JP2000273524A - Production of high cleanliness steel - Google Patents

Production of high cleanliness steel

Info

Publication number
JP2000273524A
JP2000273524A JP11083878A JP8387899A JP2000273524A JP 2000273524 A JP2000273524 A JP 2000273524A JP 11083878 A JP11083878 A JP 11083878A JP 8387899 A JP8387899 A JP 8387899A JP 2000273524 A JP2000273524 A JP 2000273524A
Authority
JP
Japan
Prior art keywords
weight
molten steel
steel
deoxidizing
deoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083878A
Other languages
Japanese (ja)
Inventor
Hiromasa Iijima
寛昌 飯嶋
Seiji Nabeshima
誠司 鍋島
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11083878A priority Critical patent/JP2000273524A/en
Publication of JP2000273524A publication Critical patent/JP2000273524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high cleanliness steel having little deoxidation products and little defect caused by the deoxidation products by deoxidizing molten steel without producing large cluster state deoxidation products and fining and dispersing the oxides. SOLUTION: A vacuum degassing treatment is executed by adding Si-base ferro-alloy and Mn-base ferro-alloy into molten steel and successively, a deoxidizing treatment is executed by adding Al, Ti, Zr and rare earth elements, and the molten steel containing 0.50-1.00 wt.% Si, 1.0-2.0 wt.%; Mn, <=0.005 wt.% Al, 0.001-0.005 wt.% Ti, 0.001-0.005 wt.%; Zr and 0.0005-0.005 wt.% rare earth elements, is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型のクラスター
状脱酸生成物を生成させることなく溶鋼を脱酸し、脱酸
生成物や脱酸生成物に起因する欠陥の少ない高清浄度鋼
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-cleanliness steel for deoxidizing molten steel without generating large-scale cluster-like deoxidation products and having few defects caused by deoxidation products and deoxidation products. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】一般に、高炉で溶製された溶銑を転炉で
脱炭精錬した後、取鍋内に出鋼し、Alを添加して脱酸処
理を行ない溶鋼中の酸素を脱酸生成物として除去し、さ
らに成分調整を行なってから連続鋳造して鋳片を得てい
る。溶鋼にAlを添加して脱酸する際、ガス攪拌やRH脱
ガス装置を用いて脱酸生成物を凝集・合体させ、脱酸生
成物の浮上を促進する方策が採られているが、脱酸生成
物を完全に除去することは不可能であり、鋳片には不可
避的に脱酸生成物すなわちアルミナが残留する。
2. Description of the Related Art In general, hot metal smelted in a blast furnace is decarburized and refined in a converter, then steel is poured into a ladle, and Al is added to perform deoxidation to deoxidize oxygen in the molten steel. It is removed as a product, the components are further adjusted, and then continuously cast to obtain a slab. When deoxidizing by adding Al to molten steel, measures are taken to promote degassing product floating by aggregating and coalescing deoxidized products using gas stirring or RH degassing equipment. It is not possible to completely remove the acid products, and inevitably deoxidized products or alumina remain in the slab.

【0003】残留したアルミナは互いに凝集・合体して
クラスターを形成する。特にそのクラスターが鋳片の表
層部に捕捉された場合、美麗さを要求される自動車用鋼
板などの薄鋼板製品の表面性状が損なわれる。したがっ
て、この種の薄鋼板製品においてアルミナクラスターの
発生を防止することは極めて重要である。アルミナクラ
スターの生成を防止するための鋼の脱酸方法としては、
例えば特開昭51-5224 号公報には、Ca:10〜30%、Al:
2 〜20%、Mg:1 〜15%、Si:10〜60%、Ba:10〜30%
および残余Feからなる合金脱酸材で溶鋼の複合脱酸処理
を行なう方法が開示されている。しかしながら、この合
金脱酸材はBaを含むので、溶鋼中に添加した場合、その
作業環境に問題がある。つまりBaは人体の筋肉に対する
強い毒性があり、筋肉組織とともに腸や心臓の機能に障
害を与え、この粉塵を吸引すると中毒になる可能性があ
る。
[0003] The remaining alumina aggregates and coalesces with each other to form clusters. In particular, when the clusters are captured in the surface layer of the cast slab, the surface properties of a thin steel sheet product such as a steel sheet for an automobile, which requires beautifulness, are impaired. Therefore, it is extremely important to prevent the generation of alumina clusters in this type of thin steel sheet product. Methods for deoxidizing steel to prevent the formation of alumina clusters include:
For example, JP-A-51-5224 discloses that Ca: 10 to 30%, Al:
2 to 20%, Mg: 1 to 15%, Si: 10 to 60%, Ba: 10 to 30%
Also disclosed is a method of performing a composite deoxidizing treatment of molten steel with an alloy deoxidizing material comprising residual Fe. However, since this alloy deoxidizer contains Ba, there is a problem in its working environment when added to molten steel. In other words, Ba is highly toxic to muscles of the human body, impairs the function of the intestines and heart together with muscle tissue, and may become toxic when inhaled.

【0004】また、この合金脱酸材を使用する場合、蒸
気圧の高いCaとMgとが比較的多量に添加されることにな
るので、溶鋼中のCaおよびMgの歩留りが一定のレベルで
安定しない。このため脱酸生成物の組成や形態を制御す
るのが難しくなり、クラスター状脱酸生成物の生成を防
止する効果が十分に得られない。また特開平3-267311号
公報には、鋼中の成分の重量濃度をTi:0.008 〜0.018
%、Zr:0.005 〜0.015 %、Ca:0.0010〜0.0045%、A
l:0.005 %以下とする複合脱酸処理の方法が開示され
ている。しかしながら、この方法は蒸気圧の高いCaが添
加されるので、溶鋼中のCaの歩留りが一定のレベルで安
定しない。
In addition, when this alloy deoxidizing material is used, Ca and Mg having a high vapor pressure are added in a relatively large amount, so that the yield of Ca and Mg in molten steel is stable at a certain level. do not do. For this reason, it is difficult to control the composition and form of the deoxidation product, and the effect of preventing the formation of cluster deoxidation products cannot be sufficiently obtained. JP-A-3-267311 discloses that the weight concentration of a component in steel is determined to be Ti: 0.008 to 0.018.
%, Zr: 0.005 to 0.015%, Ca: 0.0010 to 0.0045%, A
A method of complex deoxidation treatment with l: 0.005% or less is disclosed. However, in this method, since Ca having a high vapor pressure is added, the yield of Ca in molten steel is not stable at a certain level.

【0005】特開昭54-116312 号公報には、Alに対して
2〜10 mol%の希土類元素の1種以上を含む合金脱酸材
が開示されている。この合金脱酸材を用いて脱酸処理を
行なうと、デンドライト状脱酸生成物の生成を防止する
には効果的であり、大型のクラスター状脱酸生成物の生
成を防止できる。しかしながら自動車用鋼板で問題とな
る粒径100 μm程度のクラスターを十分に低減できず、
しかも生成した希土類元素の脱酸生成物の比重が大きい
ので、脱酸生成物を溶鋼から十分に浮上・分離できない
という問題がある。
Japanese Patent Application Laid-Open No. Sho 54-116312 discloses an alloy deoxidizing material containing 2 to 10 mol% of one or more rare earth elements based on Al. When deoxidizing treatment is performed using this alloy deoxidizing material, it is effective to prevent generation of dendrite-like deoxidation products, and can prevent generation of large cluster-like deoxidation products. However, clusters with a particle size of about 100 μm, which is a problem with automotive steel sheets, cannot be reduced sufficiently.
Moreover, since the specific gravity of the generated rare-earth element deoxidation product is large, there is a problem that the deoxidation product cannot be sufficiently floated and separated from the molten steel.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記のような
問題を解決するべく、大型のクラスター状脱酸生成物を
生成させることなく溶鋼を脱酸し、酸化物を微細化して
分散させ、脱酸生成物や脱酸生成物に起因する欠陥の少
ない高清浄度鋼の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to deoxidize molten steel without generating large-scale cluster-like deoxidation products, and to finely disperse and disperse oxides. It is an object of the present invention to provide a method for producing a high-cleanliness steel with few defects caused by deoxidation products and deoxidation products.

【0007】[0007]

【課題を解決するための手段】本発明は、出鋼された取
鍋内の溶鋼にSi系フェロアロイおよびMn系フェロアロイ
を添加して脱酸処理を行ない、次いでAl、Ti、Zrおよび
希土類元素を添加して脱酸処理を行ない、Si:0.50〜1.
00重量%、Mn:1.0 〜2.0 重量%、Al:0.005 重量%以
下、Ti:0.001 〜0.005 重量%、Zr:0.001 〜0.005 重
量%、希土類元素:0.0005〜0.005 重量%を含有する溶
鋼を溶製する高清浄度鋼の製造方法である。
According to the present invention, a molten steel in a tapping ladle is subjected to a deoxidation treatment by adding a Si-based ferroalloy and a Mn-based ferroalloy, and then removing Al, Ti, Zr and a rare earth element. Add and deoxidize, Si: 0.50-1.
Molten steel containing 00% by weight, Mn: 1.0 to 2.0% by weight, Al: 0.005% by weight or less, Ti: 0.001 to 0.005% by weight, Zr: 0.001 to 0.005% by weight, rare earth element: 0.0005 to 0.005% by weight This is a method for producing high cleanliness steel.

【0008】また本発明は、出鋼された取鍋内の溶鋼に
Si系フェロアロイおよびMn系フェロアロイを添加して脱
酸処理を行ない、次いでAlを添加して脱酸処理を行な
い、さらにTi、Zrおよび希土類元素を添加して脱酸処理
を行ない、Si:0.50〜1.00重量%、Mn:1.0 〜2.0 重量
%、Al:0.005 重量%以下、Ti:0.001 〜0.005 重量
%、Zr:0.001 〜0.005 重量%、希土類元素:0.0005〜
0.005 重量%を含有する溶鋼を溶製する高清浄度鋼の製
造方法である。
[0008] The present invention also relates to molten steel in a ladle that has been tapped.
A Si-based ferroalloy and a Mn-based ferroalloy are added to perform a deoxidizing treatment, then Al is added to perform a deoxidizing treatment, and Ti, Zr and a rare earth element are further added to perform a deoxidizing treatment. 1.00% by weight, Mn: 1.0 to 2.0% by weight, Al: 0.005% by weight or less, Ti: 0.001 to 0.005% by weight, Zr: 0.001 to 0.005% by weight, rare earth element: 0.0005 to
This is a method for producing high cleanliness steel by melting molten steel containing 0.005% by weight.

【0009】[0009]

【発明の実施の形態】鋳片の材質を向上させる方法とし
て微細な酸化物を鋳片内に分散させて、これを変態ある
いは析出の核として利用する技術がある。この場合、酸
化物は微細であることが必須であり、粒径 0.5〜 5μm
程度であることが望ましい。粒径10μm以上の酸化物が
生成すると鋳片の材質、特に割れ感受性に悪影響を与え
る。クラスターがさらに大型化して粒径 100μm以上に
なると、自動車用鋼板などの薄鋼板製品の表面性状やバ
ーリング特性に悪影響を及ぼす。そのため粒径 100μm
以上の大型のクラスター状酸化物を生成させずに酸化物
を可能な限り低減し、鋳片内に微細な酸化物を分散させ
る必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method for improving the material of a slab, there is a technique in which a fine oxide is dispersed in a slab and used as a nucleus for transformation or precipitation. In this case, it is essential that the oxide is fine, and the particle size is 0.5 to 5 μm.
Desirably. The formation of oxides having a particle size of 10 μm or more has an adverse effect on the material of the slab, particularly on the susceptibility to cracking. When the size of the cluster is further increased to a particle size of 100 μm or more, the surface properties and burring characteristics of a thin steel sheet product such as a steel sheet for automobiles are adversely affected. Therefore, particle size 100μm
It is necessary to reduce the oxides as much as possible without generating the above-mentioned large cluster oxides, and to disperse the fine oxides in the slab.

【0010】脱酸処理を行なうと脱酸生成物として酸化
物が生成する。一般にAlやTi等の酸化物は融点が高いた
め球状化しにくく、脱酸処理中に脱酸生成物同士が衝突
すると塊状の脱酸生成物となる。この塊状の脱酸生成物
が凝集・合体してクラスターを形成する。クラスターの
形成を抑制するために脱酸生成物の融点を下げ、脱酸処
理中の溶鋼温度において溶融させることが必要である。
そこで取鍋内の溶鋼にSi系フェロアロイおよびMn系フェ
ロアロイを添加して脱酸処理を行なう。その後、Al、T
i、Zrおよび希土類元素を添加して脱酸処理を行なう。
なお取鍋内の溶鋼にSi系フェロアロイおよびMn系フェロ
アロイを添加して脱酸処理を行ない、さらに、Alを添加
して脱酸処理を行なった後、Ti、Zrおよび希土類元素を
添加して脱酸処理を行なってもよい。
When the deoxidizing treatment is performed, an oxide is generated as a deoxidizing product. In general, oxides such as Al and Ti have a high melting point and thus are difficult to be spheroidized, and when deoxidized products collide with each other during the deoxidizing treatment, they become massive deoxidized products. These massive deoxidation products aggregate and coalesce to form clusters. In order to suppress the formation of clusters, it is necessary to lower the melting point of the deoxidized product and to melt at the temperature of the molten steel during the deoxidizing treatment.
Therefore, deoxidation treatment is performed by adding Si ferroalloy and Mn ferroalloy to molten steel in a ladle. Then, Al, T
Deoxidation treatment is performed by adding i, Zr and rare earth elements.
The molten steel in the ladle was deoxidized by adding Si-based ferroalloy and Mn-based ferroalloy, and further deoxidized by adding Al, and then deoxidized by adding Ti, Zr and rare earth elements. An acid treatment may be performed.

【0011】上記の処理を行なうことによって、Si:0.
50〜1.00重量%、Mn:1.0 〜2.0 重量%、Al:0.005 重
量%以下、Ti:0.001 〜0.005 重量%、Zr:0.001 〜0.
005重量%、希土類元素:0.0005〜0.005 重量%を含有
する溶鋼を溶製することによって脱酸生成物の低融点化
を図り、脱酸生成物のクラスターの形成を抑制すること
ができる。
By performing the above processing, Si: 0.
50 to 1.00% by weight, Mn: 1.0 to 2.0% by weight, Al: 0.005% by weight or less, Ti: 0.001 to 0.005% by weight, Zr: 0.001 to 0.
By smelting molten steel containing 005% by weight and rare earth elements: 0.0005 to 0.005% by weight, the melting point of the deoxidized product can be lowered, and the formation of clusters of the deoxidized product can be suppressed.

【0012】以下に本発明における各元素の含有量の限
定理由を説明する。なお希土類元素を添加する際には、
希土類元素(以下REMという)のうちの少なくとも1
種の元素を添加する。 Si:0.50〜1.00重量% Siは脱酸処理のために必要な元素であるが、その含有量
が1.00重量%を越えると薄鋼板製品の靱性の低下を招
く。一方、Siの含有量が0.50重量%未満では脱酸不足と
なるため、鋼中の酸素濃度が高くなり清浄度が悪化す
る。したがってSiの含有量を0.50〜1.00重量%の範囲に
限定した。
The reasons for limiting the content of each element in the present invention will be described below. When adding a rare earth element,
At least one of the rare earth elements (hereinafter referred to as REM)
Add seed element. Si: 0.50 to 1.00% by weight Si is an element necessary for the deoxidizing treatment, but if its content exceeds 1.00% by weight, the toughness of the thin steel sheet product is reduced. On the other hand, if the content of Si is less than 0.50% by weight, deoxidation becomes insufficient, so that the oxygen concentration in the steel increases and the cleanliness deteriorates. Therefore, the content of Si was limited to the range of 0.50 to 1.00% by weight.

【0013】Mn:1.0 〜2.0 重量% Mnは脱酸処理のために必要な元素であり、薄鋼板製品の
靱性の改善にも効果がある。靱性改善の効果はMn/C比
が大きいほど良い。しかしながらMnの含有量が2.0重量
%を越えると、引張強度が大きくなりすぎるため靱性の
低下を招く。一方、Mnの含有量が 1.0重量%未満では靱
性改善の効果が得られない。したがってMnの含有量を1.
0 〜2.0 重量%の範囲に限定した。
Mn: 1.0 to 2.0% by weight Mn is an element necessary for deoxidizing treatment, and is also effective in improving the toughness of thin steel sheet products. The effect of improving the toughness is better as the Mn / C ratio is larger. However, when the content of Mn exceeds 2.0% by weight, the tensile strength becomes too large, and the toughness is reduced. On the other hand, if the content of Mn is less than 1.0% by weight, the effect of improving toughness cannot be obtained. Therefore, the content of Mn is 1.
The range was limited to 0 to 2.0% by weight.

【0014】Al:0.005 重量%以下 Alは強脱酸元素であるため少量でもSiO2やMnO を還元
し、Al2O3 を形成する。つまり他の微細な酸化物が生成
する妨げとなり、脱酸処理によって生成する脱酸生成物
の中のAl2O3 濃度が高くなる。そのため脱酸生成物の融
点が上昇し、脱酸生成物が溶鋼中に残留してクラスター
を形成する。したがってAlの含有量は少ないほど良く、
0.005 重量%以下とした。なおAlの含有量と脱酸生成物
やクラスターの個数との関係は図1に示す通りである。
Al: 0.005% by weight or less Al is a strongly deoxidizing element, so that even a small amount of Al reduces SiO 2 and MnO to form Al 2 O 3 . That is, the formation of other fine oxides is hindered, and the concentration of Al 2 O 3 in the deoxidized product generated by the deoxidizing treatment increases. Therefore, the melting point of the deoxidized product increases, and the deoxidized product remains in the molten steel to form a cluster. Therefore, the smaller the content of Al, the better,
0.005% by weight or less. The relationship between the Al content and the number of deoxidized products and clusters is as shown in FIG.

【0015】Ti:0.001 〜0.005 重量% Tiは脱酸生成物がクラスターを形成するのを防止し、球
状の脱酸生成物を均一に分散させる効果がある。Tiの含
有量が0.001 重量%未満ではTi酸化物が少なくなり、大
型の脱酸生成物が生成する。一方、Tiの含有量が0.005
重量%を越えると、脱酸処理によって生成する脱酸生成
物中のTi酸化物の濃度が高くなる。そのため脱酸生成物
の融点が上昇し、脱酸生成物が溶鋼中に残留してクラス
ターを形成し、微細な酸化物が減少する。したがってTi
の含有量を0.001 〜0.005 重量%の範囲に限定した。な
おTiの含有量と脱酸生成物やクラスターの個数との関係
は図2に示す通りである。
Ti: 0.001 to 0.005% by weight Ti has the effect of preventing the deoxidized product from forming clusters and uniformly dispersing the spherical deoxidized product. If the content of Ti is less than 0.001% by weight, the amount of Ti oxide is reduced, and a large deoxidation product is generated. On the other hand, the content of Ti is 0.005
If the content exceeds% by weight, the concentration of the Ti oxide in the deoxidized product generated by the deoxidizing treatment increases. As a result, the melting point of the deoxidized product increases, and the deoxidized product remains in the molten steel to form clusters, thereby reducing fine oxides. Therefore Ti
Was limited to the range of 0.001 to 0.005% by weight. The relationship between the Ti content and the number of deoxidation products and clusters is as shown in FIG.

【0016】Zr:0.001 〜0.005 重量% Zrは脱酸生成物がクラスターを形成するのを防止し、球
状の脱酸生成物を均一に分散させる効果がある。Zrの含
有量が0.001 重量%未満ではZr酸化物が少なくなり、大
型の酸化物が生成する。一方、Zrの含有量が0.001 重量
%を越えると、脱酸処理によって生成する脱酸生成物中
のZr酸化物の濃度が高くなる。そのため脱酸生成物の融
点が上昇し、脱酸生成物が溶鋼中に残留してクラスター
を形成し、微細な酸化物が減少する。したがってZrの含
有量を0.001 〜0.005 重量%の範囲に限定した。なおZr
の含有量と脱酸生成物やクラスターの個数との関係は図
3に示す通りである。
Zr: 0.001 to 0.005% by weight Zr has the effect of preventing the deoxidized product from forming clusters and uniformly dispersing the spherical deoxidized product. If the Zr content is less than 0.001% by weight, the amount of Zr oxide is reduced, and a large oxide is generated. On the other hand, if the Zr content exceeds 0.001% by weight, the concentration of Zr oxide in the deoxidized product generated by the deoxidizing treatment increases. As a result, the melting point of the deoxidized product increases, and the deoxidized product remains in the molten steel to form clusters, thereby reducing fine oxides. Therefore, the Zr content was limited to the range of 0.001 to 0.005% by weight. Zr
Is shown in FIG. 3 and the number of deoxidized products and clusters.

【0017】REM :0.0005〜0.005 重量% REM もTi,Zrと同様に脱酸生成物がクラスターを形成す
るのを防止し、球状の脱酸生成物を均一に分散させる効
果がある。REM の含有量が0.005 重量%未満では REM酸
化物が少なくなり、大型の酸化物が生成する。一方、RE
M の含有量が0.005 重量%を越えると、脱酸処理によっ
て生成する脱酸生成物中の REM酸化物の濃度が高くな
る。そのため脱酸生成物の融点が上昇し、脱酸生成物が
クラスターを形成し、微細な酸化物が減少する。したが
って REMの含有量を0.001 〜0.005重量%の範囲に限定
した。なお REMの含有量と脱酸生成物やクラスターの個
数との関係は図4に示す通りである。
REM: 0.0005 to 0.005% by weight REM, like Ti and Zr, has the effect of preventing deoxidation products from forming clusters and uniformly dispersing spherical deoxidation products. When the content of REM is less than 0.005% by weight, the amount of REM oxide is reduced, and a large oxide is formed. Meanwhile, RE
When the content of M exceeds 0.005% by weight, the concentration of REM oxide in the deoxidized product generated by the deoxidizing treatment increases. Therefore, the melting point of the deoxidized product increases, the deoxidized product forms clusters, and fine oxides are reduced. Therefore, the content of REM was limited to the range of 0.001 to 0.005% by weight. The relationship between the content of REM and the number of deoxidized products and clusters is as shown in FIG.

【0018】[0018]

【実施例】(実施例1)容量30kgの高周波溶解炉を用い
て、MgO 坩堝でSi:0.50〜1.00重量%、Mn:1.0 〜2.0
重量%を含有する溶鋼をAr雰囲気中で30kg溶製した後、
1580℃の温度に保持した。この溶鋼中にAlを添加し、さ
らに約1分後にTi,Zr,REM を添加して脱酸処理を行な
った後、インゴットに鋳込んで鋼塊を得た。
EXAMPLES (Example 1) Using a high-frequency melting furnace having a capacity of 30 kg, Si: 0.50 to 1.00% by weight, Mn: 1.0 to 2.0 in a MgO crucible.
After smelting 30 kg of molten steel containing
The temperature was kept at 1580 ° C. Al was added to the molten steel, and about one minute later, Ti, Zr, and REM were added to perform deoxidation treatment, and then cast into an ingot to obtain a steel ingot.

【0019】こうして得られた鋼塊からサンプルを採取
して、光学顕微鏡で粒径1μm以上の脱酸生成物の分布
を調査した。各サンプルの化学組成、脱酸元素の添加量
および脱酸生成物の最大粒径を表1および表2に示す。
表1は本発明の例であり、表2は比較例である。
A sample was taken from the steel ingot thus obtained, and the distribution of deoxidized products having a particle size of 1 μm or more was examined with an optical microscope. Tables 1 and 2 show the chemical composition of each sample, the amount of the deoxidizing element added, and the maximum particle size of the deoxidized product.
Table 1 is an example of the present invention, and Table 2 is a comparative example.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表2に比較例として示したように、Ti,Zr
およびREM を添加しない場合あるいは化学組成が本発明
の範囲から外れる場合は、最大粒径25μm以上の粗大な
アルミナクラスターまたは粗大な脱酸生成物が存在す
る。一方、表1に示した本発明の例では、最大粒径が10
μm以下の微細な脱酸生成物が生成している。 (実施例2)280 トンの上底吹き転炉でC:0.03重量
%、Si:0.50重量%、Mn:1.50重量%を含有する溶鋼を
溶製した後、その溶鋼をRH脱ガス装置を用いて還流し
て脱酸処理を行なった。その後、金属Alを0.1 kg/t添
加して脱酸処理を行なった。すなわち5分間の還流で溶
鋼中のフリー酸素は 300 ppmから 100 ppmに低下した。
その後さらに35%Fe-Ti ,45%Fe-Zr および20%Fe-REM
をこの溶鋼に添加して10分間還流した。その結果、タン
ディッシュでの溶鋼中のトータル酸素量は50 ppmであ
り、Al,Ti,Zr,REM の含有量はそれぞれAl:0.004 重
量%,Ti:0.002 重量%,Zr:0.0045重量%,REM :0.
004 重量%であった。
As shown in Table 2 as a comparative example, Ti, Zr
When no REM is added or when the chemical composition is out of the range of the present invention, coarse alumina clusters having a maximum particle size of 25 μm or more or coarse deoxidation products are present. On the other hand, in the example of the present invention shown in Table 1, the maximum particle size is 10%.
Fine deoxidation products of not more than μm are formed. (Example 2) A molten steel containing 0.03% by weight of C, 0.50% by weight of Si, and 1.50% by weight of Mn was melted in a 280-ton top-bottom blow converter, and the molten steel was subjected to RH degassing. The mixture was refluxed for deacidification. Thereafter, 0.1 kg / t of metal Al was added to perform a deoxidation treatment. That is, the free oxygen in the molten steel decreased from 300 ppm to 100 ppm by refluxing for 5 minutes.
After that, 35% Fe-Ti, 45% Fe-Zr and 20% Fe-REM
Was added to the molten steel and refluxed for 10 minutes. As a result, the total oxygen content in the molten steel in the tundish was 50 ppm, and the contents of Al, Ti, Zr, and REM were respectively 0.004% by weight of Al, 0.002% by weight of Ti, 0.0045% by weight of Zr, and 0.0045% by weight of REM. : 0.
004% by weight.

【0023】こうして得られた溶鋼で連続鋳造(鋳型寸
法 260×1600mm、鋳造速度1.8 m/分)を行ない、鋳片
を得た。この鋳片を加熱し、さらに熱間圧延および冷間
圧延を行ない、厚さ0.8 mmの冷延鋼板として、この冷
延鋼板の表面欠陥を調査した。その結果、従来の単独Al
添加で脱酸した溶鋼から製造した冷延鋼板の場合は表面
欠陥不良率が 0.8%であるのに対して、本発明で得られ
た溶鋼から製造した冷延鋼板の表面欠陥不良率は0%で
あった。
The molten steel thus obtained was subjected to continuous casting (mold size: 260 × 1600 mm, casting speed: 1.8 m / min) to obtain a slab. The cast slab was heated, hot-rolled and cold-rolled, and a 0.8 mm-thick cold-rolled steel sheet was examined for surface defects. As a result, the conventional single Al
In the case of a cold-rolled steel sheet produced from molten steel deoxidized by addition, the defect rate of surface defects is 0.8%, whereas the defect rate of surface defects of a cold-rolled steel sheet produced from molten steel obtained by the present invention is 0%. Met.

【0024】このように本発明に基づいて製造された冷
延鋼板は、表面性状が極めて優れており、脱酸生成物に
起因する表面欠陥は皆無であった。
Thus, the cold rolled steel sheet produced according to the present invention has extremely excellent surface properties and has no surface defects caused by deoxidation products.

【0025】[0025]

【発明の効果】本発明によると、大型のクラスター状脱
酸生成物を生成させることなく溶鋼を脱酸し、酸化物を
微細化して分散させ、脱酸生成物や脱酸生成物に起因す
る欠陥の少ない高清浄度鋼を製造できる。
According to the present invention, molten steel is deoxidized without forming large-scale cluster-like deoxidation products, and oxides are refined and dispersed, resulting from deoxidation products and deoxidation products. High cleanliness steel with few defects can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼中のAlの含有量と脱酸生成物あるいはクラス
ターの個数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the content of Al in steel and the number of deoxidation products or clusters.

【図2】鋼中のTiの含有量と脱酸生成物あるいはクラス
ターの個数との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the content of Ti in steel and the number of deoxidation products or clusters.

【図3】鋼中のZrの含有量と脱酸生成物あるいはクラス
ターの個数との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the content of Zr in steel and the number of deoxidation products or clusters.

【図4】鋼中のREM の含有量と脱酸生成物あるいはクラ
スターの個数との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the content of REM in steel and the number of deoxidation products or clusters.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸本 康夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K013 AA07 BA08 BA14 DA03 DA08 EA19 EA26 EA32 FA02  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuo Kishimoto 1-term Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in the Technical Research Institute, Kawasaki Steel Co., Ltd. 4K013 AA07 BA08 BA14 DA03 DA08 EA19 EA26 EA32 FA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 出鋼された取鍋内の溶鋼にSi系フェロア
ロイおよびMn系フェロアロイを添加して脱酸処理を行な
い、次いでAl、Ti、Zrおよび希土類元素を添加して脱酸
処理を行ない、 Si:0.50〜1.00重量%、 Mn:1.0 〜2.0 重量%、 Al:0.005 重量%以下、 Ti:0.001 〜0.005 重量%、 Zr:0.001 〜0.005 重量%、 希土類元素:0.0005〜0.005 重量% を含有する溶鋼を溶製することを特徴とする高清浄度鋼
の製造方法。
1. A deoxidizing treatment is performed by adding a Si-based ferroalloy and a Mn-based ferroalloy to molten steel in a tapping ladle, and then performing a deoxidizing treatment by adding Al, Ti, Zr and a rare earth element. , Si: 0.50 to 1.00 wt%, Mn: 1.0 to 2.0 wt%, Al: 0.005 wt% or less, Ti: 0.001 to 0.005 wt%, Zr: 0.001 to 0.005 wt%, Rare earth element: 0.0005 to 0.005 wt% A method for producing high cleanliness steel, which comprises producing molten steel.
【請求項2】 出鋼された取鍋内の溶鋼にSi系フェロア
ロイおよびMn系フェロアロイを添加して脱酸処理を行な
い、次いでAlを添加して脱酸処理を行ない、さらにTi、
Zrおよび希土類元素を添加して脱酸処理を行ない、 Si:0.50〜1.00重量%、 Mn:1.0 〜2.0 重量%、 Al:0.005 重量%以下、 Ti:0.001 〜0.005 重量%、 Zr:0.001 〜0.005 重量%、 希土類元素:0.0005〜0.005 重量% を含有する溶鋼を溶製することを特徴とする高清浄度鋼
の製造方法。
2. A deoxidizing treatment is performed by adding a Si-based ferroalloy and a Mn-based ferroalloy to molten steel in a ladle from which tapping is performed, then performing deoxidizing treatment by adding Al, and further adding Ti,
Deoxidation treatment is performed by adding Zr and rare earth elements, Si: 0.50 to 1.00% by weight, Mn: 1.0 to 2.0% by weight, Al: 0.005% by weight or less, Ti: 0.001 to 0.005% by weight, Zr: 0.001 to 0.005% A method for producing high cleanliness steel, comprising melting molten steel containing 0.005 to 0.005% by weight of a rare earth element.
JP11083878A 1999-03-26 1999-03-26 Production of high cleanliness steel Pending JP2000273524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083878A JP2000273524A (en) 1999-03-26 1999-03-26 Production of high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083878A JP2000273524A (en) 1999-03-26 1999-03-26 Production of high cleanliness steel

Publications (1)

Publication Number Publication Date
JP2000273524A true JP2000273524A (en) 2000-10-03

Family

ID=13814928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083878A Pending JP2000273524A (en) 1999-03-26 1999-03-26 Production of high cleanliness steel

Country Status (1)

Country Link
JP (1) JP2000273524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009854A1 (en) * 2002-07-23 2004-01-29 Nippon Steel Corporation Steel product reduced in amount of alumina cluster

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009854A1 (en) * 2002-07-23 2004-01-29 Nippon Steel Corporation Steel product reduced in amount of alumina cluster
US7776162B2 (en) 2002-07-23 2010-08-17 Nippon Steel Corporation Steels with few alumina clusters

Similar Documents

Publication Publication Date Title
JP3626278B2 (en) Method for producing Al-killed steel without clusters
JP3550924B2 (en) Method for manufacturing high carbon steel wire and wire
JP5381243B2 (en) Method for refining molten steel
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
JP2003027188A (en) Invar alloy for shadow mask and production method therefor
JP2000273525A (en) Production of high cleanliness steel
JP2000273524A (en) Production of high cleanliness steel
JPH11323426A (en) Production of high clean steel
JP2866147B2 (en) Method for producing steel in which fine oxides are dispersed
JP2002105527A (en) Method for producing high cleanliness steel
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP4710180B2 (en) Manufacturing method of high cleanliness steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP2001026812A (en) Deoxidizing alloy for molten steel
JP3096714B2 (en) Method for producing Al-containing stainless steel with few sliver flaws
JP3679770B2 (en) Manufacturing method of low carbon steel sheet and its slab
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
CN114959183B (en) Refining slag system based on aluminum deoxidized Cr5 supporting roller steel and application process thereof
JP3225788B2 (en) Method for producing steel with excellent toughness in weld heat affected zone
JP5072155B2 (en) High purity Fe-Cr alloy with excellent formability
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
JPH10152755A (en) Steel for steel sheet for can few in defect and its production
JPH04354853A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its production