JP2000274710A - Structure of heat accumulation floor heater and method thereof - Google Patents
Structure of heat accumulation floor heater and method thereofInfo
- Publication number
- JP2000274710A JP2000274710A JP11122810A JP12281099A JP2000274710A JP 2000274710 A JP2000274710 A JP 2000274710A JP 11122810 A JP11122810 A JP 11122810A JP 12281099 A JP12281099 A JP 12281099A JP 2000274710 A JP2000274710 A JP 2000274710A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- floor
- kcal
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/60—Planning or developing urban green infrastructure
Landscapes
- Central Heating Systems (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コンクリート蓄熱層床
上に薄くて熱量の大きい蓄熱体を簡便に設置する床暖房
装置であり、潜熱蓄熱と顕熱蓄熱を利用して、主に夜間
の電力で蓄熱し昼間は内蔵した蓄熱材からの放熱で暖房
をする蓄熱型床暖房装置の構造と施工方法の提供に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floor heating apparatus for easily installing a heat storage body having a large calorific value on a concrete heat storage floor, and uses a latent heat storage and a sensible heat storage to generate electricity mainly at night. The present invention relates to the provision of a structure and a construction method of a heat storage type floor heating device that stores heat in the daytime and heats by heat radiation from a built-in heat storage material in the daytime.
【0002】[0002]
【従来の技術】安価な夜間電力を利用して蓄熱し、昼間
は蓄熱体の放熱で床暖房をする方法に措いては省資源、
低コストで経済的である。従来、床暖房は24時間暖房
を実施すると経済的負担増となっていた。安価な夜間電
力を利用する方法としてタイムラグを補う蓄熱の方法が
実施されている。従来の蓄熱式は蓄熱材の保有する熱量
が小さいために小型化ができず使用目的を達成するに
は、蓄熱材の所要の容積が確保には容積が大きく、収納
可能な床構造に限られていた。一般的に構造物や住宅の
熱負荷に対する性能の効果、効率を示す数値として建造
物の熱損失係数がQ値Kcal/m2.hがで標準化さ
れている。暖冷房はこの基準値を所要熱量の目安として
いる。暖房に有効な蓄熱条件として床暖房装置が許容さ
れる所要単位当たりの熱容量基準は単位容量当たり75
Kcal/l以上の蓄熱/放熱ができる蓄熱体が必要で
あった。2. Description of the Related Art A method of storing heat using inexpensive nighttime electric power and heating the floor by radiating heat from a heat storage body in the daytime is a resource saving method.
Low cost and economical. Conventionally, if the floor heating is performed for 24 hours, the economic burden increases. As a method of using inexpensive nighttime electric power, a heat storage method for compensating for a time lag has been implemented. The conventional heat storage type has a small amount of heat, so the heat storage material has a small amount of heat. I was In general, the heat loss coefficient of a building is a Q value Kcal / m 2 . h is standardized by Heating / cooling uses this reference value as a guide to the required amount of heat. The heat capacity per required unit that the floor heating device is allowed as a heat storage condition effective for heating is 75 per unit capacity.
A heat storage element capable of storing / dissipating heat of Kcal / l or more was required.
【0003】従来、夜間電力を利用する床暖房の設置方
法は、予め床構造に敷設する方法に措いてスラブ上に断
熱材、ヒーター、蓄熱体をモルタルで埋め込み、コンク
リート顕熱と併用する蓄熱方式が知られている。実施さ
れている方法に措いては埋設する蓄熱材の蓄熱能力が小
さい為に、所要熱量を補うには潜熱蓄熱材の増量又はコ
ンクリート顕熱容量で補う方法が取られて来た。しかし
単位容積及び単位面積に措いて埋設される潜熱蓄熱材の
質量を増大すると、熱伝達性能の低下やコストで制約を
受けていた。又コンクリート容積の確保が損なわれと、
所要の熱量不足を招き、熱切れ現象を起こしていた。
又、駆体構造工事に床暖房敷設が拘わるために施工上の
区分や責任範囲が繁雑化し、埋設後の修理や補正点検、
又、取り外しが困難でメンテナンス等の経済負担が大き
かった。[0003] Conventionally, floor heating using nighttime power has been installed by laying a heat insulating material, a heater, and a heat storage body in a mortar on a slab by using a method of laying it in advance on a floor structure, and using it together with concrete sensible heat. It has been known. Due to the low heat storage capacity of the heat storage material to be buried according to the method being practiced, a method of increasing the amount of latent heat storage material or increasing the amount of latent heat storage material or sensible heat capacity of concrete has been adopted in order to supplement the required amount of heat. However, when the mass of the latent heat storage material buried in the unit volume and unit area is increased, the heat transfer performance is reduced and the cost is restricted. Also, if the securing of concrete volume was damaged,
Insufficient amount of heat was caused, causing a heat out phenomenon.
In addition, since floor heating laying is involved in the body structure construction, the divisions and responsibilities in the construction are complicated, and repair and correction inspection after burial,
In addition, it was difficult to remove, and the economic burden such as maintenance was large.
【0004】各種の床暖房の内、蓄熱体に使用される潜
熱蓄熱材は無機系水和物や有機物系が知られている。顕
熱蓄熱材としては、無機物質系がある。無機水和物には
本発明に採用した酢酸ナトリウム系、チオ硫酸ナトリウ
ム系の外、硫酸ナトリウム系や有機物にパラフィン系が
ある。硫酸ナトリウム系蓄熱材は融点/凝固点は30℃
前後、単位重量当たりの熱量34Kcal/Kg、単位
容量当たり熱量49.3Kcal/l、比重1.45で
ある。パラフィン系蓄熱材は単位熱量45Kcal/K
g、単位容量当たりの蓄熱量40kcal/l、比重
0.88である。顕熱蓄熱式では温水比重1.0Kca
l/l.比熱1Kcal/Kg℃とコンクリートやモル
タル比熱は0.2Kcal/Kg℃、比重は2.0があ
る。夜間の電力を利用するには蓄熱体に所要の蓄熱容量
を満足させる能力が要求される。潜熱蓄熱体を埋設しな
いモルタル顕熱に限定した床暖房では夜間電力を利用す
るには重量が増大しすぎ、容量が小さいと夜間電力の利
用は不利であった。又、コンクリート単体の蓄熱方法で
補うには、重量が大きくなり建築の構造強度や経済面に
影響する制約を受けていた。蓄熱材料の性能と公知にな
る各々の蓄熱材について比較を下表に示す。Among various types of floor heating, a latent heat storage material used for a heat storage body is known to be an inorganic hydrate or an organic material. As the sensible heat storage material, there is an inorganic material. Inorganic hydrates include, in addition to the sodium acetate and sodium thiosulfate systems used in the present invention, sodium sulfate systems and organic paraffins. Sodium sulfate heat storage material has a melting point / freezing point of 30 ℃
Before and after, the heat quantity per unit weight is 34 Kcal / Kg, the heat quantity per unit capacity is 49.3 Kcal / l, and the specific gravity is 1.45. Paraffin heat storage material has a unit calorie of 45 Kcal / K
g, heat storage amount per unit capacity: 40 kcal / l, specific gravity: 0.88. The specific gravity of hot water is 1.0Kca in the sensible heat storage system.
l / l. Specific heat is 1 Kcal / Kg ° C, concrete and mortar specific heat is 0.2 Kcal / Kg ° C, and specific gravity is 2.0. In order to use nighttime electric power, the heat storage body is required to have a capability of satisfying a required heat storage capacity. Floor heating limited to mortar sensible heat without burying latent heat storage elements would be too heavy to use nighttime power, and nighttime power would be disadvantageous if the capacity was small. In addition, supplementing with the heat storage method of concrete alone has been subject to restrictions that affect the structural strength and economics of the building due to the increase in weight. The following table shows a comparison between the performance of the heat storage material and each of the known heat storage materials.
【0005】[0005]
【表1】 表1から当該酢酸ナトリウム系蓄熱材の熱量に比較した
ものである。外の蓄熱材料に比べ、容積比で1.8倍以
上である。表の熱量が示すように、制限された床容積で
使用に適用できるものである。床高が限定された蓄熱床
暖房パネルユニットでは、内装される蓄熱材の厚みの許
容は16mm以下の範囲に制限されこの時の所要蓄熱容
積は1m2当り16/lで、建造物に措ける床面積基準
の単位負荷40Kcal/m2.hの場合、放熱時間1
6時間の所要蓄熱量は640Kcal/m2である。上
記表1に示す数値から本発明に採用した蓄熱材は1m
2当りの蓄熱重量は10.6/Kg.以上、1m 2当り
の蓄熱容量は7.2/l以上であればよく所要容量の1
6lの範囲にある。硫酸ナトリウム系の1m2当りの蓄
熱重量は18.2/Kg、1m2当りの蓄熱容量は1
3.1/l以上必要、では単位当たり蓄熱量の不足を生
じる。同様に表に示すパラフィンでは、単位重量当り蓄
熱量45Kcal/Kg又、単位容量当り蓄熱量は37
Kcalでは、1m2当たり所要蓄熱材重量は14.2
Kg、1m2当り蓄熱材容量は17.3/lでは比重が
小さい為に制限される範囲の容積確保が不可能であり所
要熱量が不足する事にあった。尚、床暖房面積に占有す
る蓄熱材の使用率はパネルの根太部や電気結線取り付け
部により、実際値は20%程度減少した数値である。こ
の様にパラフィン系蓄熱材及び硫酸ナトリウム系蓄熱材
共に床暖房の許容容積に充当する熱量を満足させる蓄熱
機能を確保できなかったものである。[Table 1] Table 1 compares the calorific value of the sodium acetate-based heat storage material. It is 1.8 times or more in volume ratio compared to the outside heat storage material. As indicated by the calories in the table, it is applicable for use with a limited bed volume. In a heat storage floor heating panel unit with a limited floor height, the allowable thickness of the heat storage material to be installed is limited to a range of 16 mm or less, and the required heat storage volume at this time is 16 / l per 1 m 2 , which is suitable for buildings. Unit load 40 Kcal / m 2 based on floor area. h, heat dissipation time 1
The required heat storage for 6 hours is 640 Kcal / m 2 . From the numerical values shown in Table 1 above, the heat storage material employed in the present invention is 1 m
2 is 10.6 / Kg. As described above, the heat storage capacity per 1 m 2 may be 7.2 / l or more, and the required capacity is 1
It is in the range of 6 l. Heat storage capacity of the heat storage weight 18.2 / Kg, 1m 2 per per 1 m 2 of sodium sulfate system 1
If it is required to be 3.1 / l or more, shortage of heat storage per unit occurs. Similarly, in the paraffin shown in the table, the heat storage amount per unit weight is 45 Kcal / Kg, and the heat storage amount per unit capacity is 37 Kcal / Kg.
In kcal, 1 m 2 per desired heat storage material weight 14.2
When the heat storage material capacity per kg and 1 m 2 is 17.3 / l, the specific gravity is small, so that it is impossible to secure a limited range of volume, and the required heat quantity is insufficient. The actual rate of use of the heat storage material occupying the floor heating area is a value reduced by about 20% due to the joist of the panel and the electrical connection mounting portion. As described above, both the paraffin-based heat storage material and the sodium sulfate-based heat storage material cannot secure a heat storage function that satisfies the amount of heat applied to the allowable volume of floor heating.
【0006】[0006]
【発明が解決しょうとする課題】本発明は夜間電力を利
用して如何なる床構造にも対応できる床暖房蓄熱パネル
と併用する蓄熱コンクリート床構造の組み合わせにあ
る。従来、床構造は室内空間の居住性や構造強度及び係
る経済コストから床の許容される範囲この場合、厚み、
重量が限定されている。装置高が小型で、所要熱量を満
たす蓄熱量の確保で夜間電力で蓄熱して、蓄熱/放熱す
るに必要な温度と時間を満足できる床暖房の提供にあ
る。方法として規制される範囲の容積内て暖房に必要な
単位当たり所要の熱量を満たす蓄熱材と効率よく電気エ
ネルギーを熱転換する電気抵抗発熱体を付帯したパネル
装置と良好な熱伝導コンクリート蓄熱層の補助蓄熱部を
組み合わせる蓄熱床暖房が有効である。パネル部の潜熱
蓄熱材として酢酸ナトリウム水和物を主剤とした蓄熱体
に放熱効率のよい、厚み1mm以下になる面状電気抵抗
発熱体を密着重層して、一体化した状態が薄型の箱状ケ
ースに装着し、接続の配線部に夜間電力を用いて、蓄熱
パネル内のヒーターで上部の蓄熱体と下部の蓄熱層コン
クリートへ熱伝導により蓄熱する方法である。昼間は蓄
熱部からの放熱で床暖房を賄い、電力消費を削減しなが
ら24時間の連続暖房を可能とする。尚、簡便な施工性
及び取り扱いが、従来工法によるコストを削減し、夜間
電力を利用できる省資源エネルギー蓄熱床暖房装置の提
供にある。SUMMARY OF THE INVENTION The present invention resides in a combination of a thermal storage concrete floor structure and a floor heating and thermal storage panel which can be used with any floor structure by using nighttime electric power. Conventionally, the floor structure is within the allowable range of the floor from the livability and structural strength of the indoor space and the related economic cost, in this case, the thickness,
Limited weight. It is an object of the present invention to provide a floor heater that has a small device height, stores heat with nighttime power by securing a heat storage amount that satisfies a required heat amount, and can satisfy the temperature and time required for heat storage / radiation. As a method, a heat storage material that satisfies the required amount of heat per unit required for heating within a volume restricted by the method, a panel device with an electric resistance heating element that efficiently converts electric energy into heat, and a good heat transfer concrete heat storage layer Heat storage floor heating combining an auxiliary heat storage unit is effective. A flat box-shaped electric resistance heating element with good heat dissipation efficiency and a thickness of 1 mm or less is layered tightly on a heat storage element mainly composed of sodium acetate hydrate as the latent heat storage material of the panel part, and the integrated state is a thin box shape In this method, heat is stored in the upper heat storage body and the lower heat storage layer concrete by a heater in the heat storage panel by using nighttime electric power in the wiring part of the connection to the case. In the daytime, the floor heating is covered by heat radiation from the heat storage unit, and continuous heating for 24 hours is possible while reducing power consumption. It should be noted that the simple construction and handling are to provide a resource-saving energy storage / floor heating device which can reduce the cost of the conventional method and use nighttime power.
【0007】[0007]
【課題を解決するための手段】本発明は手段として用い
られる潜熱蓄熱材は、酢酸ナトリウム水和物を主剤とし
た電解質蓄熱材とコンクリート又はモルタル顕熱蓄熱層
を併用する方法にある。併用する方法においては既に蓄
熱材を埋設する方法が知られている。しかし、潜熱蓄熱
部と顕熱蓄熱部に区分して蓄熱併用する方法は、従来、
知られている施工方法より、蓄熱量の増大と、事後のメ
ンテナンス対応や工事の簡素化ができる等、トラブルの
解消等に有効かつ効果的である。本発明に採用した主た
る蓄熱層になる潜熱蓄熱素材は単位重量当たりの熱量は
60Kcal/Kg、単位当たりの容量熱量は85Kc
al/lであり、比重は1.42、融点及び凝固点は5
8℃にあり、使用される目的により熱量を減少させずに
融点/凝固点の変更、例えば55℃から30℃まで任意
に変更できる特異性を有するものである。薄く小型化で
きるので、使用の目的である床高の許容される範囲で敷
設を可能にし、顕熱蓄熱層の容積を所要に合わせて構築
できる。床のコンクリート蓄熱層に良好な熱伝導物性の
相乗効果でパネル敷設範囲外も補助的に蓄熱する。従来
行われたコンクリートに埋設する方法の最大短所である
埋設工事後に発覚する施工上のトラブルではコンクリー
トに埋設した設備を修理するにはコンクリート床を壊す
などの対処方法が取られていたが、本発明の方法におい
てはパネルの交換で簡便に処理することで解消できる。
施工分離により、所要熱量や構造強度を事前に簡単に計
算でき、専門的技術を必要としない。因って顕熱蓄熱容
積の増減工事が簡素化され、所要蓄熱量の確保がより正
確に実施できるので、施工コストの削減が可能となる。
機能面でも従来の埋設に比べて、床温度の立ち上がりや
蓄熱熱量が大きく放熱持続時間を大幅に改善できる。工
法の効率化や簡素化による施工に係る経費の削減や埋設
方法で解決出来なかったメンテナンス保全や取り付け、
取り外しが容易であり、熟練した専門技術を必要とせ
ず、信頼性と経済性を大幅に改善できるものである。夜
間電力を用いて蓄熱し昼間の電力消費を削減しながら2
4時間の連続暖房を可能にしてランニングコストを削減
できる。小型で薄く蓄熱量の大きい蓄熱電気床暖房装置
である。Means for Solving the Problems The present invention resides in a method in which the latent heat storage material used as a means is a combination of an electrolyte heat storage material mainly containing sodium acetate hydrate and a concrete or mortar sensible heat storage layer. As a method of using the heat storage material together, a method of burying a heat storage material is already known. However, the method of separately using the latent heat storage unit and the sensible heat storage unit and
The known construction method is effective and effective in eliminating troubles, such as increasing the amount of stored heat, simplifying maintenance work after the fact and simplifying the construction. The latent heat storage material used as the main heat storage layer employed in the present invention has a heat quantity per unit weight of 60 Kcal / Kg and a heat capacity per unit of 85 Kc.
al / l, specific gravity 1.42, melting point and freezing point 5
It is at 8 ° C. and has a specificity that the melting point / freezing point can be changed arbitrarily from 55 ° C. to 30 ° C. without reducing the amount of heat depending on the purpose of use. Since it can be made thin and compact, it can be laid within the allowable range of the floor height, which is the purpose of use, and the volume of the sensible heat storage layer can be constructed as required. Due to the synergistic effect of the good thermal conductivity of the concrete heat storage layer on the floor, heat is additionally stored outside the panel installation area. In the case of construction problems discovered after burial work, which is the biggest disadvantage of the conventional method of burying in concrete, measures to repair equipment buried in concrete, such as breaking the concrete floor, have been taken. In the method of the present invention, the problem can be solved by simply replacing the panel with a simple one.
Due to the construction separation, the required heat quantity and structural strength can be easily calculated in advance, and no special skills are required. Therefore, the work of increasing or decreasing the sensible heat storage volume is simplified, and the required amount of heat storage can be more accurately secured, so that the construction cost can be reduced.
In terms of function, the rise in floor temperature and the amount of heat storage are large compared to conventional burial, and the duration of heat radiation can be greatly improved. Efficiency and simplification of the construction method reduced the cost of construction and maintenance maintenance and installation that could not be solved by the burial method.
It is easy to remove, does not require skilled expertise, and can significantly improve reliability and economy. While storing heat using nighttime power to reduce daytime power consumption, 2
Running costs can be reduced by enabling continuous heating for 4 hours. It is a heat storage electric floor heating device that is small and thin and has a large heat storage amount.
【0008】本発明に有効な蓄熱性能を有する酢酸ナト
リウム系潜熱蓄熱材料が、ポリプロピレン、ポリエチレ
ン、ポリエステルなど高分子樹脂を平板に成型されたブ
ロー容器又はオレフィンとアルミニウムの積層になる薄
膜フイルムに充てん密封された蓄熱体であり、吸蓄熱/
放熱効果と熱履歴の安定に好ましい。[0008] A sodium acetate-based latent heat storage material having a heat storage performance effective for the present invention is filled and sealed in a blown container formed by molding a high-molecular resin such as polypropylene, polyethylene, or polyester into a flat plate or a thin film formed by laminating olefin and aluminum. Heat storage material,
It is preferable for the heat radiation effect and the stability of the heat history.
【0009】電気抵抗発熱体は本発明に措いては熱転換
効率や放熱性、蓄熱体への密着性において、面状電気抵
抗発熱体が好ましい。According to the present invention, the electric resistance heating element is preferably a planar electric resistance heating element in terms of heat conversion efficiency, heat dissipation, and adhesion to the heat storage element.
【0010】蓄熱及びヒーターを内蔵する為のパネルの
外装に使用する材は、木枠箱状に構成される小根太材
は、一辺が最大高22mmから最小高12mmまでの範
囲で設定でき、幅、面長が任意寸法である。該、小根太
の面長に対称する辺の間隔は建築基準設定幅であり、そ
の底辺の底板が電気絶縁を施した熱伝導良体(例えばア
ルミニウムや鉄板)が小根太材と接着し固定された構成
でヒーターにより加熱され底板を通じてコンクリート蓄
熱層に伝導し蓄熱する。[0010] The material used for the exterior of the panel for incorporating the heat storage and the heater is a small joist made of a wooden frame box, and one side can be set in a range from a maximum height of 22 mm to a minimum height of 12 mm. , The surface length is an arbitrary dimension. The interval between the sides symmetrical to the surface length of the small joist is the building standard setting width, and the bottom plate at the bottom of the small joist is fixed to the small joist material by bonding a thermally conductive body (eg, aluminum or iron plate) with electrical insulation. Heated by the heater in the above configuration, it is conducted to the concrete thermal storage layer through the bottom plate and stores heat.
【0011】該、外装パネル内に装置される蓄熱体の寸
法及び容量は外装パネルの容積及び面積に比例して任意
寸法に選定できる。該、蓄熱体の容量寸法の選定基準
は、例えば建築基準に示される構造物の熱伝達係数、熱
貫流係数や熱損失係数Q値/m2.h.に基づき、床m
2当たりの所要熱量の基準が効果の目安として要求され
る。単位面積当たりの所要蓄熱量は外装パネルの容積と
敷設面積で決定される故に、本発明に示す容積はこのよ
うな理由から選定、構成されるものである。[0011] The size and capacity of the heat storage device installed in the exterior panel can be arbitrarily selected in proportion to the volume and area of the exterior panel. The criteria for selecting the capacity size of the heat storage body include, for example, the heat transfer coefficient, heat transmission coefficient, and heat loss coefficient Q value / m 2 . h. Based on the floor m
The standard of the required heat per 2 is required as a measure of the effect. Since the required heat storage amount per unit area is determined by the volume of the exterior panel and the laying area, the volume shown in the present invention is selected and configured for such a reason.
【0012】従来、コンクリート蓄熱に用いられた電気
抵抗発熱体は主に径線状の電気抵抗発熱体をすだれ状に
組み、蓄熱体に重層する工法で埋設していた。径線は埋
設時の破損を防ぐ為に被覆部が太く、単位密度に措ける
放熱性や熱伝導性は効率的ではなかった。本発明に採用
したヒーターは面状で薄く、熱転換率や伝達性に優れ
る。面状電気抵抗発熱体は該、パネル内に収まる寸法に
作成されるので、破損の心配はない。蓄熱体と重層して
雰囲気内で、蓄熱体の相変化や蓄熱層のコンクリート容
量に蓄熱させるに必要な加熱能力(単位W密度)を有す
るものであればよく、電源に接続する機能をパネル内に
付加している。Conventionally, the electric resistance heating element used for concrete heat storage has been mainly constructed by interdigitating a wire-shaped electric resistance heating element in an interdigital shape and burying the heat storage element by a construction method. The diameter wire has a thick covering portion to prevent breakage at the time of embedding, and the heat dissipation and thermal conductivity required for unit density are not efficient. The heater employed in the present invention is planar and thin, and is excellent in heat conversion rate and transmission. Since the sheet-like electric resistance heating element is made to have a size that can be accommodated in the panel, there is no fear of breakage. Anything that has the heating capacity (unit W density) necessary to store the heat in the concrete capacity of the heat storage layer and the phase change of the heat storage body in the atmosphere by overlapping the heat storage body may be used. Has been added.
【0013】尚、付加機能として、本発明のパネルユニ
ットは主に夜間電力を利用するためのタイマーにより稼
働する。夜間電力とは限定された時間内に入力通電さ
れ、それ以外の時間帯の通電はタイマーにより通電が遮
断される。遮断された時間帯の暖房は蓄熱部の放熱によ
り賄われる。因に、設置されるタイマーは一般的に、夜
間電力専用に使用される通電時間は夜間の11時から朝
の7時までの8時間であり、7時から夜の11時までは
該、タイマーが電気を遮断するように設定されている。
本発明の潜熱蓄熱方式は通電されている時間内に潜熱蓄
熱材を融点まで加熱して融解する事が要求されるので、
面状電気抵抗発熱体のW密度や抵抗値の機能が影響す
る。本発明に用いる発熱体は、W密度は、200W〜4
00W/m2.時間.の許容範囲にある。それ以下では
所要能力が低く、融解に必要な熱量が得られず蓄熱目的
の機能を達成できない。又、それ以上のW密度では経済
性を損なうことになる。As an additional function, the panel unit of the present invention is operated mainly by a timer for utilizing nighttime power. In the case of nighttime power, input power is supplied within a limited time, and power supply in other time zones is interrupted by a timer. Heating during the shut-off period is covered by heat radiation from the heat storage unit. In general, the installed timer is generally used for night power only for 8 hours from 11:00 at night to 7:00 in the morning, and the timer is used from 7:00 to 11:00 at night. Are set to shut off electricity.
Since the latent heat storage method of the present invention requires that the latent heat storage material be heated to the melting point and melted within the energized time,
The function of the W density and the resistance value of the sheet-like electric resistance heating element influences. The heating element used in the present invention has a W density of 200 W to 4 W.
00W / m 2 . time. Within the allowable range. Below this, the required capacity is low, the amount of heat required for melting cannot be obtained, and the function of heat storage cannot be achieved. On the other hand, if the W density is higher than that, the economy is impaired.
【0014】本発明に採用する潜熱蓄熱材は従来の単純
な顕熱型蓄熱と異なり、温度可変制御を必要としない。
該、パネルに用いる蓄熱体は固有の融点以下では固体で
ある。これを加熱すると熱を吸収しながら液体に相変化
し、完全に液化して蓄熱が完了する。一般的に潜熱蓄熱
材は融解/凝固の出入りする熱を利用するものであるか
ら、未融解温度では潜熱利用の目的が損なわれる事にな
る。採用の蓄熱材の融解/凝固点温度を基準に設定し調
整したサーモスタットやPTC機能を採用して規定温度
で、蓄熱材が融解するまで加熱する必要がある。夜間電
力制限時間内に融解/凝固点を感知して電力の入切有す
る該、機能と電源タイマースイッチで電源を入切する。
該、電源装置は床暖房期間に電源を入れるだけでフリー
メンテナンスで安全と経済性に優れる。The latent heat storage material employed in the present invention does not require variable temperature control, unlike conventional simple sensible heat storage.
The heat storage body used for the panel is solid at a temperature lower than the intrinsic melting point. When this is heated, it changes into a liquid phase while absorbing heat, is completely liquefied, and the heat storage is completed. Generally, the latent heat storage material utilizes heat that flows in and out of melting / solidification, so that the purpose of utilizing latent heat is impaired at an unmelted temperature. It is necessary to employ a thermostat or PTC function set and adjusted based on the melting / freezing point temperature of the adopted heat storage material, and to heat the heat storage material at a specified temperature until the heat storage material is melted. The power is turned on and off by the function and the power timer switch, which has the function of turning on and off the power by detecting the melting / freezing point within the power limit time at night.
The power supply device is free maintenance and is excellent in safety and economy only by turning on the power supply during the floor heating period.
【0015】予め使用する蓄熱体の熱量と融解/凝固の
温度に同調するサーモスタットや同様な温度域を定めた
リレースイッチに接続するセンサーやサーミスターが蓄
熱体に設置接続されたもの又は、蓄熱体の融解点に定め
た温度で電源からの電流を自己制御して機能する面状電
気抵抗発熱体が好ましい。A thermostat that synchronizes with the heat quantity of the regenerator used in advance and the temperature of melting / solidification, or a sensor or thermistor connected to a relay switch that defines a similar temperature range is installed or connected to the regenerator, or The planar electric resistance heating element which functions by self-controlling the current from the power supply at the temperature determined at the melting point of the above is preferable.
【0016】顕熱を利用するモルタル及びコンクリート
蓄熱層は熱伝導伝熱(2.0k×103)によって加熱
/放熱を行う。熱伝導伝達の効率を高める方法としてモ
ルタルに熱伝導性に優れるグラファイト及び炭素類の
内、カーボン、石墨(8.4〜37.7k×103)の
粉末が選ばれる。その添加量の範囲はモルタル容積量当
たり0.01〜5%で好ましくは1%までが効果的であ
る。これをコンクリート層に重層して一般的にはコンク
リート及びモルタル等の中間に補強用と熱伝達促進に2
層に渡る金属メッシュを埋設すると熱伝導の効果を増進
できる。The mortar and concrete heat storage layer utilizing sensible heat are heated / dissipated by heat conduction heat transfer (2.0 k × 10 3 ). As a method for improving the heat transfer efficiency, graphite and carbon (8.4 to 37.7 k × 10 3 ) powder are selected from graphite and carbons having excellent heat conductivity in the mortar. The range of the addition amount is 0.01 to 5% per mortar volume, preferably 1%. This is superimposed on a concrete layer and is generally used for reinforcement and heat transfer promotion in the middle of concrete and mortar.
By embedding a metal mesh over the layers, the effect of heat conduction can be enhanced.
【0017】[0017]
【作用】(発明の実態の形態)すなわち、本発明の床暖
房パネルユニットに用いられる潜熱蓄熱材は、他の蓄熱
材料に比べて、単位容量当たりの熱量で40%以上、相
変化する融点/凝固点で10℃以上高くできるので、特
に床高が制限されるコンクリート建造物で2階以上に設
置する床暖房に最適に装置である。蓄熱層に使用される
モルタル及びコンクリートは基礎床工事の段階で熱伝導
効率を上げる手段として、モルタルに熱伝導良体を混合
したものを付設するだけでよく、従来のモルタルより、
熱効率を15%以上、上昇できる。本発明のパネル外寸
法は、許容されるパネル高は構造物の所要熱量計算に基
づき22mmから12mmの範囲である。夜間電力を利
用できる小型で薄型の床置きができる床暖房パネルであ
る。幅や面長は建築設計の基準寸法に準じた寸法であ
り、この時の箱枠の内寸高は21mmから11mmの範
囲である。又、以上の条件下での潜熱蓄熱体の厚みが最
大高20mmから10mmの範囲にあり、幅、面長の寸
法が任意に作成されたポリオレフィン製になる蓄熱体が
パネル枠内に収まる寸法である。更に、蓄熱体に電気面
状抵抗発熱体最大高1mm、幅、面長の寸法が任意を重
層して一体化した構成で、付帯部品を装着してパネル内
に装置した潜熱蓄熱床暖房用パネルである。敷設方法は
蓄熱層コンクリート素床に直接アンカーボルトを用い
て、該パネルを固定してパネル間の電気配線を付帯のコ
ネクターで接続する。床仕上げは、蓄熱パネルの上部両
端の根太にフローリング材や下地合板を木ネジや接着剤
で固定して、カーペットやビニタイル等で仕上げ、電源
に接続した蓄熱床暖房装置である。コンクリート床工程
と内装工事に分離しできるので大工工事で簡便に取り付
けができ、工期の短縮や工事計画、工事分担責任が明確
になる特徴を有する。(Embodiment of the Invention) That is, the latent heat storage material used in the floor heating panel unit of the present invention has a melting point / phase change of at least 40% or more per unit capacity as compared with other heat storage materials. Since the freezing point can be raised by 10 ° C. or more, the apparatus is optimally used for floor heating installed on two or more floors particularly in a concrete building having a limited floor height. Mortar and concrete used for the heat storage layer only need to be provided with a mixture of mortar and good heat conductive material as a means to increase the heat conduction efficiency at the stage of foundation floor construction.
Thermal efficiency can be increased by 15% or more. According to the present invention, the allowable panel height is in the range of 22 mm to 12 mm based on the required calorific value calculation of the structure. This is a small and thin floor heating panel that can be used at night for electricity. The width and the surface length are dimensions according to the standard dimensions of the architectural design, and the inner height of the box frame at this time is in the range of 21 mm to 11 mm. In addition, the thickness of the latent heat storage element under the above conditions is in the range of a maximum height of 20 mm to 10 mm, and the width and the length of the surface length are arbitrarily created. is there. Furthermore, a latent heat storage floor heating panel in which a heat storage body is integrated with an electric sheet resistance heating element having a maximum height of 1 mm, a width and a surface length of an arbitrary layer and integrated with ancillary components and installed in the panel. It is. The laying method is such that the panels are fixed to the thermal storage layer concrete floor directly using anchor bolts, and the electric wiring between the panels is connected by an attached connector. The floor finish is a heat storage floor heating device in which a flooring material or a base plywood is fixed to a joist at both upper ends of a heat storage panel with a wood screw or an adhesive, finished with a carpet or vinylite, and connected to a power source. Since it can be separated into the concrete floor process and the interior work, it can be easily installed in carpentry work, shortening the work period, clarifying the work plan and the responsibility of work.
【0018】[0018]
【実施例1】本発明に採用する潜熱蓄熱材の実施例であ
る。Embodiment 1 An embodiment of a latent heat storage material employed in the present invention.
【表2】 選ばれた酢酸ナトリウム系になる蓄熱材融点を40℃に
調整したものを、オレフィン製容器風袋重量514g、
比熱0.35[Kcal/Kg/℃]放熱量に換算する
に表2の蓄熱材重量を密封充てんし、該、蓄熱体を恒温
室内で該、面状発熱体を用いて加熱し、表示の項目につ
いて蓄熱量/放熱量を熱流計での計測値である。結果は
DSC計測方法とほぼ、一致した値であった。蓄熱床暖
房用蓄熱材として使用に所要に適切な単位蓄熱量であ
る。尚、実施に使用したヒーターのW密度は250W/
m2.hを室温19℃の雰囲気において5体の試料の蓄
熱体が各々融解するに要した時間は、平均3時間50分
で、夜間電力利用時間帯内で使用できる有効なヒーター
能力範囲であった。 尚、蓄熱体に設置した該、付帯機
能は夜間間電力を使用する適性な蓄熱効率、効果を発揮
した。[Table 2] The selected sodium acetate-based heat storage material whose melting point was adjusted to 40 ° C. was treated with an olefin container tare weight of 514 g,
To convert to a specific heat of 0.35 [Kcal / Kg / ° C], the weight of the heat storage material shown in Table 2 was hermetically sealed, and the heat storage was heated in a constant temperature room using the sheet heating element. The heat storage amount / heat release amount of the item is a value measured by a heat flow meter. The results were almost consistent with the DSC measurement method. A unit heat storage amount appropriate for use as a heat storage material for heat storage floor heating. In addition, the W density of the heater used for the implementation was 250 W /
m 2 . The time required for each of the five heat accumulators to melt in an atmosphere at room temperature of 19 ° C. was 3 hours and 50 minutes on average, which was an effective heater capacity range that could be used within the nighttime power use time zone. In addition, the additional function installed in the heat storage body exhibited an appropriate heat storage efficiency and effect using nighttime electric power.
【0019】[0019]
【実施例2】実施例1に基づき融点40℃に調合した潜
熱蓄熱体を実際値寸法/幅250mm×長530mm×
10mmの重量1.25Kg、潜熱量75Kcal/
枚、に面状電気抵抗発熱体のW密度が250w/m2・
hを重層して一体にしたパネルを同面積の熱伝導良体に
なるモルタル蓄熱層、実施寸法幅300mm×長600
mm×80mmの重量28.8Kg/枚、比熱58Kc
al/枚上に直接積層した構造で、試料にタイマーを設
定し、電源に接続した。室内温度15〜18℃の環境内
で稼働して、蓄熱/放熱能力と効果、持続性、熱サイク
ルの挙動性を12点の温度を同時に測定記録できるデー
ターコレクターを用いてフローリングの床面、潜熱蓄熱
体表面、ヒーター面、パネル下のモルタル蓄熱層、断熱
材下、室内及び外気について蓄熱/放熱状況の温度変化
を測定した。実施例において、蓄熱に要した時間は平均
して7時間15分であった。尚、到達した潜熱蓄熱体の
相変化した融解温度は48℃で内部の蓄熱材は完全に液
状化した。尚、顕熱蓄熱部の最高温度は43℃であっ
た。電源を遮断した後、該、パネルは48℃から放熱し
凝固点の40℃から潜熱を放出し続け、30℃に到る放
熱所要時間は14時間30分であった。又この時の床表
面の放熱温度は35℃〜26℃の範囲で推移し、モルタ
ルの蓄熱層が蓄熱の補助効果を示した。尚、実施に用い
た試料は、繰り返し連続して稼働したが、熱履歴挙動に
変化はなく安定した放熱温度範囲を維持した。Embodiment 2 A latent heat storage element prepared to have a melting point of 40 ° C. based on Embodiment 1 was converted into an actual value dimension / width 250 mm × length 530 mm ×
10mm weight 1.25Kg, latent heat quantity 75Kcal /
The W density of the sheet-like electric resistance heating element is 250 w / m 2.
h. A mortar heat storage layer that becomes a heat conductive good body with the same area as a panel integrated by layering h.
mm × 80mm weight 28.8Kg / sheet, specific heat 58Kc
al / sheets were directly laminated, a timer was set on the sample, and the sample was connected to a power supply. Operates in an environment with a room temperature of 15 to 18 ° C, and uses a data collector that can simultaneously measure and record 12 points of temperature for heat storage / radiation capacity and effect, sustainability, and thermal cycle behavior. The temperature change of the heat storage / radiation state was measured for the heat storage body surface, the heater surface, the mortar heat storage layer under the panel, the heat insulating material, the room, and the outside air. In the examples, the time required for heat storage was 7 hours and 15 minutes on average. The phase-changed melting temperature of the reached latent heat storage medium was 48 ° C., and the internal heat storage material was completely liquefied. The maximum temperature of the sensible heat storage section was 43 ° C. After the power was turned off, the panel radiated heat from 48 ° C. and continued to release latent heat from 40 ° C. at the freezing point, and the time required for radiating heat to 30 ° C. was 14 hours and 30 minutes. At this time, the heat radiation temperature of the floor surface changed in the range of 35 ° C. to 26 ° C., and the heat storage layer of the mortar showed the auxiliary effect of heat storage. The sample used for the operation was operated repeatedly and continuously, but there was no change in the thermal hysteresis behavior, and a stable heat radiation temperature range was maintained.
【0020】[0020]
【実施比較例3】モルタル蓄熱層を除いてた状態で、実
施例2と同様な基準に基づき、潜熱蓄熱体を実際値寸法
/幅250mm×長530mm×10mm、ヒーター2
50w/m2・hを重層して一体にしたパネル構造の試
料にタイマーを設定し電源に接続したものを、蓄熱/放
熱の機能を測定した。測定条件は室内温度15〜18℃
に調整された環境内で稼働して、蓄熱/放熱能力と効
果、持続性、熱サイクルの挙動性を12点の温度を同時
に測定記録できるデーターコレクターを用いてフローリ
ングの床面、潜熱蓄熱体表面、ヒーター面、パネル下、
断熱材下、室内及び外気について蓄熱/放熱状況の温度
変化を測定した。実施例において、蓄熱に要した時間は
平均して4時間40分であった。尚、到達した潜熱蓄熱
体の相変化した融解温度は48℃で内部の蓄熱材は完全
に液状化した。尚、電源を遮断した後、該、パネルは4
8℃から放熱し凝固点の40℃から潜熱を放出し続け、
30℃に到る放熱時間は9時間30分であった。又、こ
の時の床表面の放熱温度は35℃〜26℃の範囲で推移
した。Comparative Example 3 With the mortar heat storage layer removed, based on the same criteria as in Example 2, the latent heat storage element was replaced with an actual value dimension / width 250 mm × length 530 mm × 10 mm, heater 2
A sample having a panel structure in which 50 w / m 2 · h were layered and integrated was connected to a power supply and a timer was set, and the heat storage / radiation function was measured. Measurement conditions are room temperature 15-18 ° C
Operates in a controlled environment, and measures and records heat storage / dissipation capacity and effect, sustainability, and thermal cycle behavior at 12 points at the same time. Using a data collector, the floor of the flooring and the surface of the latent heat storage material can be recorded. , Heater surface, under panel,
The temperature change of the heat storage / radiation state was measured for the room and outside air under the heat insulating material. In Examples, the time required for heat storage was 4 hours and 40 minutes on average. The phase-changed melting temperature of the reached latent heat storage medium was 48 ° C., and the internal heat storage material was completely liquefied. After the power is turned off, the panel becomes 4
Dissipates heat from 8 ° C and continues releasing latent heat from 40 ° C at the freezing point,
The heat radiation time to reach 30 ° C. was 9 hours and 30 minutes. At this time, the heat radiation temperature of the floor surface changed in the range of 35 ° C to 26 ° C.
【0021】[0021]
【発明の効果】本発明の床暖房方法はパネルユニットと
熱伝導良体になるモルタル及びコンクリート蓄熱層で構
成され、図4に図示するようにコンクリート蓄熱層上に
パネルユニットを並列に敷設して、安価な夜間電力を利
用して24時間の床暖房装置として採用できる。加熱さ
れたコンクリート蓄熱層は伝導伝熱により全体の下地蓄
熱層に蓄熱され、通電遮断後は蓄熱層から床表面へ可逆
的に伝導伝熱により放熱し、床全面の放熱と保温が行わ
れる。このように熱省資源性、イニシアル及びランニン
グコスト面の経済性はもとより、床暖房としての放熱温
度適性や、施工性を合わせ持つものである。又、本発明
の蓄熱方法は熱伝導の特徴が、従来、電気や温水の床暖
房で用いられていた耐熱性を必要としないから使用材の
選択性や経済性においてコストの先進性を付加するもの
である。The floor heating method according to the present invention comprises a panel unit and a mortar and a concrete heat storage layer serving as a heat conductive body. As shown in FIG. 4, panel units are laid in parallel on the concrete heat storage layer. It can be adopted as a 24-hour floor heating device using inexpensive nighttime power. The heated concrete heat storage layer stores heat in the entire underlying heat storage layer by conduction heat transfer, and after the power is cut off, reversibly radiates heat from the heat storage layer to the floor surface by conduction heat transfer, thereby radiating heat and keeping the heat throughout the floor. As described above, not only the resource saving of heat, the economical efficiency of the initial and the running cost, but also the heat radiation temperature aptitude as the floor heating and the workability are combined. In addition, the heat storage method of the present invention has a feature of heat conduction, and does not require the heat resistance conventionally used in electric or hot water floor heating, so that it adds an advanced cost in terms of selectivity of materials used and economic efficiency. Things.
【符号の説明】 〜潜熱蓄熱体 ▲12▼0スラブ
(基礎コンクリート) 〜面状電気発熱抵抗体 ▲13▼〜パネルユ
ニット 〜サーモスタット ▲14▼〜センサー 〜根太 ▲15▼〜制御機器 〜底板(熱伝導板〉 ▲16▼〜タイマー 〜仕上げ材 ▲17▼〜電源 〜配線部(リード線) 〜電気接続部(コネクター及び端子) 〜金属メッシュ ▲10▼〜コンクリート蓄熱層 ▲11▼〜断熱層[Explanation of Signs]-Latent heat storage element-12-0 slab (foundation concrete)-Planar electric heating resistor-13-Panel unit-Thermostat-14-Sensor-Jota-15-Control equipment-Bottom plate (Heat Conductive plate> ▲ 16 ▼-Timer-Finishing material-17 ▼-Power supply-Wiring part (lead wire)-Electrical connection part (connector and terminal)-Metal mesh-10)-Concrete heat storage layer-11)-Heat insulation layer
【図1】床暖房施工断面図 蓄熱床暖房パネルユニットの構造とコンクート蓄熱層を
示した断面図である。▲12▼スラブ上に▲11▼断熱
層があり、ワイヤーメッシュを埋め込んだ▲10▼モ
ルタル及びコンクリートになる蓄熱層上に、パネル底部
鉄板の両端に沿って、根太が接着固定されたa〜
b間に蓄熱体と面状電気抵抗発熱体が上下に同一
に重層して装着されている。底板上の両端と前後に根
太木を接続して箱状になるパネル架体内に電気で稼働に
必要な温調器や▲13▼電源に接続するリード線を
付帯した装置を設置した断面図。FIG. 1 is a sectional view of a floor heating construction section showing a structure of a heat storage floor heating panel unit and a concrete heat storage layer. {Circle around (12)} There is a heat insulation layer on the slab, {10} a wire mesh is embedded, and {10} on the heat storage layer to be mortar and concrete, the joists are adhesively fixed along both ends of the iron plate at the bottom of the panel.
A heat storage element and a sheet-like electric resistance heating element are mounted in the same upper and lower layers between b. Sectional drawing in which a temperature controller necessary for operation by electricity and a device attached with a lead wire connected to a power supply (13) are installed in a panel frame which is formed into a box by connecting joists to both ends of the bottom plate and front and rear.
【図2】融点43℃に調整した蓄熱体が充てんされた
ポリオレフィンになるブロー容器の平面図及び側断面図
である。は蓄熱温度を感知するサーモスタット及びセ
ンサー取り付け部である。FIG. 2 is a plan view and a side sectional view of a blow container that becomes a polyolefin filled with a heat storage body adjusted to a melting point of 43 ° C. Is a thermostat for sensing the heat storage temperature and a sensor mounting portion.
【図3】外枠パネル形状の平面と側断面図である。温
度感知のさーモスタットやセンサー着装した面状電気
抵抗発熱体が、蓄熱体と一体に重層して、底板と根
太a〜bになる▲13▼外枠パネル内に装置しコ
ネクターを介して配線したものに、▲13▼外枠パネ
ルa〜bの根太の上部を木製になるフローリング
材が覆って、床暖房装置を形成している。FIG. 3 is a plan view and a side sectional view of an outer frame panel shape. A temperature-sensitive thermostat or a sheet-like electric resistance heating element equipped with a sensor is layered integrally with the heat storage element to become the bottom plate and joists a-b. (13) Installed in an outer frame panel and wired through a connector. (13) A wooden flooring material covers the upper part of the joists of the outer frame panels a and b to form a floor heating device.
【図4】該、▲13▼パネルを並列して敷設した状態を
示す全体配置図である。並列するパネル間(▲13▼a
〜▲13▼d)は相互に付帯する接続端子又はコネク
ターで並列結線し、▲16▼タイムスイッチと▲17
▼電源に接続し敷設される。本発明の一般的に使用する
▲13▼蓄熱床暖房パネルユニットの図例である。▲1
5▼制御盤は面状電気抵抗発熱体がPTCの自己温度
制御を使用した場合の配置図である。初期突入電力の増
加を制御したり、蓄熱体の規定温度を感知する▲10▼
センサーにより、電流値を変更したり、遮断する機能を
有する▲15▼制御器を設置する。尚、この場合、サ
ーモスタットは不要になる。FIG. 4 is an overall layout diagram showing a state where the (13) panels are laid in parallel. Between panels in parallel ((13) a
(13) d) is connected in parallel with connection terminals or connectors attached to each other, (16) time switch and (17)
▼ Connected to the power supply and laid. It is a figure example of the (13) thermal storage floor heating panel unit generally used of this invention. ▲ 1
5) The control panel is an arrangement diagram when the sheet-like electric resistance heating element uses self-temperature control of PTC. Control the increase of the initial rush power and detect the specified temperature of the heat storage element.
(15) A controller having a function of changing or interrupting a current value by a sensor is installed. In this case, a thermostat becomes unnecessary.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L070 BD06 DD02 DE05 DE09 DF01 DG01 DG10 3L071 CC05 CD01 CE01 CF05 CG03 CH02 CJ01 3L072 AA02 AB03 AC02 AD06 AD13 AD14 AE06 AE10 AF07 AG01 AG07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L070 BD06 DD02 DE05 DE09 DF01 DG01 DG10 3L071 CC05 CD01 CE01 CF05 CG03 CH02 CJ01 3L072 AA02 AB03 AC02 AD06 AD13 AD14 AE06 AE10 AF07 AG01 AG07
Claims (3)
リートやモルタルに混合又は設置して仕上げられた蓄熱
素床上に、必要な電源部材が接続され一体化した潜熱蓄
熱機能を有する蓄熱床暖房用パネル型ユニット装置又は
潜熱蓄熱体とヒーターを根太を用いて、直接敷設する方
法において潜熱及び顕熱を利用する床暖房装置の構造と
方法に関する。1. A heat storage device having a latent heat storage function in which a necessary power supply member is connected and integrated on a heat storage floor which has been previously prepared by mixing or installing a good heat conducting body in concrete or mortar in consideration of a floor structure. The present invention relates to a structure and a method of a floor heating device utilizing latent heat and sensible heat in a method of directly laying a floor type panel unit device or a latent heat storage element and a heater using a joist.
熱材であり、相変化をする融点/凝固点が30℃以上6
0℃以下の範囲にあり、蓄熱材の単位重量当り熱量が5
0Kcal/Kg以上65Kcal/Kgまでの範囲又
は、単位容量当りの熱量が70Kcal/l以上90K
cal/lまでの範囲を有する潜熱型蓄熱材が、水和物
を主材にして密封容器に充てんされた構成物で底板が熱
伝導良体になる箱形状の外装体内部に電気面状抵抗発熱
体や蓄熱体を上下同一に密着重層させて木枠内に装着し
て、電源に接続するコネクターや温度感知部材を装置し
た暖房用パネルユニット装置の請求項1記載の床暖房装
置の構造と方法に関する。2. A heat storage material used for a panel unit is a latent heat storage material, and a melting point / solidification point at which a phase change occurs is 30 ° C. or more.
0 ° C or less, and the calorific value per unit weight of the heat storage material is 5
The heat quantity per unit capacity is in the range of 0 Kcal / Kg to 65 Kcal / Kg or 70 Kcal / l to 90 K
A latent heat type heat storage material having a range of up to cal / l is formed of a hydrate as a main material and filled in a sealed container. The floor heating system according to claim 1, wherein the heating unit and the heat storage unit are vertically and intimately layered in close contact with each other, mounted in a wooden frame, and provided with a connector and a temperature sensing member for connecting to a power supply. About the method.
びモルタルに使用する良好な熱伝導体がカーボン、グラ
ファイト、アルミ、銅等金属紛や又は同じく素材からな
る繊維状やチップ状に加工されたを混入し、金属になる
網状ネットを組み合わせた下地コンクリート暖房用蓄熱
層になる請求項1記載の床暖房装置の構造と方法に関す
る。3. A good heat conductor used for concrete and mortar used for a heat storage layer of a floor structure is processed into a metal powder such as carbon, graphite, aluminum and copper, or a fiber or chip made of the same material. The present invention relates to a structure and a method of a floor heating apparatus according to claim 1, which is a heat storage layer for heating a concrete foundation, which is formed by combining a net-like net which becomes a metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11122810A JP2000274710A (en) | 1999-03-26 | 1999-03-26 | Structure of heat accumulation floor heater and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11122810A JP2000274710A (en) | 1999-03-26 | 1999-03-26 | Structure of heat accumulation floor heater and method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000274710A true JP2000274710A (en) | 2000-10-06 |
Family
ID=14845211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11122810A Pending JP2000274710A (en) | 1999-03-26 | 1999-03-26 | Structure of heat accumulation floor heater and method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000274710A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007528976A (en) * | 2004-03-12 | 2007-10-18 | ラークデン プロプライアタリー リミティド | Method and apparatus for storing thermal energy |
CN104848343A (en) * | 2015-06-08 | 2015-08-19 | 四川省新万兴瓷业有限公司 | Floor heating brick and manufacturing method thereof |
-
1999
- 1999-03-26 JP JP11122810A patent/JP2000274710A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007528976A (en) * | 2004-03-12 | 2007-10-18 | ラークデン プロプライアタリー リミティド | Method and apparatus for storing thermal energy |
US8056341B2 (en) | 2004-03-12 | 2011-11-15 | Lardken Pty Limited | Method and apparatus for storing heat energy |
CN104848343A (en) * | 2015-06-08 | 2015-08-19 | 四川省新万兴瓷业有限公司 | Floor heating brick and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Farid et al. | Underfloor heating with latent heat storage | |
JP2009503286A (en) | Building walls as an energy barrier with fluid through channels | |
JP2006336886A (en) | Combination heater and heating system comprising the same | |
CN110410845A (en) | A kind of ultrathin intelligent floor heating | |
US7187854B2 (en) | Heating tiles | |
JP2000274710A (en) | Structure of heat accumulation floor heater and method thereof | |
JP2003021349A (en) | Floor heating apparatus and control method therefor | |
US20140260003A1 (en) | Wall structure | |
CN212378062U (en) | Novel phase change energy storage underfloor heating system | |
CN101344276B (en) | Phase-changing heat accumulation plate | |
JP2932171B2 (en) | Regenerative heating device and heating device | |
CN106196383A (en) | A kind of prefabricated double-deck phase-changing energy-storing is for changes in temperature end structure and floor | |
JP2000240958A (en) | Heat storage floor heater | |
CN1229595C (en) | Static thermal-storage heating-amount slow-release structure and construction process and use thereof | |
CN208518269U (en) | A kind of phase-transition heat-storage deck construction | |
CA3109464A1 (en) | Cold generation and storage | |
JP4694168B2 (en) | Floor heating building | |
CN113008063B (en) | Indoor phase change energy storage device and paving method thereof | |
RU2414558C2 (en) | Surface heating device | |
CN112944440B (en) | Electric heating heat storage heating system and heating method thereof | |
WO1997050279A1 (en) | Heating device, regenerative heat generating body and protective sheet for same | |
JP3055218B2 (en) | Heat storage floor heating system | |
CN2834080Y (en) | Sensible heat-latent heat storage heating tube device for electric floor heating | |
CA2360198A1 (en) | Heated bridge deck system and materials and method for constructing the same | |
JP3617274B2 (en) | Floor heating panel |