JP2000273590A - Cast steel for heat treatment, excellent in weldability and machinability - Google Patents

Cast steel for heat treatment, excellent in weldability and machinability

Info

Publication number
JP2000273590A
JP2000273590A JP11079275A JP7927599A JP2000273590A JP 2000273590 A JP2000273590 A JP 2000273590A JP 11079275 A JP11079275 A JP 11079275A JP 7927599 A JP7927599 A JP 7927599A JP 2000273590 A JP2000273590 A JP 2000273590A
Authority
JP
Japan
Prior art keywords
machinability
cast steel
weldability
heat treatment
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11079275A
Other languages
Japanese (ja)
Inventor
Masahide Kawabata
將秀 川畑
Seiji Okazaki
清治 岡崎
Yoshiharu Wada
義治 和田
Kunichika Kubota
邦親 久保田
Miki Yamaoka
美樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11079275A priority Critical patent/JP2000273590A/en
Publication of JP2000273590A publication Critical patent/JP2000273590A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cast steel for heat treatment, capable of securing superior mechanical properties, particularly hardness and toughness, excellent in weldability and machinability, and having superior castability required of a casting. SOLUTION: The cast steel has a composition consisting of, by weight, 0.4-0.65% C, 0.3-1.4% Si, 0.01-0.4% S, 0.3-1.0% Mn, 5.5-9.5% Cr, Mo and W in amounts within the ranges satisfying (Mo+1/2W)=1.0 to 2.0%, 0.1-0.6% V, and the balance Fe with inevitable impurities. Further, the value Z of the eutectic value represented by equation Z=8*(C%)+0.6*(Cr%) is regulated to <=10.8, and the area ratio of M7C3 carbides at the time of solidification in the structure is regulated to <=2%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車、家庭電化製
品、農機具等に使用される鋼板の打抜、曲げ、絞りある
いはトリミング用の金型等で熱処理して使用される溶接
性および被削性に優れた熱処理用鋳鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the weldability and machinability of steel plates used for automobiles, household appliances, agricultural equipment, etc., which are heat-treated with a die for punching, bending, drawing or trimming. It relates to cast steel for heat treatment having excellent heat resistance.

【0002】[0002]

【従来の技術】自動車メーカー等では価格競争に打ち勝
ち収益を確保するために、これまであらゆる分野でのコ
スト低減を実施してきた。その分野は金型の製造分野ま
でにもおよび、コスト低減のため、プレスで成形される
製品の製作工程の短縮や金型製作数の削減、更には加工
方法や工具の開発等種々の施策を実施してきた。また、
鋼板の打抜、曲げ、絞りあるいはトリミング等に使用さ
れる金型では、三次元的に変化している被打抜品の形状
を成形する金型において、鋼材に比べて加工代を減少で
きるメリットを生かし鋳鋼品も採用されてきた。この点
に着目し、最近では更に鋳鋼品の品質改善ニーズが強く
なってきた。
2. Description of the Related Art Automakers and the like have been reducing costs in all fields in order to overcome price competition and secure profits. The field extends to the mold manufacturing field.To reduce costs, various measures such as shortening the manufacturing process of press-formed products, reducing the number of molds, and developing machining methods and tools are also underway. Has been implemented. Also,
With the die used for punching, bending, drawing or trimming of steel sheets, the advantage of reducing the processing allowance compared to steel in a die that shapes the shape of the punched product that changes three-dimensionally Taking advantage of this, cast steel products have also been adopted. Focusing on this point, there has recently been a growing need for improved quality of cast steel products.

【0003】従来このような金型材で、特に冷間加工用
としては耐摩耗性付与のため炭化物を多量に含み、更
に、焼入れ性に優れかつ靭性を確保するためにCr含有
量が多い材料が求められていた。例えば、その一例とし
て、JIS・G・4404規定の合金工具鋼鋼材である
SKD11等の高C−高Cr系鋼が使用されている。
[0003] Conventionally, such a mold material, particularly for cold working, contains a large amount of carbide for imparting abrasion resistance, and further has excellent quenching properties and a large content of Cr for securing toughness. Was sought. For example, as one example, a high C-high Cr steel such as SKD11 which is an alloy tool steel specified in JIS G 4404 is used.

【0004】[0004]

【発明が解決しようとする課題】しかし、近年の傾向と
しては、金型を構成する部品数の削減や一体成形、形状
の複雑化等でSKD11のごとき鋼材からの加工による
形状出しでは耐摩耗性には優れているが加工すべき体積
が膨大となり、製造コスト増加の原因となっている。一
方、SKD11に相当する材質の成分で鋳造化して加工
代を減少する試みも成されてきたが炭化物を多量に含む
ため、靭性、溶接性、被削性等に問題があり、適切な合
金設計での実用化までには至っていないのが現状であ
る。
However, the tendency in recent years is to reduce the number of parts constituting a mold, to integrally mold, and to complicate the shape. However, the volume to be processed is enormous, which causes an increase in manufacturing cost. On the other hand, attempts have been made to reduce the machining allowance by casting with a material component equivalent to SKD11, but because of the large amount of carbides, there are problems with toughness, weldability, machinability, etc. At present, it has not been put to practical use.

【0005】また、このような金型材に要求される基本
特性には焼入れ性、耐摩耗性、靭性、溶接性、被削性等
が挙げられるが、近年、耐摩耗性付与としては表面処理
の技術が発達してきたため、耐摩耗性確保のために必ず
しも硬質脆性な炭化物を多量に含有しなくても良くなっ
てきた。また、最近の動向を見てみると金型加工工程の
立ち上げが短期化してきたための設計変更による形状修
正や、金型使用中の過酷な条件等による破損や割れが生
じても救済により再使用ができるための溶接性が重要と
なってきた。さらに、金型加工工程の立ち上げの短期化
に加えて、金型加工費の低減がより追求され、金型の被
削性向上についても重要となってきた。
The basic characteristics required for such a mold material include hardenability, wear resistance, toughness, weldability, machinability and the like. As technology has developed, it has become unnecessary to contain a large amount of hard brittle carbide in order to ensure wear resistance. Looking at recent trends, the start of the die machining process has been shortened, and the shape has been modified by a design change. Weldability for use has become important. Furthermore, in addition to shortening the start-up time of the die processing step, reduction of die processing cost has been pursued more, and improvement of machinability of the die has become important.

【0006】このように、従来材には各々一長一短があ
る。そこで鋭意研究の結果、本発明は機械的性質および
焼入れを低下させず、溶接性および被削性に優れた金型
材をしかも加工量の少ない鋳鋼で提供することにある。
As described above, each of the conventional materials has advantages and disadvantages. Therefore, as a result of intensive studies, the present invention is to provide a mold material which is excellent in weldability and machinability without reducing the mechanical properties and quenching, and which is cast steel with a small processing amount.

【0007】[0007]

【課題を解決するための手段】本発明者は溶接性の改善
に要求される基本条件を見直すことにより、基本成分で
あるC含有量を減少し、快削元素であるSおよびCaを
単独あるいは複合添加して被削性を改善しても良好な機
械的性質、特に硬さ及び靭性を得ることができ、鋳物と
しても溶接性を損なわず、鋳造性が良い本発明の鋳鋼に
想到した。
SUMMARY OF THE INVENTION The present inventor has reviewed the basic conditions required for improving the weldability, thereby reducing the C content as a basic component, and freeing S and Ca as free-cutting elements alone or separately. Even if the machinability is improved by adding a composite, good mechanical properties, particularly hardness and toughness, can be obtained, and the cast steel of the present invention has good castability without impairing the weldability even as a casting.

【0008】まず本発明による熱処理用鋳鋼は、重量%
でC:0.4〜0.65%、Si:0.3〜1.4%、
S:0.01〜0.4%、Mn:0.3〜1.0%、C
r:5.5〜9.5%、Mo+1/2W:1.0〜2.
0%、V:0.1〜0.6%を含有するとともに、残部
がFeおよび不可避の不純物からなる化学成分とする。
或いは、重量%でC:0.4〜0.65%、Si:0.
3〜1.4%、S:0.01〜0.4%、Mn:0.3
〜0.8%、Cr:5.5〜9.5%、Mo+1/2
W:1.0〜2.0%、V:0.1〜0.6%、Ca:
0.0005〜0.004%、残部がFeおよび不可避
の不純物からなる化学成分とする。
First, the cast steel for heat treatment according to the present invention comprises
C: 0.4 to 0.65%, Si: 0.3 to 1.4%,
S: 0.01 to 0.4%, Mn: 0.3 to 1.0%, C
r: 5.5-9.5%, Mo + 1 / 2W: 1.0-2.
0%, V: 0.1 to 0.6%, with the balance being Fe and unavoidable impurities.
Alternatively, C: 0.4 to 0.65% and Si: 0.
3-1.4%, S: 0.01-0.4%, Mn: 0.3
0.8%, Cr: 5.5-9.5%, Mo + 1/2
W: 1.0 to 2.0%, V: 0.1 to 0.6%, Ca:
The chemical component is 0.0005 to 0.004%, with the balance being Fe and unavoidable impurities.

【0009】そして、共晶値Zが10.8以下で、且つ
凝固時のM7C3炭化物が面積率で2%以下とする。共
晶値Zとは、鋳鋼の溶湯が凝固する過程において固液共
存温度幅が大きくなると鋳造欠陥が発生し易くなるため
の危険値であり、Z=8×(C%)+0.6×(Cr
%)と定義する。なお、この式での(C%)と(Cr
%)とは含有量の重量%である。共晶値Zが10.8を
超えると凝固完了後の鋳造欠陥が発生しやすいので好ま
しくない。また、凝固時のM7C3炭化物は粗大で且つ
硬質脆性なため被削性を劣化させる原因となる。このた
め、凝固時のM7C3炭化物が2%を超えると著しく被
削性が劣化する。このM7C3炭化物の面積率で2%以
下の状態になることを実現するために、1100℃以上
の拡散焼鈍を実施する。
The eutectic value Z is 10.8 or less, and the M7C3 carbide during solidification is 2% or less in area ratio. The eutectic value Z is a dangerous value for causing a casting defect to occur easily when the solid-liquid coexistence temperature width increases in the process of solidifying the molten metal of the cast steel, and Z = 8 × (C%) + 0.6 × ( Cr
%). Note that (C%) and (Cr
%) Is% by weight of the content. If the eutectic value Z exceeds 10.8, casting defects after solidification are likely to occur, which is not preferable. In addition, M7C3 carbide at the time of solidification is coarse and hard and brittle, which causes deterioration of machinability. For this reason, if M7C3 carbide at the time of solidification exceeds 2%, machinability will deteriorate remarkably. Diffusion annealing at 1100 ° C. or higher is performed to achieve a state in which the area ratio of the M7C3 carbide is 2% or less.

【0010】更に、消失模型を用いて鋳造する。鋳造用
模型は一般の生砂型あるいは自硬性砂型等に使用される
木型等を使用しても良いが、金型のごとき鋳鋼材は模型
1点当りの鋳造数が極めて僅かであるため、手作りによ
る消失模型を使用した方が模型製作費が安価となる。
[0010] Further, casting is performed using the vanishing model. As a casting model, a wooden mold used for a general green sand mold or a self-hardening sand mold may be used. The model production cost is lower when the disappearing model is used.

【0011】また、本発明は溶接前の予熱温度が少なく
とも250℃で溶接可能となる。一般に金型のごとき鋳
鍛鋼品はその製造途中または使用中の状況により形状変
更や補修のために溶接が実施されるが、合金鋼は溶接時
の割れを防止するために高温に予熱した状態で実施され
る。特に、Cr等を含む場合は450〜550℃以上に
予熱後実施するのが一般的であるが、本発明の化学成分
では、少なくとも250℃に予熱後溶接をしても割れは
発生しない。予熱温度が低めであるため経済的で、作業
もやり易い。
The present invention enables welding at a preheating temperature of at least 250 ° C. before welding. Generally, cast and forged steel products such as molds are welded for shape change or repair depending on the situation during manufacture or use, but alloy steel is preheated to high temperature to prevent cracking during welding. Will be implemented. In particular, when Cr or the like is contained, it is generally carried out after preheating to 450 to 550 ° C. or higher, but with the chemical components of the present invention, cracking does not occur even if welding is performed after preheating to at least 250 ° C. Low preheating temperature makes it economical and easy to work.

【0012】次に、溶接後の後熱が450℃で1時間保
持後、常温までの冷却時間が少なくとも3時間で冷却可
能となる。従来の冷却方法である450〜550℃から
15〜16時間をかけて冷却していた作業に比べて作業
時間の短縮が可能、かつ経済的でもある。
Next, after the post-heating after the welding is maintained at 450 ° C. for one hour, the cooling time to the room temperature can be cooled in at least three hours. The working time can be reduced and it is economical as compared with the conventional cooling method of cooling from 450 to 550 ° C. for 15 to 16 hours.

【0013】本発明の熱処理用鋳鋼の主目的は、Cの含
有量を抑えて、SおよびCaといった快削元素を適量含
有させて機械的性質、焼入れ性を低下させず、溶接性、
被削性および鋳造性に優れた鋳鋼を製作することにあ
る。金型材に使用すれば溶接性に優れているため、使用
中の破損や割れ、摩耗が生じても補修して再使用が可能
である。また、鋳鋼で製作するので要求される最終製品
形状に近い形状で素材を鋳造可能であり、圧延鋼材に比
べて加工代が少なく、且つ被削性も優れているので加工
にかかる費用は僅かで済む。更に、鋼材に比べて圧延作
業が不要であり、鋳造後の基地組織は圧延鋼材のような
方向性を持たず凝固完了する。つまり圧延された鋼材で
は圧延された方向に組織が延伸されるため、圧延方向と
その直角方向とでは機械的性質に差が生じ易い。また、
熱処理を実施した場合には圧延方向とその直角方向とで
は寸法的にも変化の度合が異なる。鋳鋼の場合には機械
的性質及び熱処理後の寸法変化の点でも組織に方向性が
ないため、いずれの方向にも安定した性質が得られると
いう特性を有している。
The main object of the cast steel for heat treatment of the present invention is to suppress the content of C and to contain an appropriate amount of free-cutting elements such as S and Ca so that the mechanical properties and hardenability are not reduced, and the weldability,
It is to produce cast steel excellent in machinability and castability. When used in mold materials, they have excellent weldability, so even if they break, crack, or wear during use, they can be repaired and reused. Also, since it is made of cast steel, the material can be cast in a shape close to the required final product shape, and the processing cost is small compared to rolled steel and the machinability is excellent, so the cost of processing is small. I'm done. Further, a rolling operation is not required as compared with a steel material, and the base structure after casting does not have the directivity like a rolled steel material, and solidification is completed. That is, since the structure is stretched in the rolled direction in the rolled steel material, a difference easily occurs in the mechanical properties between the rolling direction and a direction perpendicular to the rolling direction. Also,
When the heat treatment is performed, the degree of change in dimensions is different between the rolling direction and the direction perpendicular thereto. In the case of cast steel, there is no directionality in the structure in terms of mechanical properties and dimensional change after heat treatment, so that it has the property that stable properties can be obtained in any direction.

【0014】加えて、本発明による熱処理用鋳鋼は、必
ずしも熱処理炉による焼入れ/焼戻しを実施しなくても
よい。金型材に使用した場合等は、その機能上で必要な
部位のみに火焔焼入れ等を実施しても良く、製作工数あ
るいは必要特性を考慮して硬さを得るための熱処理方法
を選択すればよい。
In addition, the cast steel for heat treatment according to the present invention does not necessarily need to be subjected to quenching / tempering in a heat treatment furnace. When used for a mold material or the like, flame quenching may be performed only at a site necessary for its function, and a heat treatment method for obtaining hardness may be selected in consideration of the number of manufacturing steps or required characteristics. .

【0015】次に、本発明の成分限定理由について述べ
る。 1)C Cは焼入れ性を向上し、熱処理後の硬さを維持するため
に必要である。熱処理後の硬さをHRC55以上に確保
するためには含有量、固溶量共に0.4%以上が必要で
ある。0.4%未満では焼入硬さが不足し十分な強度を
確保できない。また、CはCr、Mo、V、Wと結合し
て炭化物を形成し、耐摩耗性や焼戻し軟化抵抗を向上さ
せる。含有量が過多になると靭性を低下させ、0.65
%を越えると溶接性を劣化させる。更に、固液共存温度
幅が大きくなり鋳造欠陥発生の危険、つまり共晶値Zが
増す原因となる。よってCの含有量は0.4〜0.65
%とした。 2)Si Siは脱酸剤と鋳造性改善の目的で添加するが、効果を
得るためには少なくとも0.3%以上が必要である。一
方、過多の添加は被削性と溶接性を阻害する原因とな
り、また、マトリックスの成分偏析も激しくなる。この
ためSiの含有量は0.3〜1.4%とした。 3)Mn Mnは焼入性向上のために添加するが、0.3%未満で
は焼入硬さを安定して得るためには不十分である。一
方、多すぎると残留オーステナイトが多量に発生し焼入
れ硬さが飽和状態となったり、逆に焼入れ硬さが低下す
る原因となる。また、Sとの化合物(硫化物系化合物)
を形成させ、被削性を改善させるためにも必要であるの
で、0.3〜1.0%とした。 4)Cr CrはCと結合して炭化物を生成し耐摩耗性を向上する
と共に、焼入性を増す効果がある。しかし、添加量が少
なすぎるとその効果が不足する。また、多すぎるとCr
炭化物の増加による靭性の低下をきたす。更に、Cの添
加と同様に固液共存温度幅が大きくなり鋳造欠陥発生の
危険(共晶値Z)が増す原因となる。よってCrの添加
量は5.5〜9.5%とした。 5)Mo,W MoおよびWは焼入性を向上する。また、Cと結合して
硬い炭化物を形成し、耐摩耗性を向上させる。Wの原子
量はMoの約2倍であるため、Mo1%の含有量はW2
%の含有量と等しい効果を有し、本発明ではMo,Wの
1種または2種を含有させることができ、(Mo+1/
2W)量でその効果を表すことが可能である。(Mo+
1/2W)量でどちらの成分を優先して使うかは経済性
を考慮して判断すればよい。(Mo+1/2W)の含有
量が1.0%未満では効果が不十分である。一方、過多
の含有量では靭性を低下させる層状の共晶炭化物が発生
するので1.0〜2.0%とした。 6)V Vは焼入れ時の残留オーステナイトの成長を抑制し靭性
を確保するのに有効であり、この効果を発揮するために
は0.1%以上の含有量が必要である。逆に、過多の含
有量は凝固時に巨大なV系炭化物を晶出し、靭性を低下
させる原因となるので0.1〜0.6%とした。 7)S SはCrを含有した(Mn・Cr)Sとなって材料の被
削性を向上させるが、多すぎると機械的性質が低下する
ので0.01〜0.4%とした。 8)Ca CaはCaO、SiO2、Al2O3、MnOからなる
低融点の複合酸化物となって材料の被削性を向上させる
が、多すぎると複合酸化物の融点が上昇し快削効果がな
くなるので0.0005〜0.004%とした。
Next, the reasons for limiting the components of the present invention will be described. 1) C is necessary for improving the hardenability and maintaining the hardness after the heat treatment. In order to ensure hardness after heat treatment of HRC 55 or more, both the content and the amount of solid solution must be 0.4% or more. If it is less than 0.4%, quenching hardness is insufficient and sufficient strength cannot be secured. C combines with Cr, Mo, V, and W to form a carbide, and improves wear resistance and tempering softening resistance. If the content is excessive, the toughness is reduced, and 0.65
%, The weldability deteriorates. Further, the temperature range of the solid-liquid coexistence becomes large, which may cause the risk of casting defects, that is, increase the eutectic value Z. Therefore, the content of C is 0.4 to 0.65.
%. 2) Si Si is added for the purpose of improving the castability with a deoxidizing agent, but at least 0.3% or more is required to obtain the effect. On the other hand, excessive addition causes the machinability and weldability to be impaired, and the segregation of the matrix components also becomes severe. Therefore, the content of Si is set to 0.3 to 1.4%. 3) Mn Mn is added for improving hardenability, but if it is less than 0.3%, it is insufficient to stably obtain hardenability. On the other hand, if the amount is too large, a large amount of retained austenite is generated, and the quenching hardness is saturated, or conversely, the quenching hardness is reduced. Compounds with S (sulfide compounds)
Is required to improve the machinability, so the content is set to 0.3 to 1.0%. 4) Cr Cr combines with C to form carbides, which has the effect of improving wear resistance and increasing hardenability. However, if the amount is too small, the effect is insufficient. If too much, Cr
The toughness decreases due to the increase in carbides. Further, similarly to the addition of C, the temperature range of coexistence of solid and liquid becomes large, which causes an increase in the risk of occurrence of casting defects (eutectic value Z). Therefore, the addition amount of Cr is set to 5.5 to 9.5%. 5) Mo, W Mo and W improve hardenability. Further, it combines with C to form a hard carbide and improves wear resistance. Since the atomic weight of W is about twice that of Mo, the content of Mo 1% is W2
%, And in the present invention, one or two of Mo and W can be contained, and (Mo + 1 /
The effect can be expressed in 2W) amount. (Mo +
Which component should be preferentially used in the amount of (W W) may be determined in consideration of economy. If the content of (Mo + 1 / 2W) is less than 1.0%, the effect is insufficient. On the other hand, if the content is excessive, a layered eutectic carbide that reduces toughness is generated, so the content was set to 1.0 to 2.0%. 6) VV is effective in suppressing the growth of retained austenite during quenching and ensuring toughness. To exhibit this effect, a content of 0.1% or more is required. Conversely, an excessive content crystallizes a huge V-based carbide at the time of solidification and causes a decrease in toughness. 7) S S becomes (Mn · Cr) S containing Cr to improve the machinability of the material, but if too much, the mechanical properties deteriorate, so the content was made 0.01 to 0.4%. 8) Ca Ca becomes a low melting point composite oxide composed of CaO, SiO 2, Al 2 O 3, and MnO to improve the machinability of the material. However, if too large, the melting point of the composite oxide increases and the free cutting effect is lost. 0.0005 to 0.004%.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施例について詳
細に説明するが、本発明はこれらの実施例により何等限
定されるものではない。
Next, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments.

【0017】(実施例1)表1に本発明の溶接性および
被削性に優れた熱処理用鋳鋼とその比較材の化学成分の
一実施例を示す。
(Example 1) Table 1 shows an example of the chemical composition of a cast steel for heat treatment according to the present invention having excellent weldability and machinability and a comparative material thereof.

【0018】[0018]

【表1】 [Table 1]

【0019】まず、1ton高周波炉を使用して材料を
溶解した。つぎに、取鍋を使用して溶湯を鋳型(フラン
砂型)へ1560℃で注湯した。更に鋳型内で凝固冷却
後、試験片素材を鋳型から取り出した。引続き、鋳造組
織の改善及び鋳造応力の除去を目的として、バッチ式熱
処理炉を使用し850℃で4時間保持の焼鈍を実施し
た。しかる後、ショットブラストにてスケール落し後、
押湯と湯道を切断除去した。溶接性の評価に用いた試験
片素材の形状はT字型で、フランジ部の寸法を幅200
mm、長さ100mm、厚さ40mm、ウエブ部の寸法
を高さ40mm、厚さ15mmとした。被削性の評価に
用いた試験片素材の寸法は幅100mm、長さ200m
m、高さ100mmとした。
First, the material was melted using a 1-ton high-frequency furnace. Next, the molten metal was poured into a mold (Fran sand mold) at 1560 ° C. using a ladle. After solidification and cooling in the mold, the test piece material was removed from the mold. Subsequently, for the purpose of improving the casting structure and removing casting stress, annealing was carried out at 850 ° C. for 4 hours using a batch type heat treatment furnace. Then, after dropping the scale with shot blast,
The feeder and the runner were cut off. The shape of the test piece material used for the evaluation of the weldability was T-shaped, and the dimensions of the flange part were 200 width.
mm, length 100 mm, thickness 40 mm, and dimensions of the web portion were height 40 mm and thickness 15 mm. The dimensions of the test piece material used for evaluation of machinability were 100 mm in width and 200 m in length
m and height 100 mm.

【0020】次に、試験片素材の鋳肌面を機械加工によ
り除去し、溶接性評価用の試験片の形状に仕上げた。そ
の後、溶接評価用の試験片を真空加熱炉を用いて102
5℃に加熱保持後、不活性ガスでガス冷却焼入れを実施
し、更に続けて各試験片の目標硬さがHRC55以上と
なるように、500〜550℃で焼戻しを実施した。こ
のようにして製作した試験片を用いて表2に示す条件で
溶接性の評価を実施した。
Next, the cast surface of the test piece material was removed by machining to finish the shape of the test piece for evaluating weldability. Then, the test piece for welding evaluation was 102
After heating and holding at 5 ° C., gas cooling quenching was performed with an inert gas, and further, tempering was performed at 500 to 550 ° C. so that the target hardness of each test piece was 55 or more HRC. The weldability was evaluated under the conditions shown in Table 2 using the test pieces thus manufactured.

【0021】[0021]

【表2】 [Table 2]

【0022】焼入れ、焼戻し熱処理結果の硬さと溶接性
(溶接後の割れの有無)判定結果の一例を表3に示す。
発明材にはいずれの場合も溶接割れが発生しなかった
が、比較材では予熱温度が350、450℃で割れを生
じた。
Table 3 shows an example of the hardness and weldability (presence or absence of cracks after welding) of the quenching and tempering heat treatment results.
In all cases, no cracking occurred in the invention material, but cracks occurred in the comparative material at preheating temperatures of 350 and 450 ° C.

【0023】[0023]

【表3】 [Table 3]

【0024】更に、試験片素材から引張試験用にJIS
4号試験片(直径14mm)を、靭性測定にはシャルピ
ー衝撃試験用に10mm角、長さ55mm、中央部切り
欠き深さ2mm、半径10mmの試験片を切り出し、機
械的性質の調査に供した。熱処理は真空加熱路で102
5℃に加熱後不活性ガスでガス冷却焼入れを実施し、更
に目標硬さがHRC55以上となるように500〜55
0℃で焼戻しを実施した。この結果の一例を表4に示
す。比較材1はSKD11圧延鋼材であり、圧延方向と
直角方向の機械的性質である。また、比較材2は化学的
成分がSKD11相当の鋳造材である。発明材は圧延鋼
材の圧延方向直角方向靭性より高く、従来の鋳鋼材より
も二倍以上の靭性が得られることがわかる。
Further, JIS was used for the tensile test from the test piece material.
A No. 4 test piece (14 mm in diameter) was cut out from a 10 mm square, 55 mm long, 2 mm central notch depth, and 10 mm radius test piece for Charpy impact test for toughness measurement, and subjected to mechanical property investigations. . Heat treatment is 102 in the vacuum heating path.
After heating to 5 ° C., gas cooling and quenching are performed with an inert gas, and further, 500 to 55 so that the target hardness is HRC 55 or more.
Tempering was performed at 0 ° C. Table 4 shows an example of the result. Comparative material 1 is a SKD11 rolled steel material and has mechanical properties in a direction perpendicular to the rolling direction. Comparative material 2 is a cast material whose chemical component is equivalent to SKD11. It can be seen that the invented material has higher toughness in the direction perpendicular to the rolling direction of the rolled steel material and more than twice the toughness of the conventional cast steel material.

【0025】[0025]

【表4】 [Table 4]

【0026】次に、共晶値Zと鋳造欠陥の発生状況につ
いて調査した結果の一例を表5に示す。発明材にはいず
れも微小引け巣が認められなかった。
Next, Table 5 shows an example of the result of investigation on the eutectic value Z and the occurrence of casting defects. No micro shrinkage cavities were observed in any of the inventive materials.

【0027】[0027]

【表5】 [Table 5]

【0028】次に、被削性評価のために試験片素材の鋳
肌面を機械加工により除去し、被削性評価用の試験片の
形状に仕上げた。被削性の評価は焼鈍し材と焼入れ・焼
戻し材の両方を行なう。焼鈍し材には前記の仕上げた試
験片を用いた。焼入れ・焼戻し材には、前記の仕上げた
試験片を真空加熱炉を用いて1025℃に加熱保持後、
不活性ガスでガス冷却焼入れを実施し、更に続けて各試
験片の目標硬さがHRC55以上となるように、500
〜550℃で焼戻しを実施した。このようにして、製作
した焼鈍し材と焼入れ・焼戻し材の試験片を用いて表6
に示す条件で被削性の評価を実施した。
Next, the cast surface of the test piece material was removed by machining to evaluate the machinability, and the shape of the test piece for evaluating the machinability was finished. The machinability is evaluated for both the annealed material and the quenched / tempered material. The finished test piece was used as an annealed material. For the quenched / tempered material, after heating and holding the finished test piece at 1025 ° C. using a vacuum heating furnace,
Gas cooling quenching is performed with an inert gas, and further, 500 g of each test piece is set so that the target hardness is HRC 55 or more.
Tempering was performed at 550 ° C. Using the test pieces of the annealed material and the quenched / tempered material thus manufactured, Table 6
Evaluation of machinability was carried out under the conditions shown below.

【0029】[0029]

【表6】 [Table 6]

【0030】被削性の評価結果を表7に示す。ここで、
エンドミル刃先摩耗量はSKD11を10とした場合の
摩耗指数で示している。摩耗指数が大きい方がエンドミ
ル刃先摩耗量が多いことを示している。発明材9、10、
11では、焼鈍し材および焼入れ・焼戻し材両方におい
て、比較材1、12、13に比べて被削性が大幅に改善され
ていることが認められた。
Table 7 shows the evaluation results of the machinability. here,
The end mill edge wear amount is indicated by a wear index when SKD11 is set to 10. A larger wear index indicates a larger end mill edge wear amount. Invention materials 9, 10,
In No. 11, it was recognized that the machinability of both the annealed material and the quenched and tempered material was significantly improved as compared with Comparative Materials 1, 12, and 13.

【0031】[0031]

【表7】 [Table 7]

【0032】(実施例2)試験片素材用の模型に消失模
型を使用し、実施例1と同様にして試験片を鋳造した。
試験片素材の形状、大きさはT字状で実施例1と同様で
ある。引続き、バッチ式熱処理炉を使用し850℃で4
時間保持の焼鈍を実施した。その後、ショットブラスト
でスケールを落し、押湯と湯道を切断除去した。次に、
試験片素材の鋳肌面を機械加工により除去し、真空加熱
炉で1025℃に加熱保持後、不活性ガスで焼入れを実
施した。焼戻し後の目標硬さはHRC55以上である。
溶接条件は実施例1と同様としたが、溶接前の予熱温度
は250℃、350℃、450℃の三水準とし、溶接後
の後熱は450℃で1時間保持後、7時間をかけて常温
までの冷却とした。
Example 2 A test piece was cast in the same manner as in Example 1, except that a vanishing model was used as a test piece material model.
The shape and size of the test piece material were T-shaped and the same as in Example 1. Subsequently, using a batch type heat treatment furnace at 850 ° C.
Time holding annealing was performed. Thereafter, the scale was dropped by shot blasting, and the feeder and the runner were cut and removed. next,
The cast surface of the test piece material was removed by machining, heated and maintained at 1025 ° C. in a vacuum heating furnace, and then quenched with an inert gas. The target hardness after tempering is HRC 55 or more.
The welding conditions were the same as in Example 1, except that the preheating temperature before welding was set at three levels of 250 ° C., 350 ° C., and 450 ° C., and the post-heating after welding was maintained at 450 ° C. for 1 hour, and then over 7 hours. It was cooled to room temperature.

【0033】表8は本発明の熱処理用鋳鋼と比較材の溶
接性試験の一実施例である。発明材1〜6では予熱温度
が250℃または350℃であればいずれの場合も溶接
割れは発生しなかった。一方、比較材1、6及び11は
予熱温度を450℃で、比較材5は350℃で実施した
が全てに溶接割れが発生した。
Table 8 shows one example of a weldability test of the cast steel for heat treatment of the present invention and a comparative material. In the case of inventive materials 1 to 6, welding cracks did not occur in any case when the preheating temperature was 250 ° C or 350 ° C. On the other hand, Comparative Materials 1, 6, and 11 were preheated at 450 ° C., and Comparative Material 5 was performed at 350 ° C., but all of them had weld cracks.

【0034】[0034]

【表8】 [Table 8]

【0035】(実施例3)次に溶接前の予熱温度と溶接
後の冷却時間が溶接性に及ぼす影響を調査した。この結
果の一実施例を表9に示す。溶接後の後熱は450℃で
1時間保持後、3時間または7時間をかけて常温まで冷
却した。発明材では冷却時間が3時間の場合でも割れが
発生しなかったが、比較材では7時間で割れを生じた。
Example 3 Next, the effects of the preheating temperature before welding and the cooling time after welding on the weldability were investigated. One example of the results is shown in Table 9. After welding, the post-heat was maintained at 450 ° C. for 1 hour, and then cooled to room temperature over 3 hours or 7 hours. The invention material did not crack even when the cooling time was 3 hours, but the comparative material cracked after 7 hours.

【0036】[0036]

【表9】 [Table 9]

【0037】[0037]

【発明の効果】以上、本発明によれば、SKD11圧延
鋼材と比較して、基本成分であるC含有量を減少し、快
削元素であるSおよびCaを単独あるいは複合添加、即
ち、複合含有させ、被削性を改善しても良好な機械的性
質、特に硬さ、靭性を確保することができ、鋳物として
も溶接性を損なわず、鋳造性の良い鋳鋼を提供すること
ができる。
As described above, according to the present invention, as compared with the SKD11 rolled steel material, the C content as a basic component is reduced, and S and Ca as free-cutting elements are added singly or in combination, that is, in a composite content. As a result, even if the machinability is improved, good mechanical properties, in particular, hardness and toughness can be secured, and a cast steel having good castability can be provided without impairing weldability even as a casting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 邦親 島根県安来市安来町2107番地2日立金属株 式会社冶金研究所内 (72)発明者 山岡 美樹 島根県安来市安来町2107番地2日立金属株 式会社安来工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kunichika Kubota 2107-2 Yasugi-cho, Yasugi-shi, Shimane Hitachi Metals Research Institute Metallurgy Co., Ltd. (72) Miki Yamaoka 2107-2 Yasugi-cho, Yasugi-shi, Shimane Hitachi Metals Inside Yasugi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC :0.4〜0.65%、S
i:0.3〜1.4%、S :0.01〜0.4%、M
n:0.3〜1.0%、Cr:5.5〜9.5%、Mo
+1/2W:1.0〜2.0%、V :0.1〜0.6
%、を含有するとともに、残部がFeおよび不可避の不
純物からなり、共晶値Zが10.8以下で且つ凝固時の
M7C3炭化物が面積率で2%以下であることを特徴と
する溶接性および被削性に優れた熱処理用鋳鋼。
1. C: 0.4 to 0.65% by weight, S:
i: 0.3 to 1.4%, S: 0.01 to 0.4%, M
n: 0.3 to 1.0%, Cr: 5.5 to 9.5%, Mo
+ 1 / 2W: 1.0 to 2.0%, V: 0.1 to 0.6
%, With the balance being Fe and unavoidable impurities, having a eutectic value Z of 10.8 or less and an M7C3 carbide at the time of solidification of 2% or less in area ratio. Cast steel for heat treatment with excellent machinability.
【請求項2】 重量%でC :0.4〜0.65%、S
i:0.3〜1.4%、S :0.01〜0.4%、M
n:0.3〜0.8%、Cr:5.5〜9.5%、Mo
+1/2W:1.0〜2.0%、V :0.1〜0.6
%、Ca:0.0005〜0.004%、を含有すると
ともに、残部がFeおよび不可避の不純物からなり、共
晶値Zが10.8以下で且つ凝固時のM7C3炭化物が
面積率で2%以下であることを特徴とする溶接性および
被削性に優れた熱処理用鋳鋼。
2. C: 0.4 to 0.65% by weight, S
i: 0.3 to 1.4%, S: 0.01 to 0.4%, M
n: 0.3 to 0.8%, Cr: 5.5 to 9.5%, Mo
+ 1 / 2W: 1.0 to 2.0%, V: 0.1 to 0.6
%, Ca: 0.0005 to 0.004%, and the balance consists of Fe and unavoidable impurities, the eutectic value Z is 10.8 or less, and the M7C3 carbide at the time of solidification is 2% in area ratio. A cast steel for heat treatment excellent in weldability and machinability, characterized in that:
【請求項3】 M7C3炭化物の面積率で2%以下の状
態になることを実現するために、1100℃以上の拡散
焼鈍を実施することを特徴とする請求項1乃至2のいず
れかに記載の溶接性および被削性に優れた熱処理用鋳
鋼。
3. The method according to claim 1, wherein diffusion annealing at a temperature of 1100 ° C. or more is performed in order to realize an area ratio of M7C3 carbide of 2% or less. Cast steel for heat treatment with excellent weldability and machinability.
【請求項4】 消失模型を用いて鋳造してなることを特
徴とする請求項1乃至3のいずれかに記載の溶接性およ
び被削性に優れた熱処理用鋳鋼。
4. The heat-treated cast steel having excellent weldability and machinability according to claim 1, wherein the cast steel is cast using a vanishing model.
【請求項5】 溶接前の予熱温度が少なくとも250℃
で溶接可能としてなることを特徴とする請求項1乃至4
のいずれかに記載の溶接性および被削性に優れた熱処理
用鋳鋼。
5. The preheating temperature before welding is at least 250 ° C.
5. The welding according to claim 1, wherein the welding is possible.
The cast steel for heat treatment excellent in weldability and machinability according to any one of the above.
【請求項6】 溶接後の後熱が450℃で1時間保持
後、常温までの冷却時間が少なくとも3時間で冷却可能
としてなることを特徴とする請求項1乃至5のいずれか
に記載の溶接性に優れた熱処理用鋳鋼。
6. The welding according to claim 1, wherein after the post-weld heat is maintained at 450 ° C. for one hour, the cooling time to room temperature can be cooled in at least three hours. Cast steel for heat treatment with excellent heat resistance.
JP11079275A 1999-03-24 1999-03-24 Cast steel for heat treatment, excellent in weldability and machinability Pending JP2000273590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11079275A JP2000273590A (en) 1999-03-24 1999-03-24 Cast steel for heat treatment, excellent in weldability and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079275A JP2000273590A (en) 1999-03-24 1999-03-24 Cast steel for heat treatment, excellent in weldability and machinability

Publications (1)

Publication Number Publication Date
JP2000273590A true JP2000273590A (en) 2000-10-03

Family

ID=13685327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079275A Pending JP2000273590A (en) 1999-03-24 1999-03-24 Cast steel for heat treatment, excellent in weldability and machinability

Country Status (1)

Country Link
JP (1) JP2000273590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504868A (en) * 2002-06-13 2006-02-09 ウッデホルム トウリング アクテイエボラーグ Molding tool for steel and plastic materials made of this steel
JP2014147965A (en) * 2013-02-04 2014-08-21 Daido Steel Co Ltd Die repair welding material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504868A (en) * 2002-06-13 2006-02-09 ウッデホルム トウリング アクテイエボラーグ Molding tool for steel and plastic materials made of this steel
US7722727B2 (en) 2002-06-13 2010-05-25 Uddeholm Tooling Aktiebolag Steel and mould tool for plastic materials made of the steel
JP2014147965A (en) * 2013-02-04 2014-08-21 Daido Steel Co Ltd Die repair welding material

Similar Documents

Publication Publication Date Title
US20180142317A1 (en) Hot mold steel for long life cycle die casting having high thermal conductivity and method for preparing the same
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR101965521B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP2009013439A (en) High toughness high-speed tool steel
JPH10273756A (en) Cold tool made of casting, and its production
JP4860774B1 (en) Cold work tool steel
JP2013521411A (en) Tool steel for extrusion
JP2014025103A (en) Hot tool steel
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JPWO2002077309A1 (en) Cast steel and casting mold
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP6683074B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
WO2018008703A1 (en) Rolled wire rod
JP2008144211A (en) V-containing non-heat treated steel
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
JP3780690B2 (en) Hot work tool steel with excellent machinability and tool life
JP2000273590A (en) Cast steel for heat treatment, excellent in weldability and machinability
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JPH11293381A (en) Cast steel for heat treatment, excellent in weldability
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them