JP2000274467A - Wire for spring - Google Patents

Wire for spring

Info

Publication number
JP2000274467A
JP2000274467A JP8310599A JP8310599A JP2000274467A JP 2000274467 A JP2000274467 A JP 2000274467A JP 8310599 A JP8310599 A JP 8310599A JP 8310599 A JP8310599 A JP 8310599A JP 2000274467 A JP2000274467 A JP 2000274467A
Authority
JP
Japan
Prior art keywords
spring
wire
outer layer
copper
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8310599A
Other languages
Japanese (ja)
Inventor
Kenji Hyodo
健次 兵頭
Ichiro Nagao
一郎 長尾
Hideki Yamamoto
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8310599A priority Critical patent/JP2000274467A/en
Publication of JP2000274467A publication Critical patent/JP2000274467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Metal Extraction Processes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire for a spring made of a beryllium copper alloy of quality, being stable at a high level, at a low cost. SOLUTION: The outer periphery of a core 1 of a beryllium copper alloy is covered with a copper outer layer 2 formed of copper having high stability. Provided the section area of the core 1 is A1 and the section area of the outer layer 2 is A2, an outer layer ratio represented by [A1/(A1+A2)]×100 is specified to 0.5-5.0%. A range of 0.03-0.20 mm preferable as the diameter of a wire for a spring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器、電子機
器に使用されるばね、特に優れた導電性と耐食性が要求
されるコンタクトプローブ等用のばねに好適に利用でき
る極細のばね用線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring used for precision equipment and electronic equipment, and more particularly to a fine spring wire which can be suitably used for a spring for a contact probe or the like which requires excellent conductivity and corrosion resistance. Things.

【0002】[0002]

【従来の技術】この種のばね用線には、製造段階、ばね
用線をばねに成形(コイリング加工)する段階およびば
ねとして使用する段階の各段階において、以下に詳述す
るような種々の特性が要求される。
2. Description of the Related Art Various types of spring wires, which are described in detail below, are provided in a manufacturing stage, a step of forming (coiling) the spring wire into a spring, and a stage of using the spring wire as a spring. Characteristics are required.

【0003】例えば、製造段階においては、過酷な減面
率の冷間伸線加工によって細径化されるため、線表面に
作用する大きな摩擦力を緩和する優れた潤滑性を線表面
が備えることある。また、ばね成形加工段階において
は、コイルばね成形機によるコイル巻回加工が施される
が、この際に線と治具との摩擦力が作用するため、表面
のすべり易さが良好な鋼線であることが必要である。さ
らに、このようにして形成したばねを各種機器類の部品
として他の部品と接合する場合、半田や銀ろう等とのろ
う付性が良いことが必要である。さらに、ばねとして使
用する段階においては、電子機器用ばね、特にコンタク
トプローブに使用されるばね用線では、優れた導電性を
有することが要求されている。
[0003] For example, in the manufacturing stage, the wire surface is reduced in diameter by cold wire drawing with a severe reduction in area, so that the wire surface has excellent lubricating properties to reduce a large frictional force acting on the wire surface. is there. In the spring forming step, coil winding is performed by a coil spring forming machine. At this time, a frictional force acts between the wire and the jig, so that the surface of the steel wire can be easily slipped. It is necessary to be. Further, when the thus formed spring is joined to other parts as a part of various devices, it is necessary to have good brazability with solder, silver solder, or the like. Furthermore, at the stage of using as a spring, a spring for electronic equipment, particularly a spring wire used for a contact probe, is required to have excellent conductivity.

【0004】このような状況下にあって、現在、この種
ばね用線としては、高炭素鋼、ピアノ線等の鋼線の表面
にニッケルめっき層を設けたニッケルめっきばね用鋼線
が汎用されている。このばね用鋼線は、鋼線を鉛パテン
ティング処理した後、ニッケルめっき処理し、次いで冷
間伸線加工を施すことにより製造されている。しかし、
このばね用鋼線は、次の問題がある。すなわち、伸線加
工時の潤滑性が十分でないことである。このため、ダイ
スとの焼付きが生じ易く、ダイヤモンドまたは焼結合金
製の高価なダイスの使用寿命を低下させ、またダイス交
換頻度を増加させることになり、ダイス費用が高くつく
と共に作業性が煩雑化し、製造原価が高騰する。また、
ばね成形加工時のコイリング性(すべり性)も十分でな
く、しかもろう付接合性にも劣ることである。このた
め、ばね成形加工や他の部品との接合の作業性が悪く、
歩留りが著しく低下する。さらに、導電性の点について
あまり考慮されておらないことである。このため、特に
コンタクトプローブ等の電子機器用のばねに使用したと
き、電子機器用のばねとしての性能が不十分である。
Under these circumstances, as a spring wire of this type, a nickel-plated spring steel wire in which a nickel plating layer is provided on the surface of a steel wire such as a high-carbon steel wire or a piano wire is currently widely used. ing. The spring steel wire is manufactured by subjecting the steel wire to a lead patenting process, a nickel plating process, and then performing a cold drawing process. But,
This spring steel wire has the following problems. That is, lubricity during wire drawing is not sufficient. For this reason, seizure with the die is apt to occur, shortening the service life of the expensive die made of diamond or sintered alloy, and increasing the frequency of die replacement, which increases the cost of the die and complicates workability. And the production cost rises. Also,
The coiling property (slipperiness) at the time of spring forming is not sufficient, and the brazing property is also poor. For this reason, the workability of spring forming and joining with other parts is poor,
Yield is significantly reduced. Furthermore, little consideration is given to the point of conductivity. For this reason, especially when used for a spring for electronic equipment such as a contact probe, the performance as a spring for electronic equipment is insufficient.

【0005】そこで、最近では、新しいばね用材料とし
て、ベリリウム銅合金の開発が行なわれている。これ
は、銅に数%のベリリウムを加えることにより、銅の数
倍の強度を達成でき、また時効硬化性を有するようにな
り、電気伝導性も良好で、耐食性や耐摩耗性に優れ、寸
法変化が少なく疲労にも強い等の優れた性質が得られる
ので、ベリリウム銅合金が電子機器用ばねの材料として
有効であることによる。しかし、ベリリウム銅合金は極
めて酸化しやすい合金であるため、常温空気中で表面に
酸化ベリリウムの硬い薄皮膜が形成され、また酸化発熱
により焼付きを発生するため、伸線性が極端に悪くな
る。このため、従来の金属細線の製造においては、ベリ
リウム銅線材を真空中で溶融鋳造し、鍛造の工程を経て
から熱処理と伸線加工を繰り返し行なった後、溶体化処
理により合金の軟化と均質化等を行ない、さらに無酸素
雰囲気ガス中での伸線加工およびその後の時効硬化処理
により所望の強度を得る、という工程を採用するのが一
般的であった(例えば、特開平4−187351)。
Therefore, recently, a beryllium copper alloy has been developed as a new spring material. This is because by adding several percent beryllium to copper, it is possible to achieve several times the strength of copper, and it has age hardening properties, good electrical conductivity, excellent corrosion resistance and wear resistance, This is because the beryllium copper alloy is effective as a material for a spring for electronic devices because it has excellent properties such as little change and strong fatigue. However, since the beryllium copper alloy is an alloy that is extremely easily oxidized, a hard thin film of beryllium oxide is formed on the surface in room temperature air, and seizure occurs due to oxidative heat, resulting in extremely poor drawability. For this reason, in the conventional production of thin metal wires, beryllium copper wire is melt-cast in a vacuum, subjected to a forging process, then repeatedly subjected to heat treatment and wire drawing, and then is softened and homogenized by solution treatment. In general, a step of obtaining a desired strength by wire drawing in an oxygen-free atmosphere gas and subsequent age hardening treatment is employed (for example, Japanese Patent Application Laid-Open No. 4-187351).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来の伸
線加工では、雰囲気ガスの制御が難しい上に、ベリリウ
ムの酸化皮膜の生成を完全に阻止することができない。
それだけベリリウムの活性(酸化性)は高いものであ
る。従って、雰囲気制御にかかる設備費や維持コストが
高くつく。また、この酸化皮膜が伸線ダイスの寿命を縮
め、線の品質に悪影響を及ぼし、ダイス交換頻度が多く
なりダイス費がかさむことになる。これらの理由から、
品質が不安定で高価なばね用線となる問題がある。従っ
て、本発明の課題は、低コストでかつ高水準で安定した
品質を有するベリリウム銅合金製ばね用線を提供するこ
とである。
However, in the above-described conventional wire drawing, it is difficult to control the atmosphere gas and it is not possible to completely prevent the formation of a beryllium oxide film.
Therefore, the activity (oxidation) of beryllium is high. Therefore, equipment costs and maintenance costs for controlling the atmosphere are high. In addition, the oxide film shortens the life of the wire drawing die, adversely affects the wire quality, increases the frequency of die replacement, and increases the die cost. because of these reasons,
There is a problem that the quality is unstable and the spring wire becomes expensive. Accordingly, an object of the present invention is to provide a beryllium copper alloy spring wire having a low cost and a high level of stable quality.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するた
め、本発明のばね用線は、ベリリウム銅合金からなる芯
材に銅外層を設け、上記銅外層の外層比率を0.5〜
5.0%にして成る。
In order to achieve the above object, a spring wire according to the present invention is provided with a copper outer layer on a core material made of a beryllium copper alloy, and the outer layer ratio of the copper outer layer is 0.5 to 0.5.
5.0%.

【0008】この手段によるときは、ベリリウム銅合金
からなる芯材の外周を安定性の高い銅外層で覆っている
から、外気に触れた場合でも酸化ベリリウムの生成が阻
止される。本発明において、外層比率とは、芯材の断面
積をA1、外層の断面積をA2としたとき、〔A2/
(A1+A2)〕×100で表したものである。
According to this method, since the outer periphery of the core material made of a beryllium copper alloy is covered with a highly stable copper outer layer, the production of beryllium oxide is prevented even when exposed to outside air. In the present invention, the outer layer ratio is defined as [A2 / A1] where A1 is the cross-sectional area of the core material and A2 is the cross-sectional area of the outer layer.
(A1 + A2)] × 100.

【0009】外層比率を0.5〜5.0%の範囲にした
のは、この種ばね用線の場合、外層比率が0.5%に満
たないと、厚みが薄くなり、芯材が外気と反応して酸化
ベリリウムの発生を阻止できず、また5.0%を越えて
も、保護効果の向上がほとんど見られないばかりか、強
度的に弱くなるからである。
The reason why the outer layer ratio is set in the range of 0.5 to 5.0% is that in the case of this kind of spring wire, if the outer layer ratio is less than 0.5%, the thickness becomes thin and the core material becomes outside air. , The generation of beryllium oxide cannot be prevented, and if it exceeds 5.0%, the protective effect is hardly improved and the strength is weakened.

【0010】また、ばね用線の線径としては、0.03
〜0.20mmの範囲が好適である。線径が0.03m
m未満だと、ばねとしての強度や弾性を確保するのが難
しくなり、また、近年急速にマイクロ化が進む精密機器
・電子機器分野において、コンタクトプローブ用のばね
も小径化が進んでおり、線径が0.20mmを越えると
実用的でなくなるからであるが、用途によってはこの範
囲に限定されるものではない。
The diameter of the spring wire is 0.03.
A range of .about.0.20 mm is preferred. Wire diameter is 0.03m
If it is less than m, it is difficult to secure the strength and elasticity of the spring, and in the field of precision equipment and electronic devices, which are rapidly becoming micro-sized in recent years, springs for contact probes have also been reduced in diameter. This is because if the diameter exceeds 0.20 mm, it becomes impractical, but it is not limited to this range depending on the application.

【0011】[0011]

【発明の実施の形態】本発明のばね用線の実施の形態を
図面に基づいて説明する。本発明のばね用線は、図1に
示すように、芯材1の外周に、外層比率が0.5〜5.
0%の範囲になるように調整した銅外層2を設けたもの
である。上記芯材1の原材料としては、通常、三元合金
あるいは四元合金、例えば、Cu−Be−Ni、Cu−
Be−Co、Cu−Be−Co−Ni等のベリリウム銅
合金を使用する。コンタクトプローブ用のばね用線で
は、強度と導電性を両立させるために各添加成分の添加
量を調整する。例えば、Be量を増やすと強度が上がる
が、逆にBe量が少ないものは電気伝導性が良い。ま
た、Coの添加は、結晶成長を抑制して均一な熱処理性
を与える役目を果たす。これらのことを考慮して、適当
な種類のベリリウム銅合金を選定すればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a spring wire according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the spring wire of the present invention has an outer layer ratio of 0.5 to 5.
The copper outer layer 2 adjusted to be in the range of 0% is provided. As a raw material of the core material 1, a ternary alloy or a quaternary alloy, for example, Cu-Be-Ni, Cu-
A beryllium copper alloy such as Be-Co or Cu-Be-Co-Ni is used. In the spring wire for the contact probe, the addition amount of each additive component is adjusted in order to achieve both strength and conductivity. For example, when the amount of Be is increased, the strength is increased. On the other hand, a material with a small amount of Be has good electric conductivity. Further, the addition of Co plays a role of suppressing crystal growth and providing uniform heat treatment. An appropriate type of beryllium copper alloy may be selected in consideration of these points.

【0012】ところで、汎用されているベリリウム銅材
料としては、25合金(C17200),Be含有量;
1.80〜2.00重量%や11合金(C1751
0),Be含有量;0.2〜0.6重量%等であるが、
用途に応じて導電性と強度のバランスを考慮して使い分
ければよい。
By the way, as a commonly used beryllium copper material, 25 alloy (C17200), Be content;
1.80 to 2.00% by weight or 11 alloy (C1751
0), Be content; 0.2 to 0.6% by weight, etc.
What is necessary is just to use properly considering the balance of conductivity and strength according to a use.

【0013】ベリリウム銅合金の外周に銅外層を設ける
手段としては、めっきによる方法、銅パイプをかぶ
せる方法、スパッタリングによる方法等があるが、こ
れも用途や生産量等に応じて適宜使い分ければ良い。例
えば、連続設備化するならばを、比較的厚い外層を得
るためにはを、ピンホールが比較的少ない薄膜を得る
ためにはを採用するのが好ましい。
Means for providing a copper outer layer on the outer periphery of the beryllium copper alloy include a method by plating, a method of covering with a copper pipe, a method by sputtering, and the like, and these may be appropriately used depending on the use and production amount. . For example, it is preferable to adopt a method for obtaining a relatively thick outer layer, or a method for obtaining a thin film having relatively few pinholes, if a continuous facility is used.

【0014】次に、上記いずれかの手段で銅外層を設け
たベリリウム銅合金の線材を、線径0.08〜0.20
mmまで伸線加工することにより、外層比率を所望範囲
に調整したばね用線が得られる。この場合、外層比率
は、前記手段により設けた銅外層の厚みや伸線条件(伸
線加工度、ダイス形状、ダイスシリ−ズ等)等を適宜調
整・選択することにより所望範囲のものが得られる。ま
た、伸線方法としては、乾式伸線より湿式伸線が好まし
い。なぜなら、湿式伸線では全没方式またはシャワー方
式により伸線材が潤滑液によって冷却されるからであ
る。この湿式伸線によると、伸線時の加工熱によって、
芯材と銅外層が拡散反応を生じて銅外層中にベリリウム
が拡散するのを防止することができる。
Next, a beryllium-copper alloy wire having a copper outer layer provided by any of the above-mentioned means is applied to a wire having a wire diameter of 0.08 to 0.20.
By drawing the wire up to mm, a spring wire having an outer layer ratio adjusted to a desired range can be obtained. In this case, the ratio of the outer layer can be in a desired range by appropriately adjusting and selecting the thickness of the copper outer layer provided by the above-mentioned means and the drawing conditions (degree of drawing, die shape, die series, etc.). . Further, as the drawing method, wet drawing is preferable to dry drawing. This is because in the wet drawing, the drawn material is cooled by the lubricating liquid by the full immersion method or the shower method. According to this wet drawing, the heat of drawing
Beryllium can be prevented from diffusing into the copper outer layer due to a diffusion reaction between the core material and the copper outer layer.

【0015】[0015]

【実施例】供試材としてC17510のベリリウム銅合
金を選定した。この材料の化学成分は重量%で、Be;
0.35、Ni;1.62、Co;0.08、Fe;
0.03、Si;0.02、Al;0.02、残部Cu
である。上記化学成分のベリリウム銅の0.60mm焼
鈍上がり材を原線とし、これに厚み3.1μmの銅を電
気めっきにより施した。次に湿式伸線機により0.20
mmまで伸線したものを、900℃で溶体化処理し、さ
らに伸線加工により0.10mmまで伸線し、外層比率
が2.2%である本発明に係るばね用線を製造した。な
お、熱処理時において安価なN2ガスを雰囲気ガスとし
て用いた。
EXAMPLE A C17510 beryllium copper alloy was selected as a test material. The chemical composition of this material is in weight%, Be;
0.35, Ni; 1.62, Co; 0.08, Fe;
0.03, Si; 0.02, Al; 0.02, balance Cu
It is. A 0.60 mm annealed material of beryllium copper of the above chemical component was used as a base wire, and copper having a thickness of 3.1 μm was applied thereto by electroplating. Next, 0.20 by wet wire drawing machine
The wire drawn to a depth of 0.1 mm was subjected to a solution treatment at 900 ° C., and further drawn to 0.10 mm by wire drawing to produce a spring wire according to the present invention having an outer layer ratio of 2.2%. Note that an inexpensive N2 gas was used as an atmosphere gas during the heat treatment.

【0016】また、この他に外層比率が本発明の範囲に
ある別のばね用線を数種と、外層比率が本発明の範囲を
外れた比較例のばね用線を数種製造した。さらに、溶体
化後に酸洗いした線を無酸化雰囲気中で伸線加工した従
来のばね用線を製造した。次に、これらの実施例、比較
例および従来例のばね用線を使用して、コンタクトプロ
ーブ用の通電バネを製造した。そして、それぞれの工程
における比較、ばね用線としての比較をした。その結果
を表1に示す。
In addition, several other spring wires having an outer layer ratio outside the range of the present invention and several spring wires of a comparative example having an outer layer ratio outside the range of the present invention were manufactured. Further, a conventional spring wire was manufactured by drawing a wire which had been pickled after solution treatment in an non-oxidizing atmosphere. Next, an energizing spring for a contact probe was manufactured using the spring wires of these examples, comparative examples, and conventional examples. Then, the comparison in each step and the comparison as a spring wire were performed. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】この表において、ダイス寿命係数とは、実
験No6の従来例の伸線時のダイス寿命を基準にして比
較した値であり、大きいほうが良い。また、ばね成形
性、ばね導電性、ばね強度については、◎、○、△、×
の4段階評価により優劣を比較した。△や×は実用性に
おいて問題がある場合である。表1によれば、銅めっき
比率0.6〜5.0%で特に伸線加工時のダイス摩耗が
減少し、中でも2〜5%で顕著な効果が認められること
がわかる。また、ばねの導電率も従来のばね用線に比べ
改善されている。また、外層比率が5.0%を越える
と、ばね強度の低下のためプルーブばねに必要な強度が
維持できないことがわかった。
In this table, the die life coefficient is a value obtained by comparing the die life at the time of wire drawing of the conventional example of Experiment No. 6 with a larger value. Regarding spring formability, spring conductivity, and spring strength, ◎, ○, △, ×
The superiority and inferiority were compared by the four-step evaluation. Δ and × indicate cases where there is a problem in practicality. According to Table 1, it is understood that the die wear during the wire drawing is reduced particularly at the copper plating ratio of 0.6 to 5.0%, and a remarkable effect is recognized at 2 to 5%. Also, the conductivity of the spring is improved as compared with the conventional spring wire. Also, it was found that when the outer layer ratio exceeded 5.0%, the strength required for the probe spring could not be maintained due to a decrease in the spring strength.

【0019】[0019]

【発明の効果】本発明のばね用線は、芯材のベリリウム
銅合金の周囲を適正な外層比率の銅外層が覆っているた
め、ばね成形加工時において線と治具の摩擦を軽減で
き、効率よいばね成形が可能となる。また、電子機器用
ばね、特にコンタクトプローブ用ばねに使用する場合、
優れた導電性を有すると共に高い強度を有し、腐食耐久
性も優れている。また、本発明のばね用線の製造過程に
おいて、熱処理時には安価なN2ガスの使用が可能とな
り、伸線加工時にあっては従来のように雰囲気ガスを使
用する必要がなく、設備コストや管理コストが著しく減
少する。また、伸線時のダイス寿命が大幅に延長でき
る。このような理由により、製造コストが大幅に低減で
きるため、安価なばね用線を製造でき産業上きわめて有
用である。
According to the spring wire of the present invention, since the copper outer layer having an appropriate outer layer ratio covers the core material of the beryllium copper alloy, the friction between the wire and the jig can be reduced during the spring forming process. Efficient spring molding is possible. Also, when used for springs for electronic equipment, especially springs for contact probes,
It has excellent conductivity, high strength, and excellent corrosion resistance. Also, in the manufacturing process of the spring wire of the present invention, inexpensive N2 gas can be used at the time of heat treatment, and at the time of wire drawing, there is no need to use an atmospheric gas as in the past, and equipment costs and management costs are reduced. Is significantly reduced. In addition, the life of the dies during wire drawing can be greatly extended. For these reasons, the manufacturing cost can be greatly reduced, so that an inexpensive spring wire can be manufactured, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のばね用線の実施の形態を示す拡大断面
図である。
FIG. 1 is an enlarged sectional view showing an embodiment of a spring wire according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・芯材 2・・・銅外層 1 core material 2 copper outer layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J059 AB04 AB06 AB14 AD05 AD06 BA01 EA04 GA21 4E096 EA04 EA13 EA26 FA01 GA03 HA08 HA11 HA21 JA13 KA09 5G307 BA03 BB02 BC03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J059 AB04 AB06 AB14 AD05 AD06 BA01 EA04 GA21 4E096 EA04 EA13 EA26 FA01 GA03 HA08 HA11 HA21 JA13 KA09 5G307 BA03 BB02 BC03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベリリウム銅合金からなる芯材に銅外層
を設け、上記銅外層の外層比率が0.5〜5.0%であ
ることを特徴とするばね用線。
1. A spring wire, wherein a copper outer layer is provided on a core material made of a beryllium copper alloy, and an outer layer ratio of the copper outer layer is 0.5 to 5.0%.
【請求項2】 線径が0.03〜0.20mmである請
求項1に記載のばね用線。
2. The spring wire according to claim 1, wherein the wire diameter is 0.03 to 0.20 mm.
JP8310599A 1999-03-26 1999-03-26 Wire for spring Pending JP2000274467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8310599A JP2000274467A (en) 1999-03-26 1999-03-26 Wire for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8310599A JP2000274467A (en) 1999-03-26 1999-03-26 Wire for spring

Publications (1)

Publication Number Publication Date
JP2000274467A true JP2000274467A (en) 2000-10-03

Family

ID=13792930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8310599A Pending JP2000274467A (en) 1999-03-26 1999-03-26 Wire for spring

Country Status (1)

Country Link
JP (1) JP2000274467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009038A (en) * 2003-06-10 2006-01-12 Shinku Jikkenshitsu:Kk Material for parts in vacuum apparatus, parts in vacuum apparatus, vacuum apparatus, method for manufacturing material for parts in vacuum apparatus, method for treating parts in vacuum apparatus, and treatment method in vacuum apparatus
JP2012525555A (en) * 2009-04-28 2012-10-22 バル・シール・エンジニアリング・インコーポレイテッド Multilayer canted coil spring and related methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009038A (en) * 2003-06-10 2006-01-12 Shinku Jikkenshitsu:Kk Material for parts in vacuum apparatus, parts in vacuum apparatus, vacuum apparatus, method for manufacturing material for parts in vacuum apparatus, method for treating parts in vacuum apparatus, and treatment method in vacuum apparatus
JP2012525555A (en) * 2009-04-28 2012-10-22 バル・シール・エンジニアリング・インコーポレイテッド Multilayer canted coil spring and related methods

Similar Documents

Publication Publication Date Title
KR102113989B1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
US6312762B1 (en) Process for production of copper or copper base alloys
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP2587890B2 (en) Electrode for electrical discharge machining and method of manufacturing the same
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP2959872B2 (en) Electrical contact material and its manufacturing method
JP2915623B2 (en) Electrical contact material and its manufacturing method
JP4699252B2 (en) Titanium copper
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JPH07157893A (en) Sn plated wire for electrical contact point and production thereof
JP2005251762A (en) Tin coated electrical connector
JP2000274467A (en) Wire for spring
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2005154819A (en) Fitting type connection terminal
JP4887868B2 (en) Cu-Ni-Sn-P-based copper alloy and method for producing the same
JPH05271879A (en) High strength spring member
JPH10265874A (en) Copper alloy for electrical/electronic parts and its production
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JPH046296A (en) Nickel-plated copper wire and its production
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
JP3265385B2 (en) Spring steel wire and method of manufacturing the same
JP2006083420A (en) Copper alloy with improved electric conductivity, and its manufacturing method
JP2009076473A (en) Tin coated electrical connector
US20220230775A1 (en) Copper-coated steel wire, stranded wire, insulated electric wire, and cable