JP2000274956A - Induction furnace - Google Patents

Induction furnace

Info

Publication number
JP2000274956A
JP2000274956A JP11082876A JP8287699A JP2000274956A JP 2000274956 A JP2000274956 A JP 2000274956A JP 11082876 A JP11082876 A JP 11082876A JP 8287699 A JP8287699 A JP 8287699A JP 2000274956 A JP2000274956 A JP 2000274956A
Authority
JP
Japan
Prior art keywords
refractory
furnace
alumina
layer
induction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11082876A
Other languages
Japanese (ja)
Inventor
Kikuo Ariga
喜久雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP11082876A priority Critical patent/JP2000274956A/en
Publication of JP2000274956A publication Critical patent/JP2000274956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the refractory of an induction furnace which enables the extension of the life of the furnace and the stable operation. SOLUTION: An induction furnace, which is used for the fusion and/or refining of rear earth metal or metal containing rear earth metal, is of multilayer refractory structure, and the refractory for lining of the furnace is made in at least two-layer structure, and its working layer (the innermost part) is made of figurate refractory being manufactured by making at least its sidewall integrally of such material that cerium material of 74 micron or under is 5-50 wt.% and the rest is high alumina material of 75 wt.% or over in alumina content and/or a proper organic or inorganic deflocculant or hardener is added to alumina material and that they are kneaded, and applying heat treatment in a temperature range of 200 deg.C-1000 deg.C to it to put the porosity at 15% or under, and also the outermost part is made of dry amorphous refractory which has hot linear expansion property equivalent to or more than the inner member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術的分野】本発明は、Ce・Pr・N
d等々の希土類材を含有する金属を溶解およびまたは精
錬を行う際に用いられる誘導炉に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing Ce, Pr, N
The present invention relates to an induction furnace used for melting and / or refining a metal containing a rare earth material such as d.

【0002】[0002]

【従来の技術】従来Ce・Pr・Nd等々の希土類材を
含有する金属の溶解およびまたは精錬は1600℃前後
と非常に高温度下で行われるため、現在はアルミナ含有
量が96重量%以上のアルミナ質の乾式不定形耐火物ま
たは定形焼成耐火物(以下ルツボと称する)が用いられ
ている。
2. Description of the Related Art Conventionally, melting and refining of metals containing rare earth materials such as Ce, Pr, Nd and the like are performed at a very high temperature of about 1600 ° C., so that the alumina content is 96% by weight or more at present. Alumina dry refractory or fixed fired refractory (hereinafter called crucible) is used.

【0003】乾式不定形耐火物による内張り材の施工は
誘導炉の炉底部をつき固めるが、加振充填を行い所定の
厚みの炉床部を施工し、この上に定められた大きさの鋼
製の型枠(以下フォーマーと称する)をほぼ炉の中心部
に設置し炉本体とフォーマーの間にアルミナ質の乾式不
定形材耐火物を投入しながら搗き固めるか、1度に投入
してフォーマーの内側より振動を加えながらの加振充填
を行うか、またはルツボを用いる場合は炉底部を乾式不
定形耐火物をもって、搗き固め加振して施工した後炉の
ほぼ中心にルツボを設置し炉本体とルツボとの間隙部を
乾式不定形耐火物を投入しながら搗き固めるか加振充填
し上端部を封止材で封止し施工を行う。前者の場合は施
工の良否により耐用寿命への影響が大きく、熟練度の高
い技術者を必要とすると共に解体・築炉作業は極度な3
K作業が余儀なくされる。また、施工体自体が乾式不定
形耐火物の搗き固めか加振充填での施工のため、気孔率
が20%〜22%程度となり充填密度が低い状態とな
る。尚ルツボも耐熱衝撃性の点より気孔率が16%〜1
8%と多孔体となっている。また第2に使用条件より現
在使用されている材質はアルミナ質材であるため、素材
的に異成分溶融物の易浸透性の特性を有している。ここ
で溶解する希土類金属の溶融点はCe(セリウム)が8
04℃、Pr(プラセオジウム)が640℃、Nd(ネ
オジウム)は1019℃といずれも低融点金属であると
同時に易酸化性の特性をももっているがこれらとFe系
材との合金による製品を製造する時は、減圧または真空
式の誘導炉により1600℃前後の温度で溶解およびま
たは精錬が行われているため溶湯は非常に低粘性の状態
であり特に添加された希土類金属は炉壁耐火物の組織内
に浸透し易い状態にある。
[0003] In the installation of a lining material made of a dry type refractory material, the furnace bottom of the induction furnace is hardened, but a vibrating filling is performed and a furnace floor of a predetermined thickness is constructed. A mold made of steel (hereinafter referred to as “former”) is installed almost in the center of the furnace, and the alumina-based dry amorphous material refractory is put between the furnace body and the former, and then crushed or poured at once, and then put into the former at one time. Vibration filling while applying vibration from the inside of the furnace, or when using a crucible, crush and vibrate the bottom of the furnace with a dry amorphous refractory, and then place the crucible almost in the center of the furnace. The gap between the main body and the crucible is crushed or shaken and filled with dry amorphous refractory, and the upper end is sealed with a sealing material. In the former case, the service life is greatly affected by the quality of the construction, and a highly skilled technician is required.
K work is forced. In addition, the porosity is about 20% to 22% and the packing density is low because the construction body itself is constructed by crushing or shaking dry amorphous refractory. The crucible also has a porosity of 16% to 1 from the viewpoint of thermal shock resistance.
8% and a porous body. Secondly, since the material currently used from the use conditions is an alumina-based material, the material has a property of easily penetrating the different component melt as a material. The melting point of the rare earth metal dissolved here is Ce (cerium) of 8
04 ° C, Pr (praseodymium) is 640 ° C, and Nd (neodymium) is 1019 ° C, which are both low-melting metals and easily oxidizable, but are manufactured from alloys of these and Fe-based materials. When melting, the molten metal is in a very low viscosity state because melting and / or refining is performed at a temperature of about 1600 ° C. by a reduced pressure or vacuum induction furnace, and particularly the rare earth metal added is used for furnace wall refractories. It is in a state that easily penetrates into the tissue.

【0004】耐火物の組織内に浸透した希土類金属は炉
の操業が繰り返される過程において容易に酸化現象を起
こして体積膨張をきたし耐火物の組織を破壊して脆弱化
させると同時に稼動層に変質層を形成させ内部に亀裂を
生じせしめると同時に稼動面に酸化物を主成分とするス
ラグの付着が多くなる。このスラグを機械的に除去しよ
うとする際内部に入っている亀裂を境として表層部が不
規則的に剥離して凹凸状の表面となり更に組織内への浸
透や表面への付着し易い状態となり損傷が増加すること
になる。乾式不定形耐火物での施工体もルツボでも程度
の差こそあれ共に損傷が大きく耐用寿命が短く且つ突発
的に炉の稼動停止をまねいており生産活動にも大きな支
障をきたしている。この現状を改善して円滑な生産活動
が出来る耐用寿命の長い誘導炉が強く求められているの
が現状である。
The rare earth metal that has penetrated into the refractory structure easily causes an oxidation phenomenon during the repetition of the furnace operation, causing volume expansion, destroying the refractory structure and weakening it, and at the same time altering the working layer. At the same time, a layer is formed and cracks are formed inside, and at the same time, slag mainly composed of oxides adheres to the working surface. When trying to mechanically remove this slag, the surface layer is irregularly peeled off from the cracks inside and becomes an uneven surface, and it is in a state where it easily penetrates into the tissue and adheres to the surface Damage will increase. Regardless of the degree to which the construction body made of dry amorphous refractory or the crucible is damaged, the damage is large, the service life is short, and the furnace operation is stopped suddenly, which is a great obstacle to production activities. At present, there is a strong demand for an induction furnace with a long service life that can improve this situation and enable smooth production activities.

【0005】[0005]

【発明が解決しようとする課題】前述の如く現在Ce・
Pr・Nd等々の希土類金属を含有する金属を溶解およ
びまたは精錬する誘導炉の内張り材は現在その使用条件
よりアルミナ含有量が96重量%以上の耐火物が最も適
材とされ乾式不定形耐火物として搗き固めおよびまたは
加振充填し築炉されるか、定形の焼成耐火物ルツボが使
用されているが本質的にアルミナ質材は耐熱性に富むが
使用時溶けた金属やスラグが組織内に浸透し易い特性を
有しているため、特に希土類材はCeが804℃、Pr
が640℃、Ndが1019℃といずれも低融点金属で
ありしかも溶湯温度が1600℃前後と高い温度で溶
解、精錬がなされるため容易に組織内に浸透して、導電
化現象を生じ湯モレを探知して炉が停止すること、同金
属が繰り返しての使用により酸化して内張り材の組織を
脆弱化させるとか、表層面にスラグが容易に付着すると
ともに内層部に亀裂が発生する。この亀裂が発達して表
層剥離を起こし内張り材の損傷度を高めて耐用寿命の低
下を余儀なくさせると共に突発的に炉を停止させてい
る。このような状況下にあり内張り材の短命は炉の保全
のため重度の3K作業の機会を多くしていること、また
突発的な炉の停止は生産活動に支障をきたし、共に大き
な問題となっている。この現状を鑑み炉の寿命の延長と
安定した操炉を可能とした誘導炉を提供することを技術
的課題とするものである。
As described above, the present Ce.
As the lining material for induction furnaces for melting and refining metals containing rare earth metals such as Pr and Nd, refractories with an alumina content of 96% by weight or more are most suitable because of their usage conditions, and as dry amorphous refractories. The furnace is baked and baked and filled with shaking, or a fixed-form fired refractory crucible is used.Although alumina material is inherently heat resistant, molten metal and slag penetrate into the tissue when used. In particular, rare earth materials have Ce of 804 ° C. and Pr
Are 640 ° C and Nd is 1019 ° C, all of which are low-melting metals, and are melted and refined at a high temperature of around 1600 ° C. When the furnace is shut down and the metal is repeatedly used, the metal is oxidized by repeated use to weaken the structure of the lining material, or slag easily adheres to the surface layer and cracks occur in the inner layer. The cracks develop and cause surface delamination, increasing the degree of damage to the lining material, forcing a reduction in the service life, and suddenly shutting down the furnace. Under such circumstances, the short life of the lining material increases the chance of severe 3K work for furnace maintenance, and sudden shutdown of the furnace hinders production activities, and both are major problems. ing. In view of this situation, it is a technical object to provide an induction furnace that can extend the life of the furnace and enable stable furnace operation.

【0006】[0006]

【課題を解決するための手段】本発明者等は、このよう
な現状に鑑み炉の状況を細かに調べこの調査に基づき種
々検討し研究を重ねた結果、現在用いられているアルミ
ナ含有量96重量%以上のアルミナ質の乾式不定形耐火
物の施工体でもまたルツボのいずれも次に示す不具合を
生ずることを確認した。 低融点金属であるCe・Pr・Nd等々の希土類金属
が容易に組織内に浸透する。 浸透したこれらの金属が導通して湯モレセンサーに探
知されて炉の停止となる。 浸透したこれらの金属は酸化能が大きいため炉の繰り
返し使用が行われることにより容易に酸化現象を起こし
て組織の脆弱化や内部亀裂を発生させこれが剥離現象を
生じさせている。 稼動層が部分的に剥離を生じることにより稼動面が凹
凸状となり且つ脆弱化層が露出して溶湯、スラグのアタ
ックを受けるので溶湯やスラグの浸透や付着が大きくな
り更に損傷を増大させる要因となる。 等々不具合の上に不具合を重ねているのが現状である。
これらの不具合を解決するには溶湯およびまたはスラグ
の組織内への浸透を阻止することが最大の手段である結
論を得た。
In view of such a situation, the present inventors have examined the condition of the furnace in detail and made various investigations based on this investigation. It was confirmed that any of the crucibles having the following problems also occurred in the construction of the alumina-based dry amorphous refractory having a weight percentage of at least. Rare earth metals such as Ce, Pr, and Nd, which are low melting metals, easily penetrate into tissues. These permeated metals are conducted and detected by the hot water leak sensor, and the furnace is stopped. These infiltrated metals have a high oxidizing ability, so that they are easily oxidized by repeated use of the furnace to cause weakening of the structure and internal cracks, which causes a peeling phenomenon. When the working layer is partially peeled, the working surface becomes uneven, and the weakened layer is exposed, and the molten metal and slag are attacked, so the penetration and adhesion of the molten metal and slag increase, further increasing the damage. Become. It is the current situation that failures are overlaid on failures.
It has been concluded that preventing the infiltration of the molten metal and / or slag into the tissue is the greatest means for solving these problems.

【0007】この結果に基づき本発明者等は種々研究、
実用試験を重ねた結果、Ce(セリウム)は酸化物とな
ることにより融点が804℃から2650℃へと高くな
り、高耐熱性材料となる。このセリウムの酸化物で製出
した材料が最も浸透が少なく且つ溶損も小さいことをつ
きとめることが出来た。この結果に基づき内張り材とし
て最も組織的に弱い結合部への置き換えの試験の結果、
添加量を増加させると改善効果が大きくなる。内張り材
の組織上結合部(74ミクロン以下)材として5重量%
〜50重量%迄の添加が適量範囲であることも実験によ
り確認することができ、誘導炉用内張り材としてはセリ
ウム酸化物(CeO2)を5〜50重量%と残部をAl
2O3含有量が90重量%以上のアルミナ質材料に適宜
の有機およびまたは無機質のバインダーを用いた成形体
とし200℃〜1000℃で熱処理をすることがよい。
また極度の3K作業である炉の解体・施工時の炉の保全
作業性や内張り材の品質安全性を高めるためには少なく
とも内層部の側壁を1体成形物とし、気孔率を15%以
下とした定形耐火物で外層部を高アルミナ質の乾式不定
形耐火物を用いて施工する多層構造体とすることによ
り、耐用寿命の向上、炉の安定した操業、炉の保
全作業の軽減、炉の改修後の垂直立ち上げ操業ができ
る等々の改善効果を修めることができる誘導炉を提供す
るものである。
Based on this result, the present inventors have conducted various studies,
As a result of repeated practical tests, Ce (cerium) becomes an oxide, and its melting point increases from 804 ° C. to 2650 ° C., and becomes a highly heat-resistant material. It was found that the material produced from this cerium oxide had the lowest penetration and the lowest erosion. Based on this result, the result of a test of replacement with the most systematically weak joint as a lining material,
Increasing the amount of addition increases the improvement effect. 5% by weight as material on the lining material (74 microns or less)
It can also be confirmed by experiments that the addition of up to 50% by weight is within an appropriate range. As a lining material for an induction furnace, 5-50% by weight of cerium oxide (CeO2) and the balance of Al
It is preferable to form a molded body using an appropriate organic and / or inorganic binder on an alumina material having a 2O3 content of 90% by weight or more and heat-treat it at 200 ° C to 1000 ° C.
In addition, in order to improve the furnace maintenance workability and the quality safety of the lining material during the dismantling and construction of the furnace, which is an extreme 3K work, at least the side wall of the inner layer part should be a one-piece molded product and the porosity should be 15% or less. The outer layer is made of high-alumina dry amorphous refractory and the outer layer is made of a multi-layered structure to improve service life, stabilize furnace operation, reduce furnace maintenance work, It is an object of the present invention to provide an induction furnace capable of improving the effects of improvement such as vertical startup operation after repair.

【0008】[0008]

【限定理由】酸化セリウム(CeO2)の添加材の粒
子径が74ミクロン以下とする。粒子間の結合は74ミ
クロン以下の粒子径域でほぼ成り立っている。溶湯やス
ラグの浸透はこの粒子間結合部に集中して発生すること
よりこの現象を防止するにはこの粒子域を酸化セリウム
材で構成することが効果的である。 酸化セリウムの配合量を5〜50重量%とする。酸化
セリウムの量が5重量%以下ではアルミナ質材の改善度
が小さく、50重量%とするのは結合部材のほぼ全量を
置換することになるためである。 アルミナ質原料のAl2O3含有量を75重量%以上
とする。Al2O3含有量が75重量%以下となるとS
iO2を主体とする他成分が増え、酸化セリウムとの間
で反応が高まり低融物を形成することにより耐熱性およ
び耐食性をそこなうこととなる。 一体成形物の気孔率を15%以下とする。溶湯スラグ
の浸透性を少なくする素材として酸化セリウムを用いて
も高気孔性であると浸透が大きくなるための不具合を生
ずる。この不具合を改善するためには気孔率を15%以
下としることが好ましい。 成形体の熱処理を200℃〜1000℃とする。熱処
理温度が200℃以下では含有する水分の除去またはバ
インダーの硬化が不充分となり取扱いの強度面および使
用時の残水分により不具合を生ずるためである。 炉壁部そスリーブとバック材(乾式不定形耐火物)の
多層方式とする。使用時の受熱により稼動層が焼結状態
となってもバック層は受熱による硬化もなく自在に動け
るため稼動層を成すスリーブに地金差しを生じてもバッ
ク層表面で侵入が阻止されて大事に到らずまた解体時は
焼固していないバック材を有するため容易に解体ができ
る。 内張り材の外層部材(乾式不定形耐火物)が内層部材
(定形耐火物)に比べ同等またはそれ以上の高い熱間線
膨脹性であること。内層材(定形耐火物)を外周部より
拘束して割れ亀裂の防止の効果を持たせる外層部材は同
等以上の高い熱間線膨脹性を有することがより効果的で
ある。次に実施例について記述する。
[Reason for limitation] The particle diameter of the additive material of cerium oxide (CeO2) should be 74 microns or less. Bonding between particles is substantially established in a particle diameter region of 74 microns or less. Since the permeation of the molten metal or slag is concentrated at the inter-particle joints, to prevent this phenomenon, it is effective to configure the particle area with a cerium oxide material. The compounding amount of cerium oxide is 5 to 50% by weight. When the amount of cerium oxide is 5% by weight or less, the improvement of the alumina material is small, and the reason for setting the amount to 50% by weight is that almost all of the coupling member is replaced. The Al2O3 content of the alumina raw material is set to 75% by weight or more. When the Al2O3 content becomes 75% by weight or less, S
Other components mainly composed of iO2 are increased, and the reaction with cerium oxide is increased to form a low melt, thereby deteriorating heat resistance and corrosion resistance. The porosity of the integrally molded product is 15% or less. Even if cerium oxide is used as a material for reducing the permeability of the molten metal slag, if it has high porosity, there is a problem that the penetration becomes large. In order to improve this problem, the porosity is preferably set to 15% or less. The heat treatment of the molded body is set to 200 ° C to 1000 ° C. If the heat treatment temperature is lower than 200 ° C., the removal of the contained water or the hardening of the binder is insufficient, resulting in problems due to the strength of handling and residual moisture during use. A multi-layer system consisting of a furnace wall sleeve and a backing material (dry type refractory). Even if the working layer becomes sintered due to the heat received during use, the back layer can move freely without hardening due to the heat received. In addition, when dismantling, it has a back material that has not been solidified, so that it can be easily dismantled. The outer layer member of the lining material (dry type refractory) has a higher hot linear expansion than or equal to that of the inner layer member (standard refractory). It is more effective that the outer layer member, which restrains the inner layer material (regular refractory) from the outer peripheral portion and has the effect of preventing cracks and cracks, has the same or higher high hot linear expansion. Next, examples will be described.

【0009】[0009]

【実施例】1.実施例に用いる原料の化学成分値を表1
に示す。 2.実施例に用いる耐火物の粒度構成例を表2に示す。 3.材質試験材の配合比率と品質特性確認試験結果を表
3に示す。 4.実用実施例の確認結果を表4に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 1 shows the chemical component values of the raw materials used in the examples.
Shown in 2. Table 2 shows an example of the particle size configuration of the refractory used in the examples. 3. Table 3 shows the mixing ratio of the material test materials and the results of the quality characteristic confirmation test. 4. Table 4 shows the results of confirmation of the working examples.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【表5】 [Table 5]

【0015】[0015]

【表6】 1.成形用原料の調整方法 試験体は表1に示される原料を用い表2、表3に示され
る配合比率、粒度構成に調整する。混合混練は必ず74
ミクロン以下30重量%の微粒子材と解膠剤およびまた
は硬化剤としてコロイダルシリカ3重量%、リンサンソ
ーダ0.5重量%と水4重量%を加えて混合してあらか
じめ泥状材を作りこれを他の原料中に添加しながら混
合、混練を行い成形用坏土とする。 2.整形方法 吸温性能を有する型(第1次試験の試験材は250×1
14×65mmの形状を第2次試験の実用試験材は誘導
炉用スリーブ材外径φ510mm、内径φ410mm、
高さ830mm)を用いる。この型を振動台上に固定し
て型に振動を与えながら前述方法で調整された坏土を順
次投入して加振充填成形を行いこれらを成形後約24時
間程自然養生して、硬化させまず芯型を脱し20℃〜5
0℃位の温度で予備乾燥して硬化度を見はからって全て
を脱型した後、自然養生し徐々に加熱処理して最高温度
500℃で15時間保持の加熱処理を行い、製造する。
尚、供試材の配合比率と品質特性値および高周波誘導炉
の内張り材として張り分け、この浸食試験結果を表3に
示す。
[Table 6] 1. Method of Adjusting Raw Materials for Molding The test specimens were prepared using the raw materials shown in Table 1 and adjusted to the compounding ratios and particle sizes shown in Tables 2 and 3. Mixing and kneading must be 74
30% by weight or less of micron particles and 3% by weight of colloidal silica as a deflocculant and / or a curing agent, 0.5% by weight of phosphorus sansoda and 4% by weight of water are mixed and mixed to prepare a mud-like material in advance. And kneading while adding to the raw materials of the above to obtain a forming clay. 2. Shaping method Mold with heat absorption performance (The test material for the first test is 250 × 1
Practical test material of the secondary test with the shape of 14 × 65 mm is the outer diameter φ510 mm of the sleeve material for the induction furnace, the inner diameter φ410 mm,
(Height: 830 mm). This mold is fixed on a vibrating table, and while the mold is vibrated, the kneaded clay adjusted by the above-described method is sequentially charged and subjected to vibration filling molding, and these are naturally cured for about 24 hours after molding and cured. First remove the core mold,
Preliminary drying at a temperature of about 0 ° C. to check the degree of hardening, demolding everything, natural curing, gradually heating and heating at a maximum temperature of 500 ° C. for 15 hours to produce .
Table 3 shows the results of the erosion test.

【0016】[0016]

【実用実施例】表3に示されるように定形耐火物の比較
例1に比べ本発明材は、セリウムを5重量%添加したN
o2材25重量%添加した、No4材はスラグライン部
での耐溶損比がそれぞれ48%、24%、スラグの浸透
深さが64%、35%にとどまり大きな改善硬化を修め
ていることより比較例材を表3No1材とNo6材(乾
式不定形耐火物)とNo6材と同材質一体成形品を本発
明材例として実施例材として用いて実炉により試験を行
う。尚本実用実施例の用いた一体成形品の製造は前項供
試材の製造方法により製出したものを用いて誘導炉への
施工は、一体成形品比較例材のAと本発明例材Bは炉
底の下層部を乾式不定形耐火物を加振充填した後一体成
形物を所定の個所に配設しスリーブと炉本体との間隙部
を乾式不定形耐火物を投入加振充填して築炉を行う。
乾式不定形耐火物を用いた比較例のCは、まず炉床材を
加振充填した後所定の調整フォーマーを配設してフォー
マーと炉本体の所定間隙部に投入加振充填を行い使用に
供する。
[Practical Examples] As shown in Table 3, the material of the present invention is different from Comparative Example 1 of the fixed refractory in that the cerium is added in an amount of 5% by weight.
The No. 4 material, which was added with 25% by weight of o2 material, had a erosion resistance ratio of 48% and 24% at the slag line portion and a penetration depth of slag of 64% and 35%, respectively. As an example material of the present invention, a test is carried out by using an example material as an example material of the present invention as an example material of the present invention. The integrated molded article used in this practical example was manufactured by the method of manufacturing the test material described in the preceding section, and the construction in the induction furnace was performed by using the integrated molded article comparative material A and the present invention material B. After shaking and filling the lower layer of the furnace bottom with dry amorphous refractory, the integrated molded product is placed at a predetermined location, and the gap between the sleeve and the furnace body is filled with dry amorphous refractory and shaken and filled. Build the furnace.
C of the comparative example using the dry-type amorphous refractory was prepared by first vibrating and filling the hearth material, then arranging a predetermined adjusting former, charging the former with a predetermined gap between the former and the furnace body, and performing vibratory filling. Offer.

【0017】[0017]

【発明の効果】最も一般に用いられている高アルミナ質
材の定形耐火物(表3No1)を比較例材としこの耐火
物を基準として粒子径0.074mm以下の耐火物結合
部に酸化セリウムを25重量%添加した表3No4材を
あらかじめ一体成形体として用いた結果耐用寿命におい
ては無補修での使用回数が35回に比べ57回となり耐
用比率が196%、後2回の補修を行い使用しての最終
寿命は41回に対して93回となり244%の総耐用寿
命となるなど大きな効果を修めることができた。尚乾式
不定形耐火物の施工の場合に比べても同一材質である表
3No6材に比べても炉内張り材の総保全所要時間およ
び炉の立ち上げ迄の総所要時間比は22.8%となりし
かも耐用寿命が1.9倍となることより総保全作業所要
時間比は12%にとどまるなどその効果は絶大なるもの
がある。
The most commonly used fixed refractory material of high alumina material (No. 1 in Table 3) was used as a comparative example material. Based on this refractory material, 25 cerium oxide was added to the refractory joint having a particle diameter of 0.074 mm or less. As a result of using the No. 4 material in Table 3 to which the weight% was added as an integrally formed body in advance, the service life in service life was 57 times compared with 35 times without repair, the service rate was 196%, and the repair was performed twice after use. The final life was 93 times compared to 41 times, and a great effect was obtained, such as a total service life of 244%. In addition, compared with the case of dry type refractory construction, the total maintenance time of the furnace lining material and the ratio of the total time required for furnace start-up are 22.8% compared to the No. 6 material of Table 3 which is the same material. In addition, since the service life is increased by 1.9 times, the ratio of the time required for the total maintenance work is limited to 12%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類金属および希土類金属を含有する金
属を溶解およびまたは精錬に用いられる誘導炉において
炉の内張り用耐火物を少なくとも二層構造としその稼動
層(最内側部)を74ミクロン以下の酸化セリウム材を
5〜50重量%と残部をアルミナ含有量75重量%以上
の高アルミナ質材およびまたはアルミナ質材に適宜の有
機およびまたは無機質の解膠剤や硬化材を添加、混練し
た材料により少なくとも側壁部を一体成形物となし、2
00℃〜1000℃の温度域で熱処理をほどこし気孔率
を15%以下とした定形耐火物で、また外層部を内層部
材と同等もしくはそれ以上の高熱間線膨張性を有する乾
式不定形耐火物で施工されていることを特徴とする多層
耐火物構造とした誘導炉。
1. An induction furnace used for melting and / or refining a rare earth metal and a metal containing a rare earth metal, wherein the refractory for lining the furnace has at least a two-layer structure and its working layer (the innermost part) has a thickness of 74 μm or less. A material obtained by adding a suitable organic and / or inorganic deflocculant or hardening material to a high alumina material and / or alumina material having a cerium oxide material content of 5 to 50% by weight and a balance of alumina content of 75% by weight or more, and kneading the material. At least the side wall is made as an integral molded product, and 2
A fixed refractory having a porosity of 15% or less by heat treatment in a temperature range of 00 ° C to 1000 ° C, and a dry amorphous refractory having an outer layer portion having a high hot linear expansion property equal to or higher than that of the inner layer member. An induction furnace with a multi-layer refractory structure characterized by being constructed.
JP11082876A 1999-03-26 1999-03-26 Induction furnace Pending JP2000274956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11082876A JP2000274956A (en) 1999-03-26 1999-03-26 Induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11082876A JP2000274956A (en) 1999-03-26 1999-03-26 Induction furnace

Publications (1)

Publication Number Publication Date
JP2000274956A true JP2000274956A (en) 2000-10-06

Family

ID=13786503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11082876A Pending JP2000274956A (en) 1999-03-26 1999-03-26 Induction furnace

Country Status (1)

Country Link
JP (1) JP2000274956A (en)

Similar Documents

Publication Publication Date Title
JP4470207B2 (en) Refractory brick
JP4541162B2 (en) Crack-resistant dry refractories
JP5419231B2 (en) Indefinite refractory
US3836613A (en) Method of making liner in an induction melting furnace
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
CN110331252B (en) Method for repairing partially damaged brick cup of tap hole of converter on line
WO2009062074A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2000274956A (en) Induction furnace
JP2008207238A (en) Casting mold
JP3464323B2 (en) Molten steel ladle and its repair method
JP3276061B2 (en) Induction furnace
JPH08219659A (en) Construction method for induction furnace lining refractory
JP2000186892A (en) Induction furnace
JP3803740B2 (en) Manufacturing method of refractories for gas blowing
JP2019137561A (en) Monolithic refractory composition
JP2009155124A (en) Refractory formed body for treating radioactive waste and method for producing the same
JPH10279357A (en) Lining material for induction furnace
JP3774557B2 (en) Refractory for injecting inert gas into molten metal and method for producing the same
JPH11211360A (en) Induction furnace with multilayer-lined structure wherein shaped material coated with low melting-point ceramics material is allocated at outer layer of lining material
JPH0671422A (en) Method for lining bottom part in ladle
JP4484173B2 (en) Indefinite refractory
JPH0375275A (en) Magnesian refractory mortar
JPH09165270A (en) Alumina casting monolithic refractory and production of formed body using the refractory
JPH11201652A (en) Induction furnace lined with shaped material coated with coating material
JPH10227574A (en) Induction furnace