JP2000273288A - Sealing resin composition - Google Patents

Sealing resin composition

Info

Publication number
JP2000273288A
JP2000273288A JP11085696A JP8569699A JP2000273288A JP 2000273288 A JP2000273288 A JP 2000273288A JP 11085696 A JP11085696 A JP 11085696A JP 8569699 A JP8569699 A JP 8569699A JP 2000273288 A JP2000273288 A JP 2000273288A
Authority
JP
Japan
Prior art keywords
resin composition
sealing resin
carbon black
weight
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11085696A
Other languages
Japanese (ja)
Inventor
Tetsuhiro Nakamura
中村  哲浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP11085696A priority Critical patent/JP2000273288A/en
Publication of JP2000273288A publication Critical patent/JP2000273288A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

PROBLEM TO BE SOLVED: To obtain a sealing resin composition equipped having a light shading property and an insulation property simultaneously and an optimal characteristic used for a semiconductor device. SOLUTION: This sealing resin composition contains carbon black of having physical properties of having 20-40 nm mean particle diameter and containing >=10 wt.% vaporizing amount, by 0.3-1.0 wt.% based on the total sealing resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁性と遮光性に優
れた半導体チップ用封止樹脂組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing resin composition for a semiconductor chip having excellent insulating properties and light shielding properties.

【0002】[0002]

【従来の技術】近年、電子回路の高機能化にともなっ
て、多数の電極端子を有する半導体装置が開発されてい
る。その代表的なものとして、フリップチップ実装があ
る。
2. Description of the Related Art In recent years, semiconductor devices having a large number of electrode terminals have been developed as electronic circuits become more sophisticated. A typical example is flip-chip mounting.

【0003】図8は従来例のフリップチップ実装を示す
断面図である。図8に記載するように、半導体チップ1
上に形成した突起電極2と、基板5上に形成した接続電
極4と、接続電極4と突起電極2とを接続するための導
電接着剤またはハンダなどの接続材料3と、半導体チッ
プ1と基板5との間に封止樹脂組成物6を有する構造と
なっている。
FIG. 8 is a sectional view showing a conventional flip chip mounting. As shown in FIG. 8, the semiconductor chip 1
A connection electrode 3 formed on the substrate 5, a connection electrode 4 formed on the substrate 5, a connection material 3 such as a conductive adhesive or solder for connecting the connection electrode 4 and the protrusion electrode 2, a semiconductor chip 1 and the substrate 5, a structure having a sealing resin composition 6 therebetween.

【0004】半導体チップ1はダイオードやトランジス
タの集合体であり、光が照射されると光電効果により光
エネルギーが電気エネルギーに変換され、半導体チップ
を正常に駆動することができなくなる。 そのため、封
止樹脂組成物6には着色剤としてカーボンブラックを添
加し、遮光性を持たせているが、カーボンブラック自体
に導電性があるため、遮光性を高めるために添加量を多
くすると封止樹脂組成物6の絶縁性を低下させる恐れが
ある。封止樹脂組成物6の絶縁性が低下すると、リーク
電流の原因となり、本来使用する以上の電力を消費して
しまったり、半導体チップ1の誤動作を引き起こす原因
となる。
The semiconductor chip 1 is an aggregate of diodes and transistors. When irradiated with light, light energy is converted to electric energy by a photoelectric effect, and the semiconductor chip cannot be driven normally. Therefore, carbon black is added to the sealing resin composition 6 as a coloring agent to provide light-shielding properties. However, since carbon black itself is conductive, increasing the amount of addition to enhance the light-shielding properties results in sealing. There is a possibility that the insulating property of the resin composition 6 may be reduced. When the insulating property of the sealing resin composition 6 decreases, it causes a leak current, consumes more power than originally used, and causes a malfunction of the semiconductor chip 1.

【0005】また、カーボンブラック以外の着色剤とし
てフタロシアニンやキナクリドンなどの顔料を用いる場
合、顔料の色により吸収する光の波長や反射する光の波
長があり、光電効果を発生させる光の波長を全て遮蔽す
ることができない。特に赤外波長ではカーボンブラック
と比較して遮光性が劣っている。
When a pigment such as phthalocyanine or quinacridone is used as a coloring agent other than carbon black, there are wavelengths of light to be absorbed and wavelengths of light reflected by the color of the pigment, and all wavelengths of light for generating a photoelectric effect are required. Cannot be shielded. Particularly at infrared wavelengths, the light-shielding properties are inferior to carbon black.

【0006】[0006]

【発明が解決しようとする課題】従来の封止樹脂組成物
では、光を遮蔽するためにカーボンブラックや顔料を着
色剤として添加していたが、カーボンブラックを着色剤
として使用した場合、遮光性と絶縁性の両方を充分に満
足することはできなかった。また、顔料を着色剤として
使用した場合は、光電効果による半導体チップの誤動作
を防ぐ遮光性が得られないという課題を有していた。
In a conventional sealing resin composition, carbon black or a pigment is added as a colorant to shield light. However, when carbon black is used as a colorant, the light-shielding property is reduced. It was not possible to fully satisfy both the insulation properties and the insulation properties. In addition, when a pigment is used as a colorant, there is a problem that a light-shielding property for preventing malfunction of a semiconductor chip due to a photoelectric effect cannot be obtained.

【0007】本発明の目的は、上記課題を解決して遮光
性と絶縁性を兼ね備え、半導体チップ用として最適な特
性を有する封止樹脂組成物を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a sealing resin composition having both light-shielding properties and insulating properties and having optimum characteristics for use in a semiconductor chip.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明における封止樹脂組成物は、下記記載の構
成を採用する。
Means for Solving the Problems To achieve the above object, the sealing resin composition of the present invention employs the following constitution.

【0009】本発明の封止樹脂組成物は、エポキシ樹脂
主剤、硬化剤、硬化促進剤を主成分とする封止樹脂10
0重量%中に、平均粒子径が20〜40nmであり、か
つ窒素雰囲気中、950℃で7分間加熱し、加熱前後の
重量変化、つまり揮発量が10重量%以上であるカーボ
ンブラックを0.3〜1.0重量%含有することを特徴
としている。
The encapsulating resin composition of the present invention comprises a main component of an epoxy resin, a curing agent and a curing accelerator.
In 0% by weight, carbon black having an average particle diameter of 20 to 40 nm and heating at 950 ° C. for 7 minutes in a nitrogen atmosphere to obtain a carbon black having a weight change before and after heating, ie, a volatilization amount of 10% by weight or more. It is characterized by containing 3 to 1.0% by weight.

【0010】本発明の封止樹脂組成物は、エポキシ樹脂
主剤、硬化剤、硬化促進剤を主成分とする封止樹脂10
0重量%中に、平均粒子径が20〜40nmであり、か
つ揮発量が10重量%以上であるカーボンブラックを
0.3〜1.0重量%含有し、硬化物の光の透過量が0
%で、かつ絶縁抵抗値が1015Ω以上となる硬化条件で
硬化することを特徴としている。
[0010] The sealing resin composition of the present invention comprises a main component of an epoxy resin, a curing agent and a curing accelerator.
0% by weight contains 0.3 to 1.0% by weight of carbon black having an average particle diameter of 20 to 40 nm and a volatilization amount of 10% by weight or more.
%, And is cured under a curing condition in which the insulation resistance value is 10 15 Ω or more.

【0011】本発明の封止樹脂組成物は、エポキシ樹脂
主剤、硬化剤、硬化促進剤を主成分とする封止樹脂10
0重量%中に、平均粒子径が20〜40nmであり、か
つ揮発量が10重量%以上であるカーボンブラックを
0.3〜1.0重量%含有し、80℃2時間と150℃
1時間の2段階で硬化することを特徴としている。
The encapsulating resin composition of the present invention comprises a main component of an epoxy resin, a hardening agent, and a hardening accelerator.
0% by weight contains 0.3 to 1.0% by weight of carbon black having an average particle diameter of 20 to 40 nm and a volatilization amount of 10% by weight or more.
It is characterized by curing in two stages of one hour.

【0012】[0012]

【発明の実施の形態】本発明は遮光性と絶縁性を兼ね備
え、半導体チップ用として最適な特性を有する封止樹脂
組成物を得るため、封止樹脂中に含有させるカーボンブ
ラックの平均粒子径の最適範囲および、カーボンブラッ
クの分散性についての検討を行った。カーボンブラック
の分散性については、酸化処理によってカーボンブラッ
クの表面に形成する極性基の含有量に着目し、さらに絶
縁抵抗値と光の透過率との関係を検討した。これら検討
結果から、カーボンブラックの物性値は封止樹脂組成物
の遮光性と絶縁性に影響していることが明らかとなり、
良好な遮光性と絶縁性とを兼ね備えた封止樹脂組成物を
得るためには、カーボンブラックの物性値を最適な範囲
で制御することが必要であることがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, in order to obtain a sealing resin composition having both light-shielding properties and insulating properties and having optimum characteristics for a semiconductor chip, the average particle diameter of carbon black contained in the sealing resin is reduced. The optimum range and the dispersibility of carbon black were examined. Regarding the dispersibility of carbon black, attention was paid to the content of polar groups formed on the surface of carbon black by the oxidation treatment, and the relationship between the insulation resistance value and the light transmittance was examined. From these examination results, it became clear that the physical properties of carbon black affected the light-shielding properties and insulation properties of the sealing resin composition,
It has been found that in order to obtain a sealing resin composition having both good light-shielding properties and insulating properties, it is necessary to control the physical properties of carbon black within an optimum range.

【0013】また、封止樹脂組成物の硬化条件と光の透
過率の関係を調べたところ、硬化物の絶縁抵抗値と光の
透過率には、硬化条件が影響していることがわかった。
硬化条件を最適化することによって、遮光性と絶縁性を
兼ね備える封止樹脂組成物が得られた。最適なカーボン
ブラックの物性と硬化条件を組み合わせることで、さら
に遮光性と絶縁性に優れた封止樹脂組成物を得ることが
可能となった。
Further, the relationship between the curing conditions of the sealing resin composition and the light transmittance was examined, and it was found that the curing conditions affected the insulation resistance value and the light transmittance of the cured product. .
By optimizing the curing conditions, a sealing resin composition having both light-shielding properties and insulating properties was obtained. By combining the optimum physical properties of the carbon black and the curing conditions, it has become possible to obtain a sealing resin composition having more excellent light shielding properties and insulating properties.

【0014】[0014]

【実施例】以下、本発明である封止樹脂組成物を具体的
に説明する。半導体チップ用封止樹脂中に含有するカー
ボンブラックの最適な物性を調べるため、まずカーボン
ブラックの粒子径と、カーボンブラックを封止樹脂中に
含有した場合の絶縁抵抗値、および光の透過率の関係に
ついて調べたところ、図1に示す結果となった。
EXAMPLES The encapsulating resin composition of the present invention will be specifically described below. In order to investigate the optimal physical properties of carbon black contained in the sealing resin for semiconductor chips, first, the particle diameter of carbon black, the insulation resistance value when carbon black is contained in the sealing resin, and the light transmittance When the relationship was examined, the result shown in FIG. 1 was obtained.

【0015】このとき用いた封止樹脂は、主剤として液
状エポキシ樹脂であるビスフェノールF型エポキシを用
い、硬化剤として無水メチルナジック酸(以下MNAと
記載)を用い、硬化促進剤として2−フェニル−4−メ
チル−5−ヒドロキシメチルイミダゾール(以下2P4
MHZと記載)を用い、SiO2 充填材を50重量%含
有させたものを使用した。硬化剤であるMNAの添加量
は酸無水物の分子量/エポキシ当量の値を用いて、主剤
であるビスフェノールF型エポキシ100重量部に対し
て、MNA105重量部とし、硬化促進剤である2P4
MHZの添加量は主剤100重量部に対し、1重量部と
なるように配合した。
The sealing resin used at this time was bisphenol F type epoxy which is a liquid epoxy resin as a main ingredient, methylnadic anhydride (hereinafter referred to as MNA) as a curing agent, and 2-phenyl-epoxy as a curing accelerator. 4-methyl-5-hydroxymethylimidazole (hereinafter referred to as 2P4
MHZ) and containing 50% by weight of a SiO 2 filler. The amount of the MNA as a curing agent was determined by using the value of the molecular weight of the acid anhydride / epoxy equivalent to 105 parts by weight of the MNA with respect to 100 parts by weight of the bisphenol F type epoxy as the main agent.
The addition amount of MHZ was blended so as to be 1 part by weight with respect to 100 parts by weight of the main agent.

【0016】カーボンブラックの粒子径は平均で13、
17、20、25、29、34、38、45、60nm
のものを使用し、エポキシ樹脂主剤、硬化剤、硬化促進
剤、充填剤、そしてカーボンブラックを混合した全封止
樹脂組成物に対して、カーボンブラックの重量が0.3
重量%となるように含有し、130℃2時間で硬化した
封止樹脂組成物の絶縁抵抗値と光の透過率を測定した。
The average particle size of the carbon black is 13,
17, 20, 25, 29, 34, 38, 45, 60 nm
The weight of carbon black is 0.3 with respect to the total encapsulating resin composition obtained by mixing the epoxy resin main agent, curing agent, curing accelerator, filler, and carbon black.
The insulation resistance value and the light transmittance of the sealing resin composition contained at a concentration of 130 wt% and cured at 130 ° C. for 2 hours were measured.

【0017】絶縁抵抗値は図2に示すフリップチップ実
装における、突起電極2間aに100Vの電圧を1分間
加えたときの電流値を読みとり、オームの法則により算
出した。また、光の透過率は図3に記載するように、ガ
ラス板7を両面テープ8により張り合わせ、約100μ
mの隙間bを形成したものに、封止樹脂組成物を流し込
み加熱硬化したのち、可視光波長と近赤外波長が含まれ
る300〜1000nmの波長範囲で、光の透過率を測
定し、波長に関わらず最大の値を用いた。
The insulation resistance value was obtained by reading the current value when a voltage of 100 V was applied between the protruding electrodes 2 for 1 minute in the flip-chip mounting shown in FIG. 2 and calculated according to Ohm's law. Further, as shown in FIG. 3, the light transmittance was about 100 μm
After the sealing resin composition was poured into the one in which the gap b was formed and cured by heating, the light transmittance was measured in a wavelength range of 300 to 1000 nm including the visible light wavelength and the near infrared wavelength, and the wavelength was measured. Regardless, the maximum value was used.

【0018】図1に示すように、カーボンブラックの平
均粒子径と光の透過率の関係は平均粒子径が大きくなる
ほど光を透過しやすくなり、カーボンブラックの平均粒
子径と絶縁抵抗値の関係は、平均粒子径が小さくなるほ
ど導電性が高くなる傾向にあることがわかった。光の透
過率は、カーボンブラックの平均粒子径が40nm未満
の場合、透過率は0.5%以下であるが、40nm以上
になると透過率が上昇し、絶縁抵抗値はカーボンブラッ
クの平均粒子径が20nm以上の場合1013Ω台を示し
ているが、20nm未満になると絶縁抵抗値が低下して
いる。以上のことから、絶縁性と遮光性とを兼ね備え
た、半導体チップ用封止樹脂組成物に最適なカーボンブ
ラックの平均粒子径は20〜40nmであることがわか
った。
As shown in FIG. 1, the relationship between the average particle size of carbon black and the light transmittance is such that the larger the average particle size, the easier it is to transmit light, and the relationship between the average particle size of carbon black and the insulation resistance value is as follows. It was found that the smaller the average particle diameter, the higher the conductivity. The light transmittance is 0.5% or less when the average particle size of carbon black is less than 40 nm, but the transmittance increases when the average particle size is 40 nm or more, and the insulation resistance value is the average particle size of carbon black. Is greater than or equal to 20 nm, the value is on the order of 10 13 Ω, but if it is less than 20 nm, the insulation resistance value decreases. From the above, it was found that the average particle diameter of carbon black having both insulating properties and light-shielding properties and optimal for a sealing resin composition for a semiconductor chip was 20 to 40 nm.

【0019】つぎに、カーボンブラックの揮発量と、カ
ーボンブラックを封止樹脂組成物中に含有した場合の絶
縁抵抗値との関係について調べた。この結果を図4に示
す。このとき用いた封止樹脂は前述した封止樹脂と同材
料のものを用いた。
Next, the relationship between the volatilization amount of carbon black and the insulation resistance when carbon black was contained in the sealing resin composition was examined. The result is shown in FIG. The sealing resin used at this time was made of the same material as the above-mentioned sealing resin.

【0020】カーボンブラックの揮発量とは、カーボン
ブラックを950℃で7分間、窒素雰囲気下で加熱し、
加熱前後のカーボンブラック自体の重量変化とした。カ
ーボンブラック自体はその分散性を向上させるため、有
機化合物などの分散剤が混合されている。分散剤を多く
含有している場合には、カーボンブラックの表面に形成
された極性基が多くなり、加熱によって揮発量が増大す
る。つまり加熱前後で重量変化が大きい場合には、この
カーボンブラックの粒子は極性基を多く有していること
を意味し、加熱前のカーボンブラックの粒子は小さい凝
集体を形成していると推察される。
The amount of volatilization of carbon black means that carbon black is heated at 950 ° C. for 7 minutes in a nitrogen atmosphere,
The change in weight of the carbon black itself before and after heating was taken. In order to improve the dispersibility of carbon black itself, a dispersant such as an organic compound is mixed. When a large amount of a dispersant is contained, the number of polar groups formed on the surface of carbon black increases, and the amount of volatilization increases by heating. That is, when the weight change before and after heating is large, it means that the carbon black particles have many polar groups, and it is presumed that the carbon black particles before heating form small aggregates. You.

【0021】逆に揮発量、つまり重量変化が小さい場合
には、カーボンブラックの表面に形成された極性基が少
なく、カーボンブラック粒子同士の凝集または結合が起
こりやすくなっており、加熱前のカーボンブラックの粒
子は大きな凝集体を形成していると推察される。
Conversely, when the volatilization amount, that is, the change in weight is small, the number of polar groups formed on the surface of the carbon black is small, and aggregation or bonding of carbon black particles tends to occur. Are presumed to form large aggregates.

【0022】カーボンブラックの平均粒子径は25nm
で、揮発量が1、2、5、9、10、15、20重量%
となるものを使用し、封止樹脂組成物中に0.3重量%
となるように含有し、130℃2時間で硬化したもの
の、絶縁抵抗値を測定した。絶縁抵抗値は前述した方法
で測定した。
The average particle size of the carbon black is 25 nm.
And the volatilization amount is 1, 2, 5, 9, 10, 15, 20% by weight.
0.3% by weight in the sealing resin composition
And cured at 130 ° C. for 2 hours, but the insulation resistance was measured. The insulation resistance was measured by the method described above.

【0023】図4に示すように、カーボンブラックの揮
発量が10重量%以上のものを使用した場合、絶縁抵抗
値は1013Ω台を示しているが、揮発量が10重量%未
満のものを使用した場合、絶縁抵抗値が低下することが
わかった。これらの結果により、カーボンブラックの揮
発量が少ないもの、つまりカーボンブラックの粒子が大
きな凝集体であるものを使用すると、封止樹脂組成物の
絶縁性が低下し、揮発量が多いもの、つまりカーボンブ
ラックの粒子が小さな凝集体であるものを使用すると、
絶縁性が高くなる傾向にあることがわかった。以上のこ
とから、半導体チップ用封止樹脂組成物に最適なカーボ
ンブラックは前述した加熱条件で、揮発量10重量%以
上を示すもの、当然ながら未加熱のものを使用すること
が最適と判断された。
As shown in FIG. 4, when a carbon black having a volatilization amount of 10% by weight or more is used, the insulation resistance value is on the order of 10 13 Ω, but a carbon black having a volatilization amount of less than 10% by weight is used. It was found that the insulation resistance value was reduced when was used. According to these results, the use of a material having a small volatilization amount of carbon black, that is, a material having large aggregates of carbon black particles, reduces the insulating property of the sealing resin composition and has a large volatilization amount, that is, carbon When using black particles that are small aggregates,
It was found that the insulating properties tended to be high. From the above, it has been determined that it is optimal to use the carbon black which is optimal for the sealing resin composition for a semiconductor chip under the above-mentioned heating conditions and which exhibits a volatilization amount of 10% by weight or more, and of course, is unheated. Was.

【0024】カーボンブラックの含有量と、カーボンブ
ラックを封止樹脂組成物中に含有した場合の、絶縁抵抗
値および光の透過率の関係について調べたところ、図5
に示す結果となった。このとき用いた封止樹脂組成物
は、上記に記載した封止樹脂組成物と同じものを用い
た。カーボンブラックの平均粒子径は25nmで、揮発
量が10重量%のものを使用し、封止樹脂組成物中に
0、0.2、0.3、0.5、1.0、1.1、1.
2、1.5重量%となるように含有し、絶縁抵抗値と光
の透過率を測定した。絶縁抵抗値および光の透過率は上
記に記載した方法で測定した。
The relationship between the content of carbon black and the insulation resistance and light transmittance when carbon black was contained in the sealing resin composition was examined.
The result shown in FIG. As the sealing resin composition used at this time, the same sealing resin composition as described above was used. Carbon black having an average particle diameter of 25 nm and a volatilization amount of 10% by weight is used, and 0, 0.2, 0.3, 0.5, 1.0, 1.1 is contained in the sealing resin composition. 1.
The content was set to 2, 1.5% by weight, and the insulation resistance and light transmittance were measured. The insulation resistance value and light transmittance were measured by the methods described above.

【0025】図5に示すように、カーボンブラックの含
有量と光の透過率の関係は含有量が少なくなるほど光を
透過しやすくなり、カーボンブラックの含有量と絶縁抵
抗値の関係は含有量が多くなるほど導電性が高くなる傾
向にあることがわかった。光の透過率はカーボンブラッ
クの含有量が0.3重量%以上の場合、0.5%以下で
あるが、0.3重量%未満になると上昇した。絶縁抵抗
値はカーボンブラックの含有量が1重量%以下の場合1
13Ω台を示しているが、1重量%以上になると絶縁抵
抗値が低下している。以上のことから、絶縁性と遮光性
を兼ね備える半導体チップ用封止樹脂組成物に、最適な
カーボンブラックの含有量は0.3〜1.0重量%が最
適であることがわかった。
As shown in FIG. 5, the relationship between the carbon black content and the light transmittance is such that the lower the content, the easier the light is to transmit, and the relationship between the carbon black content and the insulation resistance is the content. It has been found that the conductivity tends to increase as the number increases. The light transmittance was 0.5% or less when the content of carbon black was 0.3% by weight or more, but increased when the content was less than 0.3% by weight. The insulation resistance value is 1 when the carbon black content is 1% by weight or less.
It shows a level of 0 13 Ω, but when it exceeds 1% by weight, the insulation resistance value decreases. From the above, it was found that the optimal content of carbon black in the encapsulating resin composition for semiconductor chips having both insulating properties and light shielding properties is optimally 0.3 to 1.0% by weight.

【0026】上記の実験により封止樹脂組成物中に含有
するカーボンブラックの最適な物性を解明することがで
きたが、光の透過率が0.5%であることと、カーボン
ブラックを封止樹脂組成物中に含有しない場合の絶縁抵
抗値は1015Ω台を示していることから、まだ改善の余
地が残されている。
Although the above-mentioned experiment was able to elucidate the optimum physical properties of carbon black contained in the sealing resin composition, it was confirmed that the light transmittance was 0.5% and the carbon black was sealed. Since the insulation resistance when not contained in the resin composition is on the order of 10 15 Ω, there is still room for improvement.

【0027】カーボンブラックを含有した封止樹脂組成
物の硬化条件と、絶縁抵抗値および光の透過率との関係
について調べた結果、図6示す結果となった。このとき
用いた封止樹脂組成物は、前述した封止樹脂組成物と同
材料のものを用いた。封止樹脂組成物中に含有するカー
ボンブラックは、平均粒子径が25nm、揮発量が10
重量%のものを全封止樹脂組成物に対し0.3重量%と
なるように含有した。封止樹脂組成物の硬化条件はDS
C法から推定し、80℃20時間、90℃12時間、1
00℃5時間、130℃2時間、150℃1時間で硬化
した。絶縁抵抗値および光の透過率は上記に記載した方
法で測定した。
As a result of examining the relationship between the curing conditions of the sealing resin composition containing carbon black, the insulation resistance value and the light transmittance, the results shown in FIG. 6 were obtained. The same sealing resin composition as that described above was used for the sealing resin composition. Carbon black contained in the sealing resin composition has an average particle diameter of 25 nm and a volatilization amount of 10
% By weight of the total sealing resin composition. The curing condition of the sealing resin composition is DS
Estimated from Method C, 80 ° C for 20 hours, 90 ° C for 12 hours, 1
Curing was performed at 00 ° C for 5 hours, 130 ° C for 2 hours, and 150 ° C for 1 hour. The insulation resistance value and light transmittance were measured by the methods described above.

【0028】図6示すように、絶縁抵抗値は150℃、
1時間で硬化したものが一番低く、1010Ω台を示して
おり、硬化温度が低くなるほど絶縁抵抗値が高くなる傾
向にあり、80℃20時間で硬化したものは1015Ω台
を示すことがわかった。150℃1時間の硬化条件で
は、硬化温度と硬化反応時の発熱により硬化剤や硬化促
進剤が揮発し、封止樹脂組成物中のカーボンブラック濃
度が上昇するためと、硬化剤や硬化促進剤が揮発するこ
とによる体積収縮がカーボンブラック同士の凝集を促進
しているためである。また、光の透過率は80℃20時
間で硬化したもは0%であるが、それ以外の条件では光
を透過していることがわかった。
As shown in FIG. 6, the insulation resistance is 150 ° C.
The resin cured in one hour shows the lowest value, on the order of 10 10 Ω. The lower the curing temperature, the higher the insulation resistance tends to be. The one cured at 80 ° C. for 20 hours shows the value on the order of 10 15 Ω. I understand. Under the curing condition of 150 ° C. for 1 hour, the curing temperature and the heat generated during the curing reaction volatilize the curing agent and the curing accelerator, and the carbon black concentration in the sealing resin composition increases. This is because the volume shrinkage due to volatilization promotes the aggregation of carbon blacks. The light transmittance was 0% when cured at 80 ° C. for 20 hours, but it was found that light was transmitted under other conditions.

【0029】しかし、80℃20時間の硬化条件では時
間がかかりすぎ、作業性の面で問題である。そこで、カ
ーボンブラックが流動しない程度にゲル化または半硬化
させ、そののち高温で硬化する2段階硬化を検討したと
ころ、図7に示す結果となった。このとき用いた封止樹
脂組成物は、上記に記載した封止樹脂組成物と同じもの
を用いた。封止樹脂組成物の硬化条件は、80℃1時間
+150℃1時間、80℃1.5時間+150℃時間、
80℃2時間+150℃1時間、80℃3時間+150
℃1時間で硬化した。絶縁抵抗値および光の透過率は上
記に記載した方法で測定した。
However, it takes too much time under the curing condition of 80 ° C. for 20 hours, which is a problem in workability. Then, when the two-stage curing in which the carbon black is gelled or semi-cured to such an extent that it does not flow, and then cured at a high temperature was examined, the result shown in FIG. 7 was obtained. As the sealing resin composition used at this time, the same sealing resin composition as described above was used. The curing conditions of the sealing resin composition are as follows: 80 ° C. for 1 hour + 150 ° C. for 1 hour, 80 ° C. for 1.5 hours + 150 ° C. for
80 ° C 2 hours + 150 ° C 1 hour, 80 ° C 3 hours + 150
Cured for 1 hour at ℃. The insulation resistance value and light transmittance were measured by the methods described above.

【0030】図7に示すように、封止樹脂組成物の第1
の硬化条件が、80℃2時間未満では封止樹脂組成物を
ゲル化または半硬化させるには不十分であり、絶縁抵抗
値が低下している。80℃2時間以上では、絶縁抵抗値
が1015Ω台を示し、半導体チップ用封止樹脂組成物と
しては充分な絶縁性を有することがわかった。また、光
の透過率についても封止樹脂組成物の第1の硬化条件が
80℃2時間以上では0%となるが、それ以下では光を
透過してしまうことがわかった。
As shown in FIG. 7, the first of the sealing resin composition
If the curing condition of the above is less than 2 hours at 80 ° C., it is insufficient for gelling or semi-curing the sealing resin composition, and the insulation resistance value is lowered. At 80 ° C. for 2 hours or more, the insulation resistance value was on the order of 10 15 Ω, indicating that the resin composition had sufficient insulation properties as a semiconductor chip sealing resin composition. In addition, the light transmittance was 0% when the first curing condition of the sealing resin composition was 80 ° C. for 2 hours or more, but it was found that light was transmitted when the first curing condition was less than 80 ° C.

【0031】硬化剤として沸点のあまり高くない無水メ
チルヘキサヒドロフタル酸、無水メチルテトラヒドロフ
タル酸、無水テトラプロペニルコハク酸などの液体酸無
水物類を使用した場合でも、同様の効果が得られた。そ
のほかにも液体アミン類などを硬化剤として使用した場
合でも、同様の効果が得られることがわかった。
The same effect was obtained when liquid acid anhydrides such as methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and tetrapropenylsuccinic anhydride, which do not have a very high boiling point, were used as the curing agent. In addition, it has been found that similar effects can be obtained even when a liquid amine or the like is used as a curing agent.

【0032】[0032]

【発明の効果】以上の説明で明らかなように、封止樹脂
組成物中に含有するカーボンブラックの物性を、平均粒
子径が20〜40nmであり、かつ揮発量が10重量%
以上、封樹脂組成物中に含有するカーボンブラックの含
有量を全封止樹脂組成物に対し、0.3〜1.0重量%
にすることで絶縁性と遮光性を兼ね備えた封止樹脂組成
物を得ることができる。
As is apparent from the above description, the physical properties of the carbon black contained in the sealing resin composition are as follows: the average particle diameter is 20 to 40 nm, and the volatilization amount is 10% by weight.
As described above, the content of carbon black contained in the sealing resin composition is 0.3 to 1.0% by weight based on the entire sealing resin composition.
By doing so, a sealing resin composition having both insulating properties and light shielding properties can be obtained.

【0033】また、沸点のあまり高くない硬化剤を用い
る場合、封止樹脂組成物の硬化条件は80℃2時間+1
50℃1時間とすることで絶縁性と遮光性を兼ね備えた
封止樹脂組成物を得ることができる。
When a curing agent having a very low boiling point is used, the curing condition of the sealing resin composition is 80 ° C. for 2 hours + 1.
By setting the temperature at 50 ° C. for 1 hour, a sealing resin composition having both insulating properties and light shielding properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における、カーボンブラックの
平均粒子径と絶縁抵抗値および光の透過率の関係を示す
グラフである。
FIG. 1 is a graph showing a relationship among an average particle diameter of carbon black, an insulation resistance value, and light transmittance in an example of the present invention.

【図2】本発明の実施例における絶縁抵抗値を測定する
位置を示す断面図である。
FIG. 2 is a cross-sectional view showing a position where an insulation resistance value is measured in the example of the present invention.

【図3】本発明の実施例における光の透過率を測定する
サンプルを示す断面図である。
FIG. 3 is a cross-sectional view showing a sample for measuring light transmittance in an example of the present invention.

【図4】本発明の実施例におけるカーボンブラックの揮
発量と絶縁抵抗値の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a volatilization amount of carbon black and an insulation resistance value in Examples of the present invention.

【図5】本発明の実施例における封止樹脂組成物中のカ
ーボンブラック含有量と絶縁抵抗値および光の透過率の
関係を示すグラフである。
FIG. 5 is a graph showing the relationship among the carbon black content in the sealing resin composition, the insulation resistance value, and the light transmittance in Examples of the present invention.

【図6】本発明の実施例における封止樹脂組成物の硬化
条件と絶縁抵抗値および光の透過率の関係を示すグラフ
である。
FIG. 6 is a graph showing the relationship between the curing conditions of the sealing resin composition, the insulation resistance value, and the light transmittance in Examples of the present invention.

【図7】本発明の実施例における封止樹脂組成物の硬化
条件と絶縁抵抗値および光の透過率の関係を示すグラフ
である。
FIG. 7 is a graph showing the relationship between the curing conditions of the sealing resin composition, the insulation resistance value, and the light transmittance in Examples of the present invention.

【図8】従来例におけるフリップチップ実装の構造を示
す断面図である。
FIG. 8 is a cross-sectional view showing a structure of flip chip mounting in a conventional example.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 突起電極 3 接続材料 4 接続電極 5 基板 6 封止樹脂組成物 7 ガラス板 8 両面テープ DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Protrusion electrode 3 Connection material 4 Connection electrode 5 Substrate 6 Sealing resin composition 7 Glass plate 8 Double-sided tape

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂主剤、硬化剤、硬化促進剤
を主成分とする封止樹脂に対して、平均粒子径が20〜
40nmであり、窒素雰囲気中、950℃で7分間加熱
し、加熱前後の重量変化が10重量%以上であるカーボ
ンブラックを、封止樹脂組成物100重量%中に0.3
〜1.0重量%含有することを特徴とする封止樹脂組成
物。
An average particle size of the epoxy resin as a main component, a curing agent and a curing accelerator is 20 to
40 nm, heated at 950 ° C. for 7 minutes in a nitrogen atmosphere, and carbon black having a weight change of 10% by weight or more before and after heating is added to 0.3% by weight in 100% by weight of the sealing resin composition.
An encapsulating resin composition characterized in that the content of the encapsulating resin is from 1.0 to 1.0% by weight.
【請求項2】 請求項1に記載の封止樹脂組成物におい
て、封止樹脂組成物硬化後の光の透過率がほぼ0%であ
り、かつ絶縁抵抗値が1015Ω以上となる硬化条件で硬
化することを特徴とする封止樹脂組成物。
2. The curing condition according to claim 1, wherein the light transmittance after curing of the sealing resin composition is substantially 0% and the insulation resistance value is 10 15 Ω or more. A sealing resin composition characterized by being cured by:
【請求項3】 請求項1に記載の封止樹脂組成物におい
て、80℃2時間以上と150℃1時間以上の2段階で
硬化することを特徴とする封止樹脂組成物。
3. The encapsulating resin composition according to claim 1, wherein the encapsulating resin composition is cured in two stages: 80 ° C. for 2 hours or more and 150 ° C. for 1 hour or more.
JP11085696A 1999-03-29 1999-03-29 Sealing resin composition Pending JP2000273288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085696A JP2000273288A (en) 1999-03-29 1999-03-29 Sealing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085696A JP2000273288A (en) 1999-03-29 1999-03-29 Sealing resin composition

Publications (1)

Publication Number Publication Date
JP2000273288A true JP2000273288A (en) 2000-10-03

Family

ID=13866005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085696A Pending JP2000273288A (en) 1999-03-29 1999-03-29 Sealing resin composition

Country Status (1)

Country Link
JP (1) JP2000273288A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317121A (en) * 2000-12-25 2002-10-31 Ngk Spark Plug Co Ltd Embedding resin
JP2003152317A (en) * 2000-12-25 2003-05-23 Ngk Spark Plug Co Ltd Wiring board
JP2004134646A (en) * 2002-10-11 2004-04-30 Seiko Epson Corp Mounting structure of semiconductor element with bumps, mounting method of semiconductor element with bumps, electro-optical device, and electronic apparatus
JP2004331728A (en) * 2003-05-01 2004-11-25 Nippon Steel Chem Co Ltd Adhesive film for covering electronic component
JP2005206621A (en) * 2004-01-20 2005-08-04 Tokai Carbon Co Ltd Carbon black colorant for semiconductor-sealing material and its manufacturing method
JP2014232890A (en) * 2009-03-06 2014-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film for electronic circuitry applications
US8986567B2 (en) 2012-05-21 2015-03-24 Ricoh Company, Ltd. Magnetic body composition and a magnetic body product
KR20220084267A (en) 2019-10-16 2022-06-21 나믹스 가부시끼가이샤 resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317121A (en) * 2000-12-25 2002-10-31 Ngk Spark Plug Co Ltd Embedding resin
JP2003152317A (en) * 2000-12-25 2003-05-23 Ngk Spark Plug Co Ltd Wiring board
JP2004134646A (en) * 2002-10-11 2004-04-30 Seiko Epson Corp Mounting structure of semiconductor element with bumps, mounting method of semiconductor element with bumps, electro-optical device, and electronic apparatus
JP2004331728A (en) * 2003-05-01 2004-11-25 Nippon Steel Chem Co Ltd Adhesive film for covering electronic component
JP4493929B2 (en) * 2003-05-01 2010-06-30 新日鐵化学株式会社 Adhesive film for coating electronic components
JP2005206621A (en) * 2004-01-20 2005-08-04 Tokai Carbon Co Ltd Carbon black colorant for semiconductor-sealing material and its manufacturing method
JP2014232890A (en) * 2009-03-06 2014-12-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film for electronic circuitry applications
US8986567B2 (en) 2012-05-21 2015-03-24 Ricoh Company, Ltd. Magnetic body composition and a magnetic body product
KR20220084267A (en) 2019-10-16 2022-06-21 나믹스 가부시끼가이샤 resin composition

Similar Documents

Publication Publication Date Title
JP5656380B2 (en) Conductive ink composition, solar cell using the composition, and method for producing solar cell module
US6864306B2 (en) High dielectric polymer composites and methods of preparation thereof
CN103468159A (en) Silver coated nickel powder conductive adhesive and preparation method thereof
KR20040032839A (en) Epoxy resin for encapsulation and an electronic device
TW200832708A (en) Structure and method for self protection of power device
JP2000273288A (en) Sealing resin composition
JP2010087131A (en) Conductive ink composition and solar cell module formed using the composition
JP7170240B2 (en) Resin composition for semiconductor encapsulation, semiconductor device, and method for manufacturing semiconductor device
JP4802619B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2011088947A (en) Epoxy group-containing adhesive resin composition and adhesive for optical semiconductor prepared by using the same
JP5411774B2 (en) Pre-feed type liquid semiconductor encapsulating resin composition
CN107424660A (en) A kind of back silver paste used for solar batteries and preparation method thereof
JPS61296020A (en) Epoxy resin liquid composition for sealing electronic part
CN106229340B (en) A kind of semiconductor devices
JPH08198948A (en) Epoxy resin composition and device for sealing semiconductor
CN112436089B (en) Silicon resin packaged perovskite solar cell and preparation method thereof
CN107680709A (en) A kind of crystal silicon solar energy battery positive silver paste
JPH11345748A (en) Solid electrolytic capacitor and its production
CN107680711A (en) A kind of crystal silicon solar silicon plate positive silver paste
JPH0881543A (en) Epoxy resin composition and semiconductor device sealed therewith
KR100523294B1 (en) Preparation of electrical device having positive temperature coefficient property under high temperature
JPH11158356A (en) Epoxy resin composition for sealing photosemiconductor
JP4467021B2 (en) Manufacturing method of thermal print head
JP2000260820A (en) Method of sealing flip-chip type semiconductor device with underfill material
JPH08295724A (en) Epoxy resin composition and semiconductor device sealed therewith