 15 and the circulation diffuser 19.

【0012】前記流動層炉1の具体的な構造について説
明すると、図2に示すように、前記炉本体2の排出ダク
ト5に接続された粒体捕集機構6であるサイクロンの下
方に連続する粒体環流路7を前記炉本体2の外部に備え
ており、この粒体環流路7は、ループシール17の本体
容器18の上部に接続してあり、前記粒体環流路7から
分岐した分岐環流路7Aを熱交換器本体9の上部に接続
してあり、前記熱交換器本体9の下部には、炉内に向け
て前記流動層形成粒体Pを排出する排出管路16を設け
てある。この排出管路16は、炉底部2a内に熱交換後
の流動層形成粒体Pを環流するように炉本体2接続され
ており、前記ループシール17の粒体還流路20が、前
記炉本体2の前記排出管路16の上方に接続してある。
前記外部熱交換器8は、前記廃熱ボイラの過熱器として
機能するように設けてあり、前記熱交換管路11の入口
側には、前記廃熱ボイラの出口に接続された被加熱流体
供給管路10を接続し、発電設備(図示せず)の蒸気タ
ービンに蒸気を供給する被加熱流体排出管路12を前記
熱交換管路11の出口側に接続してある(図1参照)。
前記被加熱流体供給管路10から前記熱交換管路11を
介さずに、分岐管路13を前記熱交換器本体9外に配置
して前記被加熱流体排出管路12に接続してある。さら
に、前記被加熱流体供給管路10から前記熱交換管路1
1へと、前記被加熱流体供給管路10から前記分岐管路
13への被加熱流体Fの分配供給量を調節する分配量調
節手段Cを設けてある。また、前記熱交換管路11に
は、前段管群からの集合缶11bと後段管群への分配缶
11aとの間に、管路内の前記被加熱流体Fである蒸気
より低温の被加熱流体Fc(例えば水)を添加自在な第
一流体追加機構14Aを設けてある。さらに、前記被加
熱流体排出管路12に、管路内の前記被加熱流体Fであ
る蒸気より低温の被加熱流体Fc(例えば飽和温度に加
熱された水)を添加自在な第二流体追加機構14Bを設
けてある。
The specific structure of the fluidized-bed furnace 1 will be described below. As shown in FIG. 2, the fluidized-bed furnace 1 is continuous below a cyclone which is a particle collecting mechanism 6 connected to a discharge duct 5 of the furnace body 2. A granular ring channel 7 is provided outside the furnace main body 2, and the granular ring channel 7 is connected to an upper portion of the main body container 18 of the loop seal 17, and branches off from the granular ring channel 7. The return flow path 7A is connected to the upper part of the heat exchanger body 9, and the lower part of the heat exchanger body 9 is provided with a discharge pipe 16 for discharging the fluidized bed forming particles P toward the furnace. is there. The discharge pipe 16 is connected to the furnace main body 2 so as to recirculate the fluidized bed forming particles P after the heat exchange into the furnace bottom 2 a. The particle return path 20 of the loop seal 17 is connected to the furnace main body 2. 2 above the discharge line 16.
The external heat exchanger 8 is provided so as to function as a superheater of the waste heat boiler, and a supply of a heated fluid connected to an outlet of the waste heat boiler is provided at an inlet side of the heat exchange pipe 11. A pipe 10 is connected, and a heated fluid discharge pipe 12 for supplying steam to a steam turbine of a power generation facility (not shown) is connected to an outlet side of the heat exchange pipe 11 (see FIG. 1).
A branch pipe 13 is arranged outside the heat exchanger body 9 and connected to the heated fluid discharge pipe 12 without passing through the heat exchange pipe 11 from the heated fluid supply pipe 10. Further, the heat exchange pipe 1 is connected to the heated fluid supply pipe 10.
1, a distribution amount adjusting means C for adjusting the distribution and supply amount of the heated fluid F from the heated fluid supply pipe 10 to the branch pipe 13 is provided. Further, the heat exchange pipe line 11 is provided between the collecting can 11b from the upstream pipe group and the distribution can 11a to the downstream pipe group, to be heated at a lower temperature than the steam which is the fluid F to be heated in the pipe line. A first fluid adding mechanism 14A to which a fluid Fc (for example, water) can be added is provided. Further, a second fluid addition mechanism capable of adding a heated fluid Fc (for example, water heated to a saturation temperature) at a temperature lower than the vapor as the heated fluid F in the pipeline to the heated fluid discharge pipe 12. 14B is provided.

【0013】前記外部熱交換器8は、図2に示したよう
に、熱交換器本体9の上端部に粒体環流路7を接続して
ある。前記熱交換器本体9の下部には、下方に向けて傾
斜する排出管路16を接続してある。前記排出管路16
を接続した側壁部の背面に当たる側壁部の下方には、前
記熱交換器本体9内の流動層形成粒体P(即ち砂粒)を
前記排出管路16から流出させるための排出用散気管1
5を配置してある。また、前記側壁部を貫通して、前記
熱交換管路11を設けてある。前記熱交換管路11は、
上側の前段管群と下側の後段管群とに分けて構成してあ
り、前記被加熱流体供給管路10は、前記前段管群への
分配缶11aに接続してあり、前記被加熱流体排出管路
12は、前記後段管群からの集合缶11bに接続してあ
り、前記前段管群からの集合缶11bは、前記後段管群
への分配缶11aに、被加熱流体追加機構14を介して
接続してある。
As shown in FIG. 2, the external heat exchanger 8 has a particle ring channel 7 connected to the upper end of the heat exchanger body 9. The lower part of the heat exchanger body 9 is connected to a discharge pipe 16 inclined downward. The discharge line 16
Below the side wall portion corresponding to the back surface of the side wall portion to which the fluidized bed forming particles P (that is, sand particles) in the heat exchanger main body 9 are discharged from the discharge line 16, are provided.
5 is arranged. Further, the heat exchange pipe 11 is provided so as to penetrate the side wall portion. The heat exchange line 11 is
The heated fluid supply line 10 is connected to a distribution can 11a for the upstream tube group, and is divided into an upper front tube group and a lower rear tube group. The discharge pipe 12 is connected to the collecting can 11b from the latter pipe group, and the collecting can 11b from the former pipe group is connected to the distribution can 11a to the latter pipe group by the heating fluid addition mechanism 14. Connected via.

【0014】前記粒体環流路7には、路内の粒体層上に
外部から常温の砂を温度マーカMとして投入可能な砂投
入管24を備えて、前記粒体環流路7を降下する流動層
形成粒体Pの重量流量を測定可能に構成してある粒体流
量検出手段を設けてある。この重量流量は、前記外部熱
交換器8内を単位時間に通過する流動層形成粒体Pの重
量を代表するものである。前記炉内の塔圧と、前記排出
ダクト5への排ガスGの温度とから、前記流動層形成粒
体Pの循環量の目標値が設定されるが、前記粒体流量検
出手段で測定した重量流量を前記目標値に維持するよう
に、前記排出用散気管15からの散気量と、前記循環用
散気管19からの散気量との夫々の目標値が設定される
のである。
The granule ring channel 7 is provided with a sand injection pipe 24 into which room temperature sand can be externally charged as a temperature marker M on the granule layer in the channel, and descends down the granule ring channel 7. A particle flow rate detecting means configured to measure the weight flow rate of the fluidized bed forming particles P is provided. This weight flow rate is representative of the weight of the fluidized bed forming particles P passing through the inside of the external heat exchanger 8 per unit time. From the tower pressure in the furnace and the temperature of the exhaust gas G to the discharge duct 5, a target value of the circulation amount of the fluidized bed forming granules P is set, and the weight measured by the granule flow rate detecting means is set. The respective target values of the amount of air diffused from the exhaust diffuser 15 and the amount of air diffused from the circulation diffuser 19 are set so as to maintain the flow rate at the target value.

【0015】前記砂投入管24は、正常な状態に維持さ
れた流動層炉1の運転状態における前記粒体環流路7内
の粒体層の上面よりも僅かに上の位置に配置してある。
そして、その下方に、所定距離Dを隔てて、第一温度検
出手段25と第二温度検出手段26とを上下に配置して
ある。両温度検出手段25,26は、何れも熱伝対温度
計で構成する。前記砂投入管24は、間欠的に常温の砂
を投入して、前記粒体層21の通常の温度を第一温度と
し、その常温の砂の温度を第二温度とすることで、前記
温度マーカMを形成する。砂は、熱伝達抵抗が高いの
で、混合しても直ちには温度の平均化が行われないか
ら、温度の異なる領域に分かれて、その境界を識別しや
すくなるのである。
The sand injection pipe 24 is disposed at a position slightly higher than the upper surface of the granular layer in the granular annular channel 7 in the operating state of the fluidized bed furnace 1 maintained in a normal state. .
The first temperature detecting means 25 and the second temperature detecting means 26 are arranged vertically below and below a predetermined distance D. Both temperature detecting means 25 and 26 are both constituted by thermocouple thermometers. The sand injection pipe 24 intermittently feeds the normal-temperature sand, sets the normal temperature of the granular layer 21 to the first temperature, and sets the normal-temperature sand to the second temperature, thereby setting the temperature. A marker M is formed. Since the sand has a high heat transfer resistance, the temperature is not immediately averaged even when mixed, so that the sand is divided into regions having different temperatures, and the boundaries can be easily identified.

【0016】前記両温度検出手段25,26は、通常は
何れも第一温度(この温度は排出ダクトの排ガス温度と
ほぼ同じである。)を検出しているが、前記砂投入管2
4から温度マーカMとしての砂が投入され、それが次第
に降下して、前記第一温度検出手段25を設けてある第
一検出箇所に達すると(第一時刻)、前記第一温度検出
手段25は、前記温度マーカMの温度である第二温度を
検出するようになる。前記温度マーカMである砂の上に
は、前記粒体捕集機構6からの流動層形成粒体Pが落下
して堆積し、新たな界面を形成する。その後、前記第一
温度検出手段25は、再び前記第一温度を検出するよう
になり、前記温度マーカMが次第に降下し、前記第二温
度検出手段26を設けてある第二検出箇所に至ると(第
二時刻)、前記第二温度検出手段26は前記第二温度を
検出するようになる。これらに基づき、前記第一時刻か
ら前記第二時刻までの経過時間と、前記両温度検出手段
25,26の間の前記粒体環流路7の内容積とから求め
た前記流動層形成粒体Pの容積流量と、前記流動層形成
粒体Pの嵩密度とから、前記外部熱交換器8を通過した
前記流動層形成粒体Pの重量流量を演算導出すること
で、前記粒体流量検出手段で測定するのである。
The two temperature detecting means 25 and 26 normally detect the first temperature (this temperature is almost the same as the exhaust gas temperature of the discharge duct).
4, sand as a temperature marker M is thrown in, and gradually descends to reach a first detection point provided with the first temperature detection means 25 (first time). Detects the second temperature which is the temperature of the temperature marker M. The fluidized bed forming particles P from the particle collecting mechanism 6 fall and accumulate on the sand that is the temperature marker M to form a new interface. Thereafter, the first temperature detecting means 25 again detects the first temperature, and the temperature marker M gradually falls to reach the second detecting point where the second temperature detecting means 26 is provided. (Second time), the second temperature detecting means 26 detects the second temperature. Based on these, the fluidized bed forming particles P obtained from the elapsed time from the first time to the second time and the internal volume of the particle ring channel 7 between the temperature detecting means 25 and 26 are obtained. By calculating and deriving the weight flow rate of the fluidized bed forming granules P passing through the external heat exchanger 8 from the volume flow rate of the fluidized material and the bulk density of the fluidized bed forming granules P, It is measured by.

【0017】以上の構成になる流動層炉1においては、
排出ダクト5から排出された流動層形成粒体Pは、粒体
環流路7に接続されたループシール17の粒体還流路2
0と、前記粒体環流路7から分岐された分岐環流路7A
に接続された外部熱交換器8の排出管路16とから還流
される。その還流量は、前記外部熱交換器8の排出用散
気管15からの散気量と、前記ループシール17の循環
用散気管19からの散気量とによって定まる。前記排出
用散気管15からの散気量と前記循環用散気管19から
の散気量とを調整して、炉本体2に還流する流動層形成
粒体Pの量を炉頂部2bから排出される流動層形成粒体
Pの量とバランスさせながら、外部熱交換器8からの過
熱蒸気温度を適正に制御できるように、前記外部熱交換
器8の排出用散気管15からの散気量を調節し、これに
連動して前記循環用散気管19からの散気量が調節す
る。炉内に投入される廃棄物に応じて、上記流動層炉1
においては炉内温度及び過熱蒸気温度が調節される。例
えば、炉内に投入される廃棄物の低位発熱量が標準の場
合には、通常設定される操業条件により流動層形成粒体
Pの循環量の目標値が設定され、その循環量の目標値に
対して、炉本体2の流動用散気管3からの散気量、外部
熱交換器8の排出用散気管15からの散気量、ループシ
ール17の循環用散気管19からの散気量の夫々の目標
値が設定される。尚、前記の排出用散気管15からの散
気量を増せば、前記循環用散気管19からの散気量は減
少する。
In the fluidized bed furnace 1 having the above structure,
The fluidized-bed forming particles P discharged from the discharge duct 5 are transferred to the particle return path 2 of the loop seal 17 connected to the particle ring flow path 7.
0, a branch ring channel 7A branched from the granular ring channel 7
Is returned from the discharge pipe 16 of the external heat exchanger 8 connected to the heat exchanger. The amount of recirculation is determined by the amount of air diffused from the exhaust diffuser 15 of the external heat exchanger 8 and the amount of air diffused from the circulation diffuser 19 of the loop seal 17. By adjusting the amount of air diffused from the discharge air diffuser 15 and the amount of air diffused from the circulation air diffuser 19, the amount of the fluidized bed forming particles P flowing back to the furnace body 2 is discharged from the furnace top 2b. In order to properly control the temperature of the superheated steam from the external heat exchanger 8 while balancing the amount of the fluidized bed forming particles P, the amount of air diffused from the discharge air diffuser 15 of the external heat exchanger 8 is adjusted. The amount of air diffused from the circulation air diffuser 19 is adjusted in conjunction with the adjustment. The fluidized bed furnace 1 according to the waste put into the furnace
In, the furnace temperature and the superheated steam temperature are adjusted. For example, when the lower heating value of the waste put into the furnace is the standard, the target value of the circulation amount of the fluidized bed forming granules P is set according to the normally set operating conditions, and the target value of the circulation amount is set. In contrast, the amount of air diffused from the diffuser tube 3 of the furnace body 2, the amount of air diffused from the diffuser tube 15 of the external heat exchanger 8, and the amount of air diffused from the diffuser tube 19 of the loop seal 17. Are set. If the amount of air diffused from the discharge air diffuser 15 is increased, the amount of air diffused from the circulation air diffuser 19 is reduced.

【0018】前記炉内に投入された廃棄物の低位発熱量
が高い場合には、排ガス温度が高くなり、これに伴っ
て、粒体捕集機構6により捕集され、前記外部熱交換器
8に供給される流動層形成粒体Pの温度も高くなる。そ
こで、粒体還流路20から炉内に還流する流動層形成粒
体Pの温度は低くし、且つ、その還流量も多くすること
を要し、このために、前記排出用散気管15の散気量の
目標値を適宜増大すると同時に、これに対応して前記循
環用散気管19の散気量の目標値を減少するように調節
する。しかし、そのように流動層形成粒体Pの前記外部
熱交換器8を通過する量を増加すれば、前記外部熱交換
器8で過熱される被加熱流体Fである蒸気の過熱温度が
高くなりすぎるから、熱交換管路11の前段と後段の間
に設けられた被加熱流体追加機構14を構成する第一流
体追加機構14Aから低温の被加熱流体Fcとして水を
管路内に噴霧供給し、前記管路内の蒸気の過熱温度を調
節すると同時に、前記管路に接触する流動層形成粒体P
の温度をさらに低下させる。こうして、排出管路16か
らの流動層形成粒体Pの温度を低下させることで、粒体
還流路20から炉内に還流する流動層形成粒体Pの温度
を低下させて、炉内温度の調節もできるようにしてあ
る。これに伴い、前記両散気管15,19の散気量の目
標値の調節は、前記流動層形成粒体Pの温度低下の度合
いに応じて適宜元に戻す。上記炉内温度の調節に要する
以上に過熱蒸気温度を低下させる必要がある場合には、
前記両散気管15,19の散気量の目標値を調節するの
とは別に、被加熱流体供給管路10から熱交換器本体9
外に配置された分岐管路13を経て、一部の蒸気を直接
被加熱流体排出管路12に送り込むように、分配量調節
手段Cにより、前記熱交換管路11と前記分岐管路13
とに配分する蒸気の分配供給量を調節する。前記被加熱
流体排出管路12で両管路12,13からの蒸気を混合
しても、猶過熱温度が高すぎる場合には、前記被加熱流
体排出管路12に設けられた被加熱流体追加機構14を
構成する第二流体追加機構14Bから低温の被加熱流体
Fcとして飽和水を管路内に噴霧供給し、過熱蒸気をさ
らに冷却することができる。
When the low calorific value of the waste introduced into the furnace is high, the temperature of the exhaust gas increases, and accordingly, the exhaust gas is collected by the particulate collection mechanism 6 and is discharged from the external heat exchanger 8. The temperature of the fluidized-bed forming particles P supplied to the container also increases. Therefore, it is necessary to lower the temperature of the fluidized bed-forming particles P flowing back from the particle return passage 20 into the furnace, and also to increase the amount of the returned particles. The target value of the air volume is appropriately increased, and at the same time, the target value of the air volume of the circulation air diffuser 19 is adjusted so as to decrease. However, if the amount of the fluidized bed forming particles P passing through the external heat exchanger 8 is increased in such a manner, the superheat temperature of the steam as the fluid F to be heated which is superheated in the external heat exchanger 8 increases. Because it is too long, water is sprayed and supplied as a low-temperature heated fluid Fc from the first fluid adding mechanism 14A constituting the heated fluid adding mechanism 14 provided between the former stage and the latter stage of the heat exchange pipeline 11 into the pipeline. , While controlling the superheating temperature of the steam in the conduit, and simultaneously forming the fluidized bed forming particles P in contact with the conduit.
Temperature is further reduced. Thus, by lowering the temperature of the fluidized-bed forming particles P from the discharge pipe 16, the temperature of the fluidized-bed forming particles P flowing back into the furnace from the particle recirculating passage 20 is reduced, and the temperature in the furnace is reduced. Adjustment is also possible. Accordingly, the adjustment of the target value of the amount of air diffused by the air diffusers 15 and 19 is appropriately returned to the original value in accordance with the degree of the temperature decrease of the fluidized bed forming particles P. When it is necessary to lower the superheated steam temperature more than necessary for adjusting the furnace temperature,
Apart from adjusting the target value of the amount of air diffused by the two air diffusers 15, 19, the heat exchanger body 9
The distribution amount adjusting means C controls the heat exchange line 11 and the branch line 13 so that a part of the steam is directly sent to the heated fluid discharge line 12 through the branch line 13 disposed outside.
And the amount of steam to be distributed between the two is adjusted. If the superheat temperature is too high even if the steam from both pipes 12 and 13 is mixed in the heated fluid discharge pipe 12, the heated fluid added to the heated fluid discharge pipe 12 is added. Saturated water is sprayed and supplied as low-temperature heated fluid Fc from the second fluid addition mechanism 14B constituting the mechanism 14 into the pipeline, so that the superheated steam can be further cooled.

【0019】前記炉内に投入された廃棄物の低位発熱量
が低い場合には、排ガス温度が低くなり、これに伴っ
て、前記外部熱交換器8に供給される流動層形成粒体P
の温度も低くなる。この場合、炉内の温度が低下すれ
ば、炉本体2に備える水管壁4で構成される廃熱ボイラ
からの蒸気発生量も減少し、前記外部熱交換器8におけ
る流動層形成粒体Pの温度低下は抑制されるが、なおか
つ炉内の温度が低下する場合には、前記排出用散気管1
5の散気量の目標値を減少すると同時に、これに対応し
て前記循環用散気管19の散気量の目標値を増大するよ
うに調節する。こうして、前記外部熱交換器8において
冷却される流動層形成粒体Pの還流量を減じ、同時に冷
却されていない前記ループシール17からの流動層形成
粒体Pの還流量を増し、さらに、前記外部熱交換器8に
おける前記流動層形成粒体Pの冷却を抑制して、前記粒
体還流路20から還流する流動層形成粒体Pの温度を幾
分高めにすれば、炉内の冷却が抑制されて、炉内温度を
維持できるようになる。このために、前記熱交換管路1
1と前記分岐管路13とに配分する蒸気の分配供給量を
調節して、前記分岐管路13への蒸気量を多くする。そ
の結果、前記被加熱流体排出管路12で両管路12,1
3からの蒸気を混合すれば、過熱蒸気の温度が低くなる
場合もあるが、この対策としては、前記被加熱流体排出
管路12に別の蒸気過熱手段を設けておくこともでき
る。
When the lower heating value of the waste put into the furnace is low, the temperature of the exhaust gas is lowered, and accordingly, the fluidized bed forming particles P supplied to the external heat exchanger 8 are reduced.
Temperature also decreases. In this case, if the temperature in the furnace decreases, the amount of steam generated from the waste heat boiler constituted by the water pipe wall 4 provided in the furnace body 2 also decreases, and the fluidized bed forming particles P in the external heat exchanger 8 are reduced. Is suppressed, but when the temperature in the furnace is lowered, the discharge air diffuser 1
At the same time as reducing the target value of the amount of diffused air of No. 5, adjustment is made so as to increase the target value of the amount of diffused air of the circulation diffuser tube 19 accordingly. In this way, the amount of reflux of the fluidized bed forming particles P cooled in the external heat exchanger 8 is reduced, and at the same time, the amount of reflux of the fluidized bed forming particles P from the loop seal 17 that is not cooled is increased. If the cooling of the fluidized bed forming particles P in the external heat exchanger 8 is suppressed and the temperature of the fluidized bed forming particles P flowing back from the granular particle return passage 20 is increased somewhat, the cooling in the furnace is performed. Thus, the temperature inside the furnace can be maintained. For this purpose, the heat exchange line 1
The amount of steam to be distributed to the branch line 13 and the branch line 13 is adjusted to increase the amount of steam to the branch line 13. As a result, the heated fluid discharge pipe 12 is connected to both pipes 12, 1
If the steam from 3 is mixed, the temperature of the superheated steam may be lowered, but as a countermeasure, another steam superheating means can be provided in the heated fluid discharge pipe 12.

【0020】以上説明したように、本発明においては、
炉内の温度を所要の範囲内に維持しながら、外部熱交換
器8から被加熱流体排出管路12を経て排出される被加
熱流体Fの温度を所定の温度に維持できるようになる。
As described above, in the present invention,
The temperature of the heated fluid F discharged from the external heat exchanger 8 via the heated fluid discharge pipe 12 can be maintained at a predetermined temperature while maintaining the temperature in the furnace within a required range.

【0021】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、外部熱交換器8を、
ループシール17と並列に接続してある例について説明
したが、例えば図3に概念図を示すように、前記外部熱
交換器8の下部に、流動層形成用粒体Pを一時貯留可能
な程度の容積を確保して、排出用散気管15からの散気
によって直接粒体還流路20に流動層形成粒体Pを還流
させるようにして、前記外部熱交換器8が前記ループシ
ール17を兼ねるように構成し、前記粒体捕集機構6で
捕集された流動層形成粒体Pを、前記粒体捕集機構6か
ら炉内へ環流する、前記炉本体2の外部に配置した粒体
環流路7に外部熱交換器8のみを設け、前記外部熱交換
器8には、前記流動層形成粒体Pと熱交換可能に熱交換
器本体9内に配置された熱交換管路11を備えるように
してあってもよい。この外部熱交換器8の下端部には、
ループシール相当の機能を持たせて、循環用散気管19
を配置し、前記外部熱交換器8を流通する流動層形成粒
体Pの流量が、前記循環用散気管19からの散気量で定
まるようにして、粒体還流路20から炉内に還流する流
動層形成粒体Pの量を調節可能に構成してあってもよ
い。 〈2〉上記実施の形態に於いては、被加熱流体供給管路
10から熱交換管路11へと、前記被加熱流体供給管路
10から分岐管路13への被加熱流体Fの分配供給量を
調節する分配量調節手段Cを、前記熱交換管路11に流
量調節弁を設けて構成した例について図示したが、前記
分配量調節手段Cの構成は任意であって、他の流量調節
手段を設けてあってもよく、また、前記分岐管路13に
も流量調節手段を設けてあってもよく、或いは、前記分
岐管路13のみに流量調節手段を設けてあってもよい。 〈3〉上記実施の形態に於いては、熱交換管路11の前
段と後段の間に、管路内の前記被加熱流体Fより低温の
被加熱流体Fcを添加自在な被加熱流体追加機構14と
しての第一流体追加機構14Aを設けてある例について
説明したが、これは好ましい実施の形態について説明し
たものであって、前記被加熱流体追加機構14は前記熱
交換管路11の他の位置に設けてあってもよく、前記第
一流体追加機構14Aは省略してもよい。 〈4〉上記実施の形態に於いては、被加熱流体排出管路
12に、管路内の前記被加熱流体Fより低温の被加熱流
体Fcを添加自在な被加熱流体追加機構14としての第
二流体追加機構14Bを設けてある例について説明した
が、これは好ましい実施の形態について説明したもので
あって、前記第二流体追加機構14Bは省略してもよ
い。 〈5〉上記実施の形態に於いては、熱交換器本体9の側
壁部の上部に、下方に向けて傾斜する排出管路16を接
続してある例について説明したが、前記排出管路16
は、前記熱交換器本体9の底部から下方に向けて接続し
て、ループシール17に排出する流動層形成粒体Pを落
とし込むように構成してあってもよい。この場合に、排
出用散気管15を省略することも可能である。 〈6〉上記実施の形態に於いては、粒体環流路7に粒体
流量検出手段を設けた例について説明したが、これは好
ましい実施の形態について説明したものであって、前記
粒体流量検出手段は省略可能で、前記流動層形成粒体P
の流量を測定することなく、炉内の塔圧と、炉内温度等
から各散気管3,15,19の散気量を調節するように
してあってもよい。
Next, another embodiment of the present invention will be described. <1> In the above embodiment, the external heat exchanger 8 is
Although an example in which the fluid seal is connected in parallel with the loop seal 17 has been described, for example, as shown in the conceptual diagram of FIG. And the external heat exchanger 8 also serves as the loop seal 17 so that the fluidized bed forming particles P are directly returned to the particle return path 20 by the air diffused from the discharge air diffuser 15. The fluid particles forming the fluidized bed formed by the particle collecting mechanism 6 are recirculated from the particle collecting mechanism 6 into the furnace. Only the external heat exchanger 8 is provided in the annular channel 7, and the external heat exchanger 8 is provided with a heat exchange pipe 11 arranged in the heat exchanger main body 9 so as to be able to exchange heat with the fluidized bed forming granules P. It may be provided. At the lower end of the external heat exchanger 8,
By providing a function equivalent to a loop seal, the air diffuser
And the flow rate of the fluidized bed forming particles P flowing through the external heat exchanger 8 is determined by the amount of air diffused from the circulation diffuser pipe 19, and is returned from the particle return passage 20 into the furnace. The amount of the fluidized-bed forming particles P to be adjusted may be configured to be adjustable. <2> In the above embodiment, the distribution and supply of the heated fluid F from the heated fluid supply line 10 to the heat exchange pipeline 11 and from the heated fluid supply line 10 to the branch pipeline 13 Although the distribution amount adjusting means C for adjusting the amount is illustrated by providing a flow rate control valve in the heat exchange line 11, the configuration of the distribution amount adjusting means C is arbitrary, and other flow rate adjustments are possible. Means may be provided, and the branch pipe 13 may be provided with a flow control means, or the branch pipe 13 may be provided with a flow control means only. <3> In the above-described embodiment, a heated fluid addition mechanism capable of freely adding a heated fluid Fc lower than the heated fluid F in the pipeline between the upstream and downstream stages of the heat exchange pipeline 11. Although the example in which the first fluid adding mechanism 14A as 14 is provided has been described, this is a description of a preferred embodiment, and the heated fluid adding mechanism 14 is provided in the other part of the heat exchange pipe 11. And the first fluid adding mechanism 14A may be omitted. <4> In the above-described embodiment, the heated fluid addition mechanism 14 that can freely add the heated fluid Fc at a lower temperature than the heated fluid F in the heated fluid discharge pipeline 12 to the heated fluid discharge pipeline 12. Although the example in which the two-fluid addition mechanism 14B is provided has been described, this is a description of a preferred embodiment, and the second fluid addition mechanism 14B may be omitted. <5> In the above embodiment, an example in which the exhaust pipe 16 inclined downward is connected to the upper part of the side wall of the heat exchanger body 9 has been described.
May be connected downward from the bottom of the heat exchanger main body 9 so as to drop the fluidized bed forming particles P discharged to the loop seal 17. In this case, the exhaust air diffuser 15 can be omitted. <6> In the above-described embodiment, an example in which the particulate flow rate detecting means is provided in the particulate ring channel 7 has been described. However, this is a description of a preferred embodiment, and The detecting means can be omitted, and the fluidized bed-forming particles P
Without measuring the flow rate of the gas, the amount of air diffused through each of the air diffusers 3, 15, and 19 may be adjusted based on the tower pressure in the furnace, the temperature inside the furnace, and the like.

【0022】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る循環流動層炉の一例の構成説明図FIG. 1 is a configuration explanatory view of an example of a circulating fluidized bed furnace according to the present invention.

【図2】本発明に係る循環流動層炉の一例の外観を示す
斜視図
FIG. 2 is a perspective view showing an external appearance of an example of a circulating fluidized bed furnace according to the present invention.

【図3】本発明に係る循環流動層炉の他の例の構成説明
FIG. 3 is a diagram illustrating the configuration of another example of a circulating fluidized bed furnace according to the present invention.

【図4】従来の循環流動層炉の構成説明図FIG. 4 is a diagram illustrating the configuration of a conventional circulating fluidized bed furnace.

【図5】従来の循環流動層炉の一例の外観を示す斜視図FIG. 5 is a perspective view showing an external appearance of an example of a conventional circulating fluidized bed furnace.

【図6】従来の外部熱交換器の一例を示す斜視図FIG. 6 is a perspective view showing an example of a conventional external heat exchanger.

【図7】従来の外部熱交換器を説明する斜視透視図FIG. 7 is a perspective perspective view illustrating a conventional external heat exchanger.

【符号の説明】[Explanation of symbols]

6 流体捕集機構 7 粒体環流路 9 熱交換器本体 10 被加熱流体供給管路 11 熱交換管路 12 被加熱流体排出管路 13 分岐管路 14 被加熱流体追加機構 C 分配量調節手段 F 被加熱流体 Fc 低温の被加熱流体 P 流動層形成粒体 Reference Signs List 6 fluid collection mechanism 7 granular ring channel 9 heat exchanger main body 10 heated fluid supply pipeline 11 heat exchange pipeline 12 heated fluid discharge pipeline 13 branch pipeline 14 heated fluid addition mechanism C distribution amount adjusting means F Fluid to be heated Fc Fluid to be heated at low temperature P Fluidized bed forming particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒体捕集機構(6)で捕集された流動層
形成粒体(P)を、前記粒体捕集機構(6)から炉内へ
環流する粒体環流路(7)に設けられた循環流動層炉の
外部熱交換器であって、 前記流動層形成粒体(P)と熱交換可能に熱交換器本体
(9)内に配置された熱交換管路(11)と、前記熱交
換管路(11)の入口側に接続された被加熱流体供給管
路(10)と、前記熱交換管路(11)の出口側に接続
された被加熱流体排出管路(12)と、前記被加熱流体
供給管路(10)から前記熱交換管路(11)を介さず
に前記被加熱流体排出管路(12)に接続され、前記熱
交換器本体(9)外に配置された分岐管路(13)とを
設けて、前記被加熱流体供給管路(10)から前記熱交
換管路(11)と前記分岐管路(13)への被加熱流体
(F)の分配供給量を調節する分配量調節手段(C)を
設けてある循環流動層炉の外部熱交換器。
A granular fluid channel (7) for recirculating fluidized bed-formed particles (P) collected by a particle collecting mechanism (6) from the particle collecting mechanism (6) into a furnace. An external heat exchanger of a circulating fluidized bed furnace provided in a heat exchange pipe (11) disposed in a heat exchanger body (9) so as to be able to exchange heat with the fluidized bed forming granules (P). A heated fluid supply pipeline (10) connected to the inlet side of the heat exchange pipeline (11); and a heated fluid discharge pipeline (10) connected to the outlet side of the heat exchange pipeline (11). 12), the heating fluid supply pipe (10) is connected to the heating fluid discharge pipe (12) without passing through the heat exchange pipe (11), and is connected to the outside of the heat exchanger body (9). And a branch pipe (13) arranged in the heat-supplying fluid supply pipe (10) to add heat to the heat exchange pipe (11) and the branch pipe (13). Distributing amount adjusting means (C) an external heat exchanger of the circulating fluidized bed furnace which is provided with which to adjust the dispensing amount of the fluid (F).
【請求項2】 前記熱交換管路(11)に、管路内の前
記被加熱流体(F)より低温の被加熱流体(F)を添加
自在な被加熱流体追加機構(14)を設けてある請求項
1記載の循環流動層炉の外部熱交換器。
2. A heating fluid addition mechanism (14) is provided in the heat exchange pipe (11), to which a heating fluid (F) lower in temperature than the heating fluid (F) in the pipe can be added. An external heat exchanger for a circulating fluidized bed furnace according to claim 1.
【請求項3】 前記被加熱流体排出管路(12)に、管
路内の前記被加熱流体(F)より低温の被加熱流体(F
c)を添加自在な被加熱流体追加機構(14)を設けて
ある請求項1又は2に記載の循環流動層炉の外部熱交換
器。
3. A heated fluid (F) having a lower temperature than the heated fluid (F) in the heated fluid discharge pipe (12).
The external heat exchanger of a circulating fluidized bed furnace according to claim 1 or 2, further comprising a heated fluid addition mechanism (14) to which c) can be added.
JP11077130A 1999-03-23 1999-03-23 Exterior heat exchanger for circulation fluid layer furnace Pending JP2000274969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077130A JP2000274969A (en) 1999-03-23 1999-03-23 Exterior heat exchanger for circulation fluid layer furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077130A JP2000274969A (en) 1999-03-23 1999-03-23 Exterior heat exchanger for circulation fluid layer furnace

Publications (1)

Publication Number Publication Date
JP2000274969A true JP2000274969A (en) 2000-10-06

Family

ID=13625226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077130A Pending JP2000274969A (en) 1999-03-23 1999-03-23 Exterior heat exchanger for circulation fluid layer furnace

Country Status (1)

Country Link
JP (1) JP2000274969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103672875A (en) * 2013-12-17 2014-03-26 东方电气集团东方锅炉股份有限公司 External heat exchanger
KR101428359B1 (en) * 2013-01-14 2014-08-08 현대중공업 주식회사 Circulating Fluidized Bed Boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428359B1 (en) * 2013-01-14 2014-08-08 현대중공업 주식회사 Circulating Fluidized Bed Boiler
CN103672875A (en) * 2013-12-17 2014-03-26 东方电气集团东方锅炉股份有限公司 External heat exchanger

Similar Documents

Publication Publication Date Title
TWI417488B (en) Boiler system
JPS59500383A (en) High speed fluidized bed boiler
JPS6321401A (en) Steam generator using separate fluid flow circuit and operating method thereof
CN107750320A (en) Control method for the operation of burning boiler
KR101430860B1 (en) Circulating Fluidized Bed Boiler
CN102840576A (en) Circulating fluidized bed boiler with independent internal and external circulating fluidized bed heat exchangers
JP2000274969A (en) Exterior heat exchanger for circulation fluid layer furnace
JP4070325B2 (en) Pulverized coal supply system for coal gasifier
CN105650629B (en) A kind of method for eliminating external heat exchanger working medium thermal deviation
KR101879637B1 (en) Circulating fluidized bed boiler
JP2000274604A (en) Particle flow rate measuring method, and circulation amount measuring apparatus and circulation amount control mechanism for circulation fluidized bed furnace
JP2004132621A (en) Particle circulation rate controlling method and device for circulating fluidized bed boiler
CN101311626B (en) Integral fluid bed ash cooler
TW201111708A (en) Fluidized bed combustor and controlling method thereof
JPH0449448Y2 (en)
JPH0675719B2 (en) Sludge heating and drying equipment
CN112097253B (en) Method for improving combustion efficiency of circulating fluidized bed boiler
RU2451876C1 (en) Method to control heat generator capacity with fluidised bed
CN219264316U (en) Garbage incinerator ash bucket with heat exchange mechanism
KR101428359B1 (en) Circulating Fluidized Bed Boiler
JPH09229312A (en) Fluidized bed boiler
JPH1019206A (en) Circulation amount control device
CN207815302U (en) A kind of cycles, economized fluidized-bed combustion boiler
CN205528601U (en) A device that is used for coking coal stage drying step humidifying technology
CN207990607U (en) A kind of system using this stove of adjacent stove Hot-blast Heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081009