JP2000274232A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000274232A
JP2000274232A JP11076212A JP7621299A JP2000274232A JP 2000274232 A JP2000274232 A JP 2000274232A JP 11076212 A JP11076212 A JP 11076212A JP 7621299 A JP7621299 A JP 7621299A JP 2000274232 A JP2000274232 A JP 2000274232A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
nox catalyst
exhaust
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11076212A
Other languages
Japanese (ja)
Other versions
JP3702937B2 (en
Inventor
Takashi Dougahara
隆 堂ヶ原
Kojiro Okada
公二郎 岡田
Yasuki Tamura
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP07621299A priority Critical patent/JP3702937B2/en
Publication of JP2000274232A publication Critical patent/JP2000274232A/en
Application granted granted Critical
Publication of JP3702937B2 publication Critical patent/JP3702937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict generation of off-flavor due to the sulfur (S) compound included in exhaust gas by fluctuating the exhaust air-fuel ratio of an internal combustion engine around the rich air-fuel ratio as a reference, when sulfur poisoning of the NOx catalyst is detected by a S-poisoning detecting means. SOLUTION: When storage quantity of NOx of the NOx catalyst, namely, the quantity of S-poisoning is detected (S1), a discrimination as to whether or not the NOx catalyst is being regenerated is done (S2), and if it is 'YES', a fuel injector performs two-stage injection of the fuel so as to raise the temperature of the exhaust gas, namely, the temperature of the NOx catalyst (S5). Thereafter, a discrimination whether or not temperature rise of the NOx catalyst is concluded or not, namely, temperature of the NOx catalyst achieves the SOx activating temperature is done, and if it is 'YES', fluctuation control of the exhaust air-fuel ratio is carried out (S7). The fluctuation control is performed by alternately switching the exhaust air-fuel ratio between the theoretical air- fuel ratio as a lean side of the reference air-fuel ratio and the predetermined rich air-fuel ratio as a richer air-fuel ratio. At the time of switching the air-fuel ratio, detecting signal of an O2 sensor is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に排ガスの無臭
化に好適した内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine particularly suitable for deodorizing exhaust gas.

【0002】[0002]

【関連する背景技術】近年、燃費の向上を目的として車
両には希薄(リーン)燃焼型の内燃機関が多く採用され
つつある。この種の内燃機関にあっては排気ガス中に多
量の窒素酸化物(NOx)が含まれるため、その排気通
路にいわゆるNOx触媒を配置している。このNOx触
媒は、内燃機関がリーン空燃比にて運転中にあるときに
はその排ガス中のNOxを吸蔵する一方、内燃機関が排
気空燃比を理論空燃比以下のリッチ空燃比で運転される
ときにはその吸蔵したNOxを放出し還元する機能を有
している。
2. Related Background Art In recent years, lean (lean) combustion type internal combustion engines have been increasingly employed in vehicles for the purpose of improving fuel efficiency. In this type of internal combustion engine, since a large amount of nitrogen oxide (NOx) is contained in the exhaust gas, a so-called NOx catalyst is disposed in the exhaust passage. This NOx catalyst stores NOx in the exhaust gas when the internal combustion engine is operating at a lean air-fuel ratio, and stores the NOx when the internal combustion engine is operated at a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio. It has the function of releasing and reducing NOx.

【0003】ところで、この種のNOx触媒は、排ガス
中のNOxのみならずイオウ成分をも吸蔵してしまい、
NOxの浄化能力の低下を招く。つまり、NOx触媒は
イオウ成分により被毒される性質を有する。このような
S被毒を解消するため、例えば特開平6-66129号公報に
はNOx触媒のS被毒が許容レベルを超えると、NOx
触媒を所定の温度以上に昇温し、且つ、その周囲を還元
雰囲気、つまり、排気空燃比をリッチ空燃比にすること
でNOx触媒からイオウ成分を急激に放出還元し、その
再生を図る技術が開示されている。
[0003] By the way, this type of NOx catalyst occludes not only NOx in exhaust gas but also sulfur components.
This leads to a decrease in NOx purification capacity. That is, the NOx catalyst has a property of being poisoned by the sulfur component. In order to eliminate such S poisoning, for example, Japanese Unexamined Patent Publication No. 6-66129 discloses that when S poisoning of the NOx catalyst exceeds an allowable level, NOx
A technique is known in which the temperature of the catalyst is raised to a predetermined temperature or higher, and the surroundings are reduced to a reducing atmosphere, that is, the exhaust air-fuel ratio is set to a rich air-fuel ratio. It has been disclosed.

【0004】しかしながら、上述した特開平6-66129号
公報の排気浄化装置にあってはそのNOx触媒から脱離
したイオウ成分が排ガス中の炭化水素(HC)と反応
し、イオウ(S)化合物(硫化水素:H2S)が一時的
に多量に生成する。このようなS化合物、つまり、硫化
水素が大気中に多量に放出されると、異臭の原因とな
り、好ましいものではない。
[0004] However, in the above-mentioned exhaust gas purifying apparatus disclosed in JP-A-6-66129, the sulfur component desorbed from the NOx catalyst reacts with the hydrocarbon (HC) in the exhaust gas to form a sulfur (S) compound ( Hydrogen sulfide: H 2 S) is produced temporarily in large quantities. If such an S compound, that is, hydrogen sulfide is released in a large amount into the atmosphere, it causes an unpleasant odor and is not preferable.

【0005】このような事情から特開平8-294618号には
大気中への硫化水素の放出を抑制するため、NOx触媒
の下流に、硫化水素のトラップとその酸化機能を有した
触媒コンバータを配置し、一方、排気空燃比を理論空燃
比を中心にリーン空燃比とリッチ空燃比との間にて変
動、つまり、パータベーションさせる技術が開示されて
いる。
[0005] Under such circumstances, Japanese Patent Application Laid-Open No. 8-294618 discloses that a hydrogen sulfide trap and a catalytic converter having an oxidizing function are arranged downstream of the NOx catalyst in order to suppress the release of hydrogen sulfide into the atmosphere. On the other hand, a technique is disclosed in which the exhaust air-fuel ratio fluctuates, ie, perturbates, between a lean air-fuel ratio and a rich air-fuel ratio around a stoichiometric air-fuel ratio.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
8-294618号の排気浄化装置の場合、上述の空燃比のパー
タベーションは、触媒コンバータにてトラップした硫化
水素を酸化させるために、つまり、触媒コンバータに酸
素を供給する上で必要不可欠であるものの、このような
空燃比パータベーションは排気空燃比がリーン空燃比に
あるときにNOx触媒へのイオウ成分の更なる吸蔵を招
き、このことは、NOx触媒の再生に要する時間を長く
してしまうことになる。
SUMMARY OF THE INVENTION
In the case of the exhaust purification system of No. 8-294618, the above-mentioned air-fuel ratio perturbation is indispensable for oxidizing hydrogen sulfide trapped in the catalytic converter, that is, for supplying oxygen to the catalytic converter. However, such an air-fuel ratio perturbation causes the sulfur component to be further stored in the NOx catalyst when the exhaust air-fuel ratio is at a lean air-fuel ratio, which increases the time required for regeneration of the NOx catalyst. become.

【0007】また、NOx触媒の再生時間が長くなる
と、空燃比パータベーション中にて排気空燃比がリッチ
空燃比となる期間の増大を招き、燃費を悪化させる。更
に、上述の触媒コンバータは特別なものであるから、排
気浄化装置がコスト高ともなってしまう。本発明は上述
の事情に基づいてなされたもので、その目的とするとこ
ろは、排ガス中のS化合物を原因する異臭を抑制し、な
お且つ、燃費の悪化やコスト高を招くことのない内燃機
関の排気浄化装置を提供することにある。
When the regeneration time of the NOx catalyst becomes longer, the period during which the exhaust air-fuel ratio becomes a rich air-fuel ratio during the air-fuel ratio perturbation is increased, thereby deteriorating the fuel efficiency. Further, since the above-mentioned catalytic converter is special, the cost of the exhaust gas purification device increases. The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress an unpleasant odor caused by an S compound in exhaust gas, and furthermore, to prevent an internal combustion engine from deteriorating fuel consumption and increasing cost. It is an object of the present invention to provide an exhaust gas purification device.

【0008】[0008]

【課題を解決するための手段】上述の目的は本発明にお
ける内燃機関の排気浄化装置によって達成され、この排
気浄化装置は、排ガス中のイオウ成分によるNOx触媒
のS被毒を検知するS被毒検知手段と、このS被毒検知
手段にてNOx触媒のS被毒が検知されたとき、内燃機
関の排気空燃比を基準のリッチ空燃比を中心として変動
させる空燃比変動手段とを備えている。
The above object is achieved by the exhaust gas purifying apparatus for an internal combustion engine according to the present invention. This exhaust gas purifying apparatus detects S poisoning of a NOx catalyst by sulfur component in exhaust gas. Detecting means; and air-fuel ratio changing means for changing the exhaust air-fuel ratio of the internal combustion engine around a reference rich air-fuel ratio when the S-poisoning detecting means detects S poisoning of the NOx catalyst. .

【0009】上述の排気浄化装置によれば、NOx触媒
からのイオウ成分の脱離時、排気空燃比が基準のリッチ
空燃比を中心として変動されると、つまり、排気空燃比
が基準のリッチ空燃比よりもリーン側の空燃比と基準の
リッチ空燃比よりもリッチ側のモアリッチ空燃比との間
にて変動されると、NOx触媒からはそのイオウ成分が
徐々に脱離され、排ガス中にS化合物が一時的且つ多量
に生成されることはない。
According to the above-mentioned exhaust gas purifying apparatus, when the sulfur component is desorbed from the NOx catalyst, if the exhaust air-fuel ratio fluctuates around the reference rich air-fuel ratio, that is, the exhaust air-fuel ratio becomes the reference rich air-fuel ratio. When the air-fuel ratio fluctuates between the air-fuel ratio leaner than the fuel ratio and the mower-rich air-fuel ratio richer than the reference rich air-fuel ratio, the sulfur component is gradually desorbed from the NOx catalyst, and S The compound is not produced temporarily and in large quantities.

【0010】排気空燃比の変動領域は理論空燃比以下に
設定されるのが好ましく、また、被毒検知手段は、NO
x触媒のS被毒のレベルを検出若しくは推定するもので
あるのが好ましい。そして、S被毒検知手段にてNOx
触媒のS被毒レベルが検知される場合にあっては、その
S被毒レベルが高ければ高い程、空燃比変動手段の基準
となるリッチ空燃比を大きな値に設定するか、または、
排気空燃比の変動制御の開始から所定の期間に亘り、1
サイクル中における前記リーン側の空燃比の時間に対し
て前記モアリッチ空燃比の時間を短くするか、更には前
記リーン側の空燃比への移行頻度に対し、前記モアリッ
チ空燃比への移行頻度を小さくするのが好ましい。
[0010] It is preferable that the fluctuation region of the exhaust air-fuel ratio is set to be equal to or lower than the stoichiometric air-fuel ratio.
It is preferable to detect or estimate the level of S poisoning of the x catalyst. Then, the NOx is detected by the S poison detection means.
When the S poisoning level of the catalyst is detected, the higher the S poisoning level, the larger the rich air-fuel ratio, which is a reference of the air-fuel ratio changing means, is set to a larger value, or
For a predetermined period from the start of the exhaust air-fuel ratio fluctuation control, 1
Either shorten the time of the moor-rich air-fuel ratio relative to the time of the lean-side air-fuel ratio during the cycle, or further reduce the frequency of transition to the moor-rich air-fuel ratio relative to the frequency of transition to the lean-side air-fuel ratio. Is preferred.

【0011】[0011]

【発明の実施の形態】図1に概略的に示す内燃機関は、
例えば筒内噴射型の直列4気筒ガソリンエンジンであ
る。この種の内燃機関は燃焼室に燃料を直接に噴射可能
なフューエルインジェクタ2を備え、その運転状況に応
じた種々の燃料噴射モード及び排気空燃比にて燃料の噴
射が可能である。具体的には、燃料噴射モードには主と
して吸気行程にて燃料を噴射し、均一燃焼を行う吸気行
程噴射モードと、圧縮行程に燃料を噴射し、層状燃焼を
行う圧縮行程噴射モードとがあり、特に圧縮行程噴射モ
ードにあっては吸気行程噴射モードでの空燃比(空燃比
12〜23程度)に対し、超リーン空燃比(空燃比25
以上)での燃焼が可能である。
DETAILED DESCRIPTION OF THE INVENTION The internal combustion engine schematically shown in FIG.
For example, it is an in-cylinder injection type in-line four-cylinder gasoline engine. This type of internal combustion engine includes a fuel injector 2 that can directly inject fuel into a combustion chamber, and is capable of injecting fuel in various fuel injection modes and exhaust air-fuel ratios according to the operating conditions. Specifically, the fuel injection mode mainly includes an intake stroke injection mode in which fuel is injected in an intake stroke to perform uniform combustion, and a compression stroke injection mode in which fuel is injected in a compression stroke to perform stratified combustion. In particular, in the compression stroke injection mode, the air-fuel ratio (air-fuel ratio of about 12 to 23) in the intake stroke injection mode is compared with the super-lean air-fuel ratio (air-fuel ratio of 25).
Above) is possible.

【0012】内燃機関の排気マニホールド4からは排気
管6が延び、この排気管6にはその上流端に小形の三元
触媒8が介挿されている。また、排気管6の下流側には
触媒コンバータ10が介挿されている。触媒コンバータ
10は、吸蔵型のNOx触媒12と三元触媒14との組
み合わせたもので、NOx触媒12は三元触媒14の上
流側に位置付けられている。NOx触媒は酸化雰囲気
(排気空燃比がリーン空燃比)であるときNOxを吸蔵
する一方、還元雰囲気(排気空燃比がリッチ空燃比)に
あるとき、その吸蔵したNOxを窒素(N2)等に還元
する機能を有する。より具体的には、NOx触媒12は
白金(Pt)、ロジウム(Rh)等の触媒と、バリウム
(Ba)等のアルカリ金属やアルカリ土類金属からなる
吸蔵材を有している。前述したようにNOx触媒12は
排ガス中のNOxのみならず、イオウ成分、即ち、SO
xもまた吸蔵する性質を有しており、NOx触媒12の
吸蔵材内でのSOxの安定度は高い。それ故、NOx触
媒12からSOxを放出還元するにはNOx触媒12を
所定のSOx活性化温度(例えば650℃)以上に昇温
し、なお且つ、その周囲を還元雰囲気にする必要があ
る。
An exhaust pipe 6 extends from an exhaust manifold 4 of the internal combustion engine, and a small three-way catalyst 8 is inserted into the exhaust pipe 6 at an upstream end thereof. Further, a catalytic converter 10 is inserted downstream of the exhaust pipe 6. The catalytic converter 10 is a combination of a storage type NOx catalyst 12 and a three-way catalyst 14, and the NOx catalyst 12 is positioned upstream of the three-way catalyst 14. The NOx catalyst stores NOx in an oxidizing atmosphere (exhaust air-fuel ratio is lean air-fuel ratio), while it stores NOx in a reducing atmosphere (exhaust air-fuel ratio is rich air-fuel ratio) to nitrogen (N 2 ) or the like. It has the function of reducing. More specifically, the NOx catalyst 12 has a catalyst such as platinum (Pt) or rhodium (Rh) and a storage material made of an alkali metal or alkaline earth metal such as barium (Ba). As described above, the NOx catalyst 12 includes not only NOx in the exhaust gas but also a sulfur component, that is, SO2.
x also has the property of occluding, and the stability of SOx in the occluding material of the NOx catalyst 12 is high. Therefore, in order to release and reduce SOx from the NOx catalyst 12, it is necessary to raise the temperature of the NOx catalyst 12 to a predetermined SOx activation temperature (for example, 650 ° C.) or more and to make the surrounding area a reducing atmosphere.

【0013】それ故、触媒コンバータ10には、NOx
触媒12に流入する排ガスの温度を検出する温度センサ
16や、必要に応じて排ガス中のNOx濃度を検出する
濃度センサ18がNOx触媒12と三元触媒14との間
に設けられており、これらセンサ16,18は電子コン
トロールユニット(ECU)20に接続されている。ま
た、ECU20には、前述のフューエルインジェクタ2
に加え、排ガス中の酸素濃度を検出するO2センサ2
2、点火プラグ24、スロットル開度センサ26、そし
て、クランク角センサ28もまた電気的に接続されてい
る。
Therefore, the catalytic converter 10 has NOx
A temperature sensor 16 for detecting the temperature of the exhaust gas flowing into the catalyst 12 and, if necessary, a concentration sensor 18 for detecting the NOx concentration in the exhaust gas are provided between the NOx catalyst 12 and the three-way catalyst 14. The sensors 16 and 18 are connected to an electronic control unit (ECU) 20. Further, the ECU 20 includes the fuel injector 2 described above.
In addition to, O 2 sensor 2 for detecting the oxygen concentration in the exhaust gas
2. The spark plug 24, the throttle opening sensor 26, and the crank angle sensor 28 are also electrically connected.

【0014】ECU20は、マイクロプロセッサを含む
ワンボード型のマイクロコンピュータからなり、上述の
センサからの検出信号に基づき、前述した燃料噴射モー
ドの切換え制御や、フューエルインジェクタ2、点火コ
イル24等の駆動制御する一方、触媒コンバータ10の
SOx再生制御を実施する。図2にはそのSOx再生制
御の手順が示されており、この再生制御に関し、図2を
参照しながら以下に説明する。
The ECU 20 is a one-board type microcomputer including a microprocessor, and controls the switching of the fuel injection mode and the drive control of the fuel injector 2 and the ignition coil 24 based on the detection signal from the sensor. Meanwhile, SOx regeneration control of the catalytic converter 10 is performed. FIG. 2 shows the procedure of the SOx regeneration control. The regeneration control will be described below with reference to FIG.

【0015】先ず、ECU20は、NOx触媒12のS
Ox吸蔵量、つまり、S被毒量を推定する(ステップS
1)。具体的には、S被毒量Qsは、ECU20が実行
する燃料噴射制御ルーチンの実行周期毎に次式を実行す
ることで算出される。Qs(n)=Qs(n-1)+ΔQf・K
−Rsここで、Qs(n)は今回算出値、Qs(n-1)は前回
算出値を示す。そして、ΔQf,Rsは実行周期当たり
の噴射燃料の積算値、SOxの放出量、Kは補正係数で
ある。
First, the ECU 20 determines whether the NOx catalyst 12
Estimate the Ox storage amount, that is, the S poisoning amount (step S
1). Specifically, the S poisoning amount Qs is calculated by executing the following equation at each execution cycle of the fuel injection control routine executed by the ECU 20. Qs (n) = Qs (n-1) + ΔQf · K
-Rs Here, Qs (n) indicates the current calculated value, and Qs (n-1) indicates the previous calculated value. ΔQf, Rs are the integrated value of the injected fuel per execution cycle, the SOx release amount, and K is the correction coefficient.

【0016】補正係数Kは、排気空燃比(A/F)に応
じた補正係数K1、燃料中のイオウ成分の含有量に応じ
た補正係数K2、そして、NOx触媒12の触媒温度に
応じた補正係数K3の積、即ち、K1・K2・K2で表され
る。触媒温度は、前述した温度センサ16からの検出信
号に基づき求められるが、温度センサ16からの検出信
号はNOx触媒12の温度を直接に示すものではない。
それ故、ECU20は温度センサ16の検出信号を内燃
機関の目標平均有効圧と機関回転速度とから定められた
マップに基づき補正することで、NOx触媒12の温度
を推定するようにしている。なお、目標平均有効圧及び
機関回転数は、スロットル開度センサ及びクランク角セ
ンサからの検出信号に基づき求めることができる。
The correction coefficient K is a correction coefficient K1 corresponding to the exhaust air-fuel ratio (A / F), a correction coefficient K2 corresponding to the content of the sulfur component in the fuel, and a correction corresponding to the catalyst temperature of the NOx catalyst 12. It is represented by the product of the coefficients K3, that is, K1, K2, K2. The catalyst temperature is obtained based on the detection signal from the temperature sensor 16 described above, but the detection signal from the temperature sensor 16 does not directly indicate the temperature of the NOx catalyst 12.
Therefore, the ECU 20 estimates the temperature of the NOx catalyst 12 by correcting the detection signal of the temperature sensor 16 based on the map determined from the target average effective pressure of the internal combustion engine and the engine speed. Note that the target average effective pressure and the engine speed can be obtained based on detection signals from a throttle opening sensor and a crank angle sensor.

【0017】また、SOxの放出量Rsは次式から算出
される。 Rs=α・R1・R2・dT ここで、αは単位時間当たりのSOxの放出率(設定
値)、dTは燃料噴射制御ルーチンの実行周期を示し、
そして、R1,R2は触媒温度に応じたSOxの放出能
力係数、及び排気空燃比に応じたSOxの放出能力係数
を示す。
The SOx release amount Rs is calculated from the following equation. Rs = α · R1 · R2 · dT where α is the SOx emission rate per unit time (set value), dT is the execution cycle of the fuel injection control routine,
R1 and R2 indicate a SOx release capacity coefficient corresponding to the catalyst temperature and an SOx release capacity coefficient corresponding to the exhaust air-fuel ratio.

【0018】ステップS1にて、NOx触媒12のS被
毒量が推定、つまり、検知されると、ECU20はNO
x触媒12の再生中(Sパージ中)であるか否か、即
ち、後述する再生フラグがセットされているか否かを判
別する(ステップS2)。ここでは未だ、再生フラグは
セットされていないので、その判別結果は偽(No)とな
り、ECU20はNOx触媒12のS被毒量が許容レベ
ル以下であるか否かを判別し(ステップS3)する。こ
こでの判別結果が真(Yes)の場合、ECU20はステ
ップS1,S2を繰り返して実施する。ここで、S被毒
量の許容レベルは、NOx触媒21の容量から求められ
る設定値である。
In step S1, when the amount of S poisoning of the NOx catalyst 12 is estimated, that is, detected, the ECU 20 sets NO.
It is determined whether or not the x catalyst 12 is being regenerated (S purge is being performed), that is, whether or not a regeneration flag described later is set (step S2). Here, since the regeneration flag has not yet been set, the determination result is false (No), and the ECU 20 determines whether the S poisoning amount of the NOx catalyst 12 is equal to or lower than an allowable level (step S3). . If the determination result is true (Yes), the ECU 20 repeats steps S1 and S2. Here, the allowable level of the S poisoning amount is a set value obtained from the capacity of the NOx catalyst 21.

【0019】一方、ステップS3の判別結果が偽になる
と、ECU20は再生フラグをセットする(ステップS
4)。この後、ステップS2の判別結果は真となり、E
CU20はNOx触媒12の昇温を実施する(ステップ
S5)。このステップS5にて、ECU20はフューエ
ルインジェクタ2に燃料の2段噴射を行わせ、排ガスの
温度を上昇させる。より詳しくは、フューエルインジェ
クタ2は、圧縮行程又は吸気行程中での燃料の主噴射に
加えて、膨張行程にて燃料の副噴射を実行し、この副噴
射の燃料が排気管6内にて燃焼することで、排ガスの温
度、即ち、NOx触媒12の温度を昇温させる。ここ
で、燃料の副噴射量は、NOx触媒12の現在の触媒温
度に応じて調整され、また、上述の2段噴射が実行され
る場合にあっても、その全体の排気空燃比がその運転状
況に応じて制御されることは言うまでもない。なお、内
燃機関が高速域にあって、NOx触媒12の温度が前述
したSOx活性化温度以上に既に達しているような状況
にあっては、燃料の副噴射量は零となり、この場合、燃
料の2段噴射は実質的に実行されないことになる。
On the other hand, when the determination result of step S3 is false, the ECU 20 sets a regeneration flag (step S3).
4). Thereafter, the determination result of step S2 becomes true, and E
The CU 20 raises the temperature of the NOx catalyst 12 (Step S5). In step S5, the ECU 20 causes the fuel injector 2 to perform two-stage fuel injection to increase the temperature of the exhaust gas. More specifically, the fuel injector 2 performs a sub-injection of fuel in an expansion stroke in addition to a main injection of fuel in a compression stroke or an intake stroke, and the fuel of the sub-injection is burned in the exhaust pipe 6. By doing so, the temperature of the exhaust gas, that is, the temperature of the NOx catalyst 12 is raised. Here, the sub-injection amount of the fuel is adjusted according to the current catalyst temperature of the NOx catalyst 12, and even when the above-described two-stage injection is executed, the overall exhaust air-fuel ratio is controlled by the operation. Needless to say, it is controlled according to the situation. When the internal combustion engine is in a high speed range and the temperature of the NOx catalyst 12 has already reached the above-mentioned SOx activation temperature, the sub injection amount of the fuel becomes zero. Is not substantially executed.

【0020】この後、ステップS6に至ると、NOx触
媒12の昇温が完了したか否か、つまり、NOx触媒1
2の温度がSOx活性化温度以上に達した否かが判別さ
れる。ここでの判別が偽の場合、ステップS5が繰り返
して実行される。ステップS6の判別結果が真になる
と、ECU20は排気空燃比(A/F)の変動制御(ス
テップS7)を実行し、その詳細は以下の通りである。
Thereafter, at step S6, it is determined whether or not the temperature rise of the NOx catalyst 12 has been completed.
It is determined whether or not the temperature of No. 2 has reached or exceeded the SOx activation temperature. If the determination here is false, step S5 is repeatedly executed. When the result of the determination in step S6 becomes true, the ECU 20 executes the exhaust air-fuel ratio (A / F) variation control (step S7), the details of which are as follows.

【0021】ステップS7では、排気空燃比がリッチ側
の基準空燃比X(例えば14.35)を中心とし、上下
に所定の期間変動される。具体的には、排気空燃比は基
準空燃比Xよりもリーン側の空燃比としての理論空燃比
(14.7)とモアリッチ空燃比としての所定のリッチ
空燃比(例えば14.0)との間にて所定時間(例えば
5秒)毎に交互に切換えられる。なお、排気空燃比の切
換えには、前述したO 2センサ22からの検出信号が使
用されることは言うまでもなく、そして、この場合、排
気空燃比はO2センサの検出信号から得られる平均値で
ある。
In step S7, the exhaust air-fuel ratio is set to the rich side.
Centering on the reference air-fuel ratio X (for example, 14.35)
For a predetermined period. Specifically, the exhaust air-fuel ratio is
The stoichiometric air-fuel ratio as the air-fuel ratio leaner than the quasi-air-fuel ratio X
(14.7) and a predetermined rich as a mower rich air-fuel ratio
A predetermined time (eg, 14.0) between the air-fuel ratio (eg, 14.0)
5 seconds). Note that the exhaust air-fuel ratio
In exchange, the O TwoThe detection signal from the sensor 22 is used.
Needless to say, and in this case,
The air-fuel ratio is OTwoThe average value obtained from the detection signal of the sensor
is there.

【0022】上述したようにして排気空燃比の変動制御
(Sパージ)が実行されると、図3に示されるように排
気空燃比は理論空燃比(ストイキオ)よりもリッチ側の
領域内にて、基準のリッチ空燃比Xを中心とし、その上
下に変動される。それ故、NOx触媒12に吸蔵された
SOxはその排気空燃比がよりリッチ側に変動されたと
きにより多量に放出還元されることから、排気管6内に
てS化合物の濃度は周期的に増減され、その時間当たり
の濃度平均を減少させることができる。また、図3から
明らかなようにS化合物の周期的な放出に関して、その
放出時におけるS化合物の濃度レベルは時間の経過と共
に徐々に減少していき、これはNOx触媒12内でのS
Oxの吸蔵量が徐々に減少していくことに因るものであ
る。
When the exhaust air-fuel ratio variation control (S purge) is executed as described above, the exhaust air-fuel ratio is set in a region richer than the stoichiometric air-fuel ratio (stoichio) as shown in FIG. , Around the reference rich air-fuel ratio X, and fluctuates up and down. Therefore, since the SOx stored in the NOx catalyst 12 is released and reduced in a larger amount when the exhaust air-fuel ratio is changed to a richer side, the concentration of the S compound in the exhaust pipe 6 periodically increases and decreases. And the average concentration per hour can be reduced. Further, as is apparent from FIG. 3, with respect to the periodic release of the S compound, the concentration level of the S compound at the time of the release gradually decreases with the passage of time.
This is because the amount of stored Ox gradually decreases.

【0023】従って、上述の変動制御、つまり、NOx
触媒12の再生制御が実行されても、排気管6内にS化
合物が一時的且つ多量に放出されることはない。このこ
とは、排気管6内にてS化合物とH2等の還元剤との化
学反応により得られる硫化水素(H2S)が一時的且つ
多量に生成されないことを意味し、この結果、硫化水素
に起因する異臭を効果的に抑制することができる。
Therefore, the above-mentioned fluctuation control, that is, NOx
Even if the regeneration control of the catalyst 12 is executed, the S compound is not temporarily and largely released into the exhaust pipe 6. This means that hydrogen sulfide (H 2 S) obtained by a chemical reaction between the S compound and a reducing agent such as H 2 in the exhaust pipe 6 is not generated temporarily and in large amounts. Offensive odor due to hydrogen can be effectively suppressed.

【0024】図3中には、車両後方域でのS化合物の濃
度変化もまた示されており、また、図3中の2点鎖線は
排気空燃比がよりリッチ側の空燃比に維持され続けた場
合での排気管内及び車両後方域でのS化合物の濃度変化
をそれぞれ示している。S化合物の濃度変化に関し、図
3中の実線と2点鎖線を比較すれば明らかなように、本
実施例の場合にはその変動制御の開始直後に、車両後方
に多量の硫化水素を排出することはなく、自車や後続車
内の乗員が異臭による違和感を受けることはない。
FIG. 3 also shows a change in the concentration of the S compound in the rear area of the vehicle, and the two-dot chain line in FIG. 3 indicates that the exhaust air-fuel ratio continues to be maintained at the richer air-fuel ratio. 5 shows changes in the concentration of the S compound in the exhaust pipe and in the rear area of the vehicle in the case of the above. As is clear from the comparison between the solid line and the two-dot chain line in FIG. 3 regarding the change in the concentration of the S compound, in the case of this embodiment, immediately after the start of the fluctuation control, a large amount of hydrogen sulfide is discharged to the rear of the vehicle. There is no such thing, and the occupants in the own vehicle and the following vehicles do not feel uncomfortable due to the strange smell.

【0025】上述したNOx触媒12の再生中、排気空
燃比が理論空燃比よりも大のリーン空燃比に切換えられ
ることはないので、NOx触媒12の再生を迅速に行
え、燃費の向上が図られる。しかも、本実施例の場合に
は、硫化水素をトラップするための特別な触媒を必要と
せず、安価な排気浄化装置を提供することができる。ス
テップS7の実行後、ECU20は上述のNOx触媒1
2の再生が完了したか否かを判別し(ステップS8)、
ここでの判別結果が真となるまで、ステップS7を繰り
返して実行する。一方、ステップS8の判別結果が真に
なると、ECU20は再生フラグをリセットし(ステッ
プS9)、この後、ステップS3の判別が繰り返して実
行される。ここで、ステップS8での判別は、排気空燃
比の変動制御(ステップS7)が開始されてからの経過
時間、または、ステップS1にて推定したS吸蔵量に基
づいて実施可能である。
During the regeneration of the NOx catalyst 12, the exhaust air-fuel ratio is not switched to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio. Therefore, the regeneration of the NOx catalyst 12 can be performed quickly, and the fuel efficiency is improved. . Moreover, in the case of this embodiment, a special catalyst for trapping hydrogen sulfide is not required, and an inexpensive exhaust gas purification device can be provided. After execution of step S7, the ECU 20 sets the NOx catalyst 1
It is determined whether or not the reproduction of No. 2 has been completed (step S8),
Step S7 is repeatedly executed until the result of the determination becomes true. On the other hand, when the determination result of step S8 becomes true, the ECU 20 resets the regeneration flag (step S9), and thereafter, the determination of step S3 is repeatedly executed. Here, the determination in step S8 can be performed based on the elapsed time from the start of the exhaust air-fuel ratio fluctuation control (step S7) or the S storage amount estimated in step S1.

【0026】ECU20はその排気空燃比を基準のリッ
チ側空燃比よりもリーン側の空燃比(理論空燃比)とリ
ッチ側の空燃比との間にて変動させるにあたり、フィー
ドバック制御またはオープンループ制御を利用すること
ができる。なお、本実施形態では、基準空燃比Xに対し
て理論空燃比とモアリッチ空燃比との間で変動させてい
るが、基準空燃比Xに対するリーン側の空燃比は、理論
空燃比よりも若干リッチ側の空燃比に設定してもよい。
The ECU 20 performs feedback control or open-loop control in varying the exhaust air-fuel ratio between the air-fuel ratio leaner than the reference rich-side air-fuel ratio (theoretical air-fuel ratio) and the air-fuel ratio on the rich side. Can be used. In the present embodiment, the reference air-fuel ratio X is varied between the stoichiometric air-fuel ratio and the moor-rich air-fuel ratio. However, the lean air-fuel ratio with respect to the reference air-fuel ratio X is slightly richer than the stoichiometric air-fuel ratio. May be set to the side air-fuel ratio.

【0027】また、図3におけるNOx触媒12の再生
ルーチンは車両の走行距離等を考慮し、所定の期間毎に
実行されるものであってもよい。この場合、排気空燃比
の変動制御(ステップS7)を実行するにあたっては、
その空燃比の変動幅を一定であるとき、NOx触媒12
のS被毒量に基づき、その基準のリッチ空燃比Xのレベ
ルを図3中矢印Yで示すように上下に可変するようにし
てもよい。具体的には、S被毒量が多ければ多いほど、
基準のリッチ空燃比Xはより理論空燃比側に変位され
る。このようにして基準のリッチ空燃比Xが変位される
と、リッチ側への排気空燃比の振れが抑制される結果、
排気管6内に一時的且つ多量にS化合物が生成されてし
まうのを効果的に防止ができる。なお、基準のリッチ空
燃比よりリーン側の空燃比は理論空燃比よりもリーン側
となることも許容される。
The regeneration routine of the NOx catalyst 12 in FIG. 3 may be executed at predetermined intervals in consideration of the traveling distance of the vehicle. In this case, when executing the fluctuation control of the exhaust air-fuel ratio (step S7),
When the fluctuation range of the air-fuel ratio is constant, the NOx catalyst 12
3, the level of the reference rich air-fuel ratio X may be varied up and down as shown by the arrow Y in FIG. Specifically, the more the S poisoning amount, the more
The reference rich air-fuel ratio X is displaced toward the stoichiometric air-fuel ratio. When the reference rich air-fuel ratio X is displaced in this manner, the fluctuation of the exhaust air-fuel ratio to the rich side is suppressed,
It is possible to effectively prevent the temporary and large amount of the S compound from being generated in the exhaust pipe 6. The air-fuel ratio leaner than the reference rich air-fuel ratio may be leaner than the stoichiometric air-fuel ratio.

【0028】また、同様な趣旨に基づき、基準のリッチ
空燃比Xが一定である場合には、空燃比の1変動サイク
ル中、図3に示すように排気空燃比が基準のリッチ空燃
比Xに対してリーン側となる空燃比に維持される時間A
と、基準のリッチ空燃比Xに対しよりリッチ側となるモ
アリッチ空燃比に維持される時間Bとを考慮した場合、
NOx触媒12のS被毒量が多ければ多い程、前記時間
Aに対して前記時間Bを短くするか、或いは上述の時間
A,Bに代えて、排気空燃比が前記リーン側の空燃比に
移行するリーン化頻度と、前記モアリッチ空燃比に移行
するリッチ化頻度とでみた場合、S被毒量が多ければ多
い程、前記リーン化頻度に対して前記リッチ化頻度は小
さくされる。この結果、モアリッチ空燃比での運転頻度
が少なくなり、一時的に多量のS化合物が生成されるの
を効果的に防止できる。
On the basis of the same concept, when the reference rich air-fuel ratio X is constant, the exhaust air-fuel ratio is changed to the reference rich air-fuel ratio X during one fluctuation cycle of the air-fuel ratio as shown in FIG. Time A at which the air-fuel ratio on the lean side is maintained
Considering the time B in which the rich air-fuel ratio is maintained on the richer side with respect to the reference rich air-fuel ratio X,
As the S poisoning amount of the NOx catalyst 12 increases, the time B is shortened with respect to the time A, or the exhaust air-fuel ratio is changed to the air-fuel ratio on the lean side instead of the times A and B described above. In view of the leaning frequency at which the shift takes place and the riching frequency at which the transition to the more rich air-fuel ratio takes place, the greater the amount of S poisoning, the smaller the richening frequency with respect to the leaning frequency. As a result, the operation frequency at the moir-rich air-fuel ratio is reduced, and the temporary generation of a large amount of S compounds can be effectively prevented.

【0029】更に、上述の排気空燃比の変動制御はNO
x触媒の再生期間(図3参照)の全域に亘って実施しな
くとも、NOx触媒12からSOxが所定のレベル以上
放出還元される領域のみに実施し、その後は、排気空燃
比を理論空燃比または理論空燃比近傍の所定のリッチ空
燃比に維持するようにしてもよい。上述した排気空燃比
のフィードバック制御にあたり、排気空燃比はそのフィ
ードバック制御の積分ゲイン、または、その比例ゲイン
を変更することで、リーン空燃比又はモアリッチ空燃比
に切換えることができる。具体的には排気空燃比をモア
リッチ空燃比に切換えには排気空燃比のためのリッチ化
ゲイン(積分又は比例ゲイン)を大、またはリーン化ゲ
インを小とする制御の少なくとも一方が実施される。
Further, the above-described variation control of the exhaust air-fuel ratio is NO.
Even if it is not carried out over the entire region of the x catalyst regeneration period (see FIG. 3), it is carried out only in a region where SOx is released and reduced by a predetermined level or more from the NOx catalyst 12, and thereafter, the exhaust air-fuel ratio is changed to the stoichiometric air-fuel ratio Alternatively, a predetermined rich air-fuel ratio near the stoichiometric air-fuel ratio may be maintained. In the above-described feedback control of the exhaust air-fuel ratio, the exhaust air-fuel ratio can be switched to a lean air-fuel ratio or a more rich air-fuel ratio by changing the integral gain of the feedback control or the proportional gain. Specifically, to switch the exhaust air-fuel ratio to the more rich air-fuel ratio, at least one of control for increasing the enrichment gain (integral or proportional gain) for the exhaust air-fuel ratio or decreasing the leaning gain is performed.

【0030】また、積分または比例ゲインに代えて、そ
のフィードバック制御の補正係数の上限値または下限値
を変更することで、排気空燃比をリーン側の空燃比また
はモアリッチ空燃比に切り換えることもできる。この場
合、具体的には、排気空燃比をモアリッチ空燃比に切り
換えるには、その補正係数の上限値を大、または小とす
る制御の少なくとも一方が実施される。
The exhaust air-fuel ratio can be switched to a lean air-fuel ratio or a more rich air-fuel ratio by changing the upper limit or lower limit of the correction coefficient of the feedback control instead of the integral or proportional gain. In this case, specifically, in order to switch the exhaust air-fuel ratio to the moir-rich air-fuel ratio, at least one of the controls for increasing or decreasing the upper limit value of the correction coefficient is performed.

【0031】更に、上述の実施例ではNOx触媒12を
昇温させるために、フューエルインジェクタ2の2段噴
射を実施するようにしたが、このような2段噴射に代え
て、点火時期をリタードさせたり、NOx触媒12を電
気ヒータ等の熱源により昇温させるようにしてもよい。
Further, in the above-described embodiment, the two-stage injection of the fuel injector 2 is carried out in order to raise the temperature of the NOx catalyst 12, but instead of such a two-stage injection, the ignition timing is retarded. Alternatively, the temperature of the NOx catalyst 12 may be raised by a heat source such as an electric heater.

【0032】[0032]

【発明の効果】以上説明したように本発明の内燃機関の
排気浄化装置によれば、NOx触媒のS被毒が許容レベ
ルを超えたときには、その排気空燃比を基準のリッチ空
燃比を中心として上下に変動させるようにしたから、排
ガスに異臭を発生させることなくNOx触媒の再生を迅
速に行え、燃費の向上とともに、そのコストの低減を図
ることができる。
As described above, according to the exhaust gas purifying apparatus for an internal combustion engine of the present invention, when the S poisoning of the NOx catalyst exceeds an allowable level, the exhaust air-fuel ratio is centered on the rich air-fuel ratio as a reference. Since it is made to fluctuate up and down, the NOx catalyst can be quickly regenerated without generating an off-flavor in the exhaust gas, and the fuel cost can be improved and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の排気浄化装置を備えた内燃機関の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an internal combustion engine including an exhaust gas purification device of one embodiment.

【図2】図1のECUが実行するNOx触媒の再生制御
ルーチンを示したフローチャートである。
FIG. 2 is a flowchart showing a NOx catalyst regeneration control routine executed by an ECU of FIG. 1;

【図3】再生制御の実行中、排気空燃比の変動、排気管
内でのS化合物の濃度変化、そして車両後方でのS化合
物の濃度変化を示したタイムチャートである。
FIG. 3 is a time chart showing a change in an exhaust air-fuel ratio, a change in the concentration of an S compound in an exhaust pipe, and a change in the concentration of an S compound behind a vehicle during execution of regeneration control.

【符号の説明】[Explanation of symbols]

2 フューエルインジェクタ 10 触媒コンバータ 12 NOx触媒 14 三元触媒 22 O2センサ 20 ECU2 Fuel Injector 10 Catalytic Converter 12 NOx Catalyst 14 Three-Way Catalyst 22 O 2 Sensor 20 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/20 F02D 41/04 305Z 3/28 301 B01D 53/36 101B F02D 41/04 305 102E (72)発明者 田村 保樹 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G091 AA17 AA24 AA28 AB03 AB06 AB11 DB11 DB13 DC03 EA01 EA07 EA08 EA17 EA33 EA34 FB12 GB02Y GB03Y GB05W GB06W HA12 HA19 HA20 HA36 HA38 HA42 HA47 3G301 HA01 HA04 HA06 HA16 JA25 MA01 MA11 MA19 MA26 NA09 NC02 ND01 ND05 NE13 PA11Z PD02Z PD11Z PD12Z PE01Z PE03Z 4D048 AA06 AA13 AA18 AB02 AB05 BA15Y BA30Y BA33Y BD02 BD04 CC32 CC44 DA01 DA02 DA08 DA20 EA04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/20 F02D 41/04 305Z 3/28 301 B01D 53/36 101B F02D 41/04 305 102E (72) Inventor Yuki Tamura 5-33-8 Shiba 5-chome, Minato-ku, Tokyo F-term in Mitsubishi Motors Corporation (reference) 3G091 AA17 AA24 AA28 AB03 AB06 AB11 DB11 DB13 DC03 EA01 EA07 EA08 EA17 EA33 EA34 FB12 GB02Y GB03Y GB05W GB06W HA12 HA19 HA19 HA36 HA38 HA42 HA47 3G301 HA01 HA04 HA06 HA16 JA25 MA01 MA11 MA19 MA26 NA09 NC02 ND01 ND05 NE13 PA11Z PD02Z PD11Z PD12Z PE01Z PE03Z 4D048 AA06 AA13 AA18 AB02 AB05 BA15Y BA30Y BA33Y BD02 BD04 CC32 DA44 DA01 DA02 DA04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設けられ、排気空
燃比がリーン空燃比であるときには排ガス中の窒素酸化
物を吸蔵する一方、排気空燃比が理論空燃比以下のとき
には吸蔵した窒素酸化物を放出し還元するNOx触媒
と、 前記排ガス中のイオウ成分による前記NOx触媒のS被
毒を検知するS被毒検知手段と、 前記S被毒検知手段にて前記NOx触媒のS被毒が検知
されたとき、前記排気空燃比を基準のリッチ空燃比を中
心として変動させ、前記NOx触媒に吸蔵されているイ
オウ成分を脱離させる空燃比変動手段とを具備したこと
を特徴とする内燃機関の排気浄化装置。
1. An exhaust passage for an internal combustion engine, which stores nitrogen oxides in exhaust gas when the exhaust air-fuel ratio is lean, and stores nitrogen oxides when the exhaust air-fuel ratio is lower than the stoichiometric air-fuel ratio. NOx catalyst for releasing and reducing sulfur, S poisoning detecting means for detecting S poisoning of the NOx catalyst by sulfur components in the exhaust gas, and S poisoning of the NOx catalyst detected by the S poisoning detecting means And an air-fuel ratio varying means for varying the exhaust air-fuel ratio around a reference rich air-fuel ratio to desorb the sulfur component stored in the NOx catalyst. Exhaust gas purification device.
JP07621299A 1999-03-19 1999-03-19 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3702937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07621299A JP3702937B2 (en) 1999-03-19 1999-03-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07621299A JP3702937B2 (en) 1999-03-19 1999-03-19 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000274232A true JP2000274232A (en) 2000-10-03
JP3702937B2 JP3702937B2 (en) 2005-10-05

Family

ID=13598881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07621299A Expired - Lifetime JP3702937B2 (en) 1999-03-19 1999-03-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3702937B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922988B2 (en) 2002-12-20 2005-08-02 Toyota Jidosha Kabushikia Kaisha Exhaust emission control apparatus and method for internal combustion engine
US7134274B2 (en) 2004-06-10 2006-11-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
WO2007145178A1 (en) 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
US7506502B2 (en) 2003-09-24 2009-03-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying system for internal combustion engine
US7509801B2 (en) 2004-06-10 2009-03-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
WO2010113278A1 (en) * 2009-03-31 2010-10-07 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification system
CN111868358A (en) * 2018-03-09 2020-10-30 戴姆勒股份公司 Method for operating an otto engine, in particular of a motor vehicle, and motor vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922988B2 (en) 2002-12-20 2005-08-02 Toyota Jidosha Kabushikia Kaisha Exhaust emission control apparatus and method for internal combustion engine
US7506502B2 (en) 2003-09-24 2009-03-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying system for internal combustion engine
US7134274B2 (en) 2004-06-10 2006-11-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
US7509801B2 (en) 2004-06-10 2009-03-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
WO2007145178A1 (en) 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
WO2010113278A1 (en) * 2009-03-31 2010-10-07 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification system
US8650863B2 (en) 2009-03-31 2014-02-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
CN111868358A (en) * 2018-03-09 2020-10-30 戴姆勒股份公司 Method for operating an otto engine, in particular of a motor vehicle, and motor vehicle
US11415033B2 (en) 2018-03-09 2022-08-16 Daimler Ag Method for operating a petrol engine, in particular of a motor vehicle, and motor vehicle

Also Published As

Publication number Publication date
JP3702937B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP3399466B2 (en) Exhaust gas purification device for internal combustion engine
JP2000161107A (en) Exhaust emission control device for internal combustion engine
JP3702937B2 (en) Exhaust gas purification device for internal combustion engine
JP3832550B2 (en) Exhaust gas purification device for internal combustion engine
JP4221125B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP2002004916A (en) Exhaust emission control device for onboard internal combustion engine
JP2003206727A (en) Exhaust emission control device for internal combustion engine
JP4228154B2 (en) Exhaust gas purification device for internal combustion engine
JP4131151B2 (en) Engine exhaust purification system
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP2001020781A (en) Exhaust emission control device for internal combustion engine
JP3997740B2 (en) Exhaust gas purification device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP3334635B2 (en) Exhaust gas purification device for internal combustion engine
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP3972620B2 (en) Exhaust gas purification device for internal combustion engine
JP4061817B2 (en) Exhaust gas purification device for internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine
JP3468139B2 (en) Exhaust gas purification device for internal combustion engine
JP2010242688A (en) Exhaust emission control system for internal combustion engine
JP4174952B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 9

EXPY Cancellation because of completion of term