JP2000273204A - Thermoplastic polymer sheet and its production - Google Patents

Thermoplastic polymer sheet and its production

Info

Publication number
JP2000273204A
JP2000273204A JP11075137A JP7513799A JP2000273204A JP 2000273204 A JP2000273204 A JP 2000273204A JP 11075137 A JP11075137 A JP 11075137A JP 7513799 A JP7513799 A JP 7513799A JP 2000273204 A JP2000273204 A JP 2000273204A
Authority
JP
Japan
Prior art keywords
sheet
thermoplastic polymer
die
temperature
polymer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11075137A
Other languages
Japanese (ja)
Other versions
JP3533101B2 (en
Inventor
Susumu Arai
進 新井
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP07513799A priority Critical patent/JP3533101B2/en
Publication of JP2000273204A publication Critical patent/JP2000273204A/en
Application granted granted Critical
Publication of JP3533101B2 publication Critical patent/JP3533101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a thermoplastic polymer sheet excellent in precision in thickness, not having die lines and sparingly causing a warp of the sheet. SOLUTION: This thermoplastic polymer sheet is produced by the melt extrusion of a thermoplastic polymer through a T-die or a coathanger die so as to form a sheet-like product, by transferring it while retaining the surface temperature difference between the front surface and the back one of a molten sheet within 15 deg.C and by subjecting the molten sheet to a cooling process to solidify it. The sheet is made of a thermoplastic polymer having >=150 deg.C glass transition temperature and has a sheet thickness of 150-1,000 μm, an in-plane thickness tolerance (R max) of <=20 μm, the sheet surface roughness of <=0.1 μm and a sheet plane retardation of <=20 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱可塑性高分子シー
ト及びその製造法に関する。本発明の熱可塑性高分子シ
ートは厚み精度に優れ、シートの反りが少ない。本発明
の熱可塑性高分子シートは、高い厚み精度が要求される
スペーサー等の用途、表示機能が要求される光学用のシ
ートに適しており、例えば、研磨用のスペーサー、高精
度のモーター部の摺動スペーサー、表示デバイス用の透
明シート等として好適である。
The present invention relates to a thermoplastic polymer sheet and a method for producing the same. The thermoplastic polymer sheet of the present invention is excellent in thickness accuracy and has little sheet warpage. The thermoplastic polymer sheet of the present invention is suitable for applications such as spacers that require high thickness accuracy, optical sheets where a display function is required, for example, a polishing spacer, a high-precision motor unit. It is suitable as a sliding spacer, a transparent sheet for a display device, or the like.

【0002】[0002]

【従来の技術】一般に溶融押し出し法により製造された
熱可塑性高分子シートは、充分な厚み精度が得られず、
またカールの発生もあり、高精度なギャップ保持に用い
るスペーサーとして信頼性に乏しい。
2. Description of the Related Art In general, a thermoplastic polymer sheet produced by a melt extrusion method does not have sufficient thickness accuracy.
In addition, curling occurs and the reliability of the spacer used for maintaining the gap with high precision is poor.

【0003】このため高精度ギャップ保持用のスペーサ
ーとしては、アルミニウムや銅等の金属板も使用されて
いる。半導体用途のSiウエハ研磨スペーサーとして
は、Siウエハの場合と同様、金属スペーサーが研磨さ
れ、その金属粉が後工程でのパターン回路作成時の微量
不純物となり、回路間における短絡の原因となる。
For this reason, a metal plate such as aluminum or copper is used as a spacer for maintaining a high-precision gap. As in the case of a Si wafer polishing spacer for a semiconductor, a metal spacer is polished as in the case of a Si wafer, and the metal powder becomes a trace impurity when a pattern circuit is formed in a later step, causing a short circuit between circuits.

【0004】また、液晶表示素子用の透明電極基板な
ど、光学用シートには従来ガラス基板が使用されてい
る。このような液晶表示素子は、ガラス基板自体が厚い
ために液晶表示素子の薄型化、軽量化が困難である。ま
た、可撓性、耐衝撃性においても充分な特性は得られて
いない。
A glass substrate is conventionally used for an optical sheet such as a transparent electrode substrate for a liquid crystal display device. In such a liquid crystal display device, it is difficult to reduce the thickness and weight of the liquid crystal display device because the glass substrate itself is thick. In addition, sufficient properties have not been obtained in terms of flexibility and impact resistance.

【0005】かかる従来のガラス基板液晶表示素子の欠
点を解消すべく、プラスチックフィルムを用いて液晶パ
ネルを作製することが提案されている。例えば、特開昭
53−68099号公報及び特開昭54−126559
号公報には、ガラス基板の代わりに長尺のポリエステル
フィルムに導電性酸化金属物質を蒸着した液晶表示素子
パネルを連続して製造する技術が開示されているが、充
分な光学的特性は得られていない。また、このようなシ
ートは、光学用シートとして厚み精度が悪く、フィルム
上にダイラインが発生するなど、表示用のシートとして
は実用に耐えない。
In order to solve the drawbacks of the conventional glass substrate liquid crystal display device, it has been proposed to manufacture a liquid crystal panel using a plastic film. For example, JP-A-53-68099 and JP-A-54-126559
Japanese Patent Application Laid-Open No. H11-163,878 discloses a technique for continuously manufacturing a liquid crystal display element panel in which a conductive metal oxide material is deposited on a long polyester film instead of a glass substrate, but sufficient optical characteristics can be obtained. Not. In addition, such a sheet has poor thickness accuracy as an optical sheet, and a die line is generated on a film.

【0006】光学用途に用いることのできる優れた特性
を有する熱可塑性樹脂シートを得るには、溶融押し出し
製膜工程において生ずる分子配向に起因するシートのリ
タデーションの増大が問題となる。例えば、TN(Twist
ed Nematic)型液晶表示素子では偏光板により直線偏光
された入射光が、透明電極シートの複屈折性及びそのシ
ート面内の偏差から部分的に異なる楕円偏光になるた
め、コントラストの低下、表示ムラを生じる。
In order to obtain a thermoplastic resin sheet having excellent properties that can be used for optical applications, there is a problem of an increase in the retardation of the sheet due to the molecular orientation generated in the melt extrusion film forming process. For example, TN (Twist
(ed Nematic) type liquid crystal display element, the incident light linearly polarized by the polarizer becomes elliptically polarized light that is partially different from the birefringence of the transparent electrode sheet and the deviation in the sheet plane, resulting in a decrease in contrast and display unevenness. Is generated.

【0007】また、従来、Tダイやコートハンガーダイ
により溶融押し出しを行う場合、厚み精度を向上させる
には、熱可塑性高分子の流路内における剪断応力や滞留
によるダイス出口の圧力のばらつきの低減、あるいは、
ダイラインと呼ばれる凹凸筋の原因となるダイスの面や
リップの精度の向上、さらにはガイドロールを設ける方
法などが採用されているが、いまだ解決に至っていな
い。
Conventionally, when melt extrusion is performed using a T-die or a coat hanger die, in order to improve the thickness accuracy, it is necessary to reduce the variation in pressure at the die outlet due to shear stress or stagnation in the flow path of the thermoplastic polymer. Or
A method of improving the accuracy of the surface of the die and the lip, which is a cause of uneven stripes called a die line, and a method of providing a guide roll have been adopted, but they have not been solved yet.

【0008】厚み精度の良好な高分子シートの製造方法
として、熱可塑性高分子を溶剤に溶解させ、フィルムも
しくは金属ベルト等にコーティングし乾燥させる溶剤キ
ャスト法も知られているが、厚いシートの生産性が低
く、シート中の溶剤の残留も問題となる。
As a method for producing a polymer sheet having good thickness accuracy, a solvent casting method in which a thermoplastic polymer is dissolved in a solvent, coated on a film or a metal belt, and dried, is also known. And the solvent remains in the sheet.

【0009】さらに、他の方法として、寸法を高精度に
仕上げた金型に熱可塑性高分子を封入して成形する射出
成形法もある。かかる方法はCDディスクの成形に用い
られ充分な生産性もあるが、射出成形法では数mmオー
ダーの厚みのシートが限界であって、さらに精密な数百
μmのオーダーの厚み精度を得ることはできない。
Further, as another method, there is an injection molding method in which a thermoplastic polymer is sealed in a mold whose dimensions have been finished with high precision and molded. Although such a method is used for molding a CD disk and has sufficient productivity, the injection molding method is limited to a sheet having a thickness of several mm, and it is not possible to obtain a more precise thickness accuracy of several hundred μm. Can not.

【0010】また、シートの耐カール性を向上させるた
め、後加工を行う方法も知られている。例えば、表面を
高精度に仕上げた板を用いて、ある一定間隔でシートを
プレスするものであるが、かかる方法は生産性が低く大
量の生産には不向きである。また、冷却ロールを用いて
シートの反りを除去する方法では、シートを沿わす冷却
ロールを極めて大きなものとする必要があり経済的でな
い。
A method of performing post-processing to improve the curl resistance of a sheet is also known. For example, a method of pressing a sheet at a certain interval using a plate whose surface is finished with high precision, but such a method has low productivity and is not suitable for mass production. Further, in the method of removing the warpage of the sheet using the cooling roll, it is necessary to make the cooling roll along the sheet extremely large, which is not economical.

【0011】さらに、平面(曲率のない)上で高分子シー
トを冷却固化した場合もシートの反りが発生しやすくな
る。このように厚み精度に優れ、かつシートの反りが小
さい熱可塑性高分子シートを製造することは非常に困難
である。
Further, even when the polymer sheet is cooled and solidified on a flat surface (having no curvature), the sheet is likely to be warped. Thus, it is very difficult to produce a thermoplastic polymer sheet having excellent thickness accuracy and small sheet warpage.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、厚み
精度に優れ、ダイラインがなく、シートの反りが少ない
熱可塑性高分子シート及びその製造方法を提供するもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoplastic polymer sheet which is excellent in thickness accuracy, has no die line, and has less warpage of the sheet, and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明者らは、かかる従
来の熱可塑性高分子シートの製造法について種々検討を
行ったところ、ダイから冷却工程にいたる溶融樹脂の温
度管理を厳密に行うことにより、極めて優れた寸法精度
を有し、カールのない製品が得られるとの知見を得て本
発明を完成した。
The present inventors have conducted various studies on such a conventional method for producing a thermoplastic polymer sheet, and found that the temperature of the molten resin from the die to the cooling step was strictly controlled. As a result, the present inventors have found that a product having extremely excellent dimensional accuracy and having no curl can be obtained, thereby completing the present invention.

【0014】本願の第1の発明は、ガラス転移点150
℃以上の熱可塑性高分子からなり、シート厚み150〜
1000μm、シートの面内厚み公差(Rmax)20μ
m以下、シート表面の粗さ0.1μm以下であり、かつ
シートの平面リタデーション20nm以下である熱可塑
性高分子シートを提供するものである。
The first invention of the present application has a glass transition point of 150.
Consisting of a thermoplastic polymer having a temperature of at least 150 ° C.
1000 μm, sheet thickness tolerance (Rmax) 20 μm
The present invention provides a thermoplastic polymer sheet having a sheet surface roughness of 0.1 μm or less, and a planar retardation of the sheet of 20 nm or less.

【0015】本願の第2の発明は熱可塑性高分子をTダ
イ又はコートハンガーダイなどの公知のダイスからシー
ト状に溶融押し出しし、該溶融シートの表側と裏側との
表面温度差を15℃以内に保持しつつ移動させ、ついで
該溶融シートを冷却工程に付して固化することを特徴と
する前記熱可塑性高分子シートの製造方法を提供するも
のである。
According to a second aspect of the present invention, a thermoplastic polymer is melt-extruded into a sheet from a known die such as a T-die or a coat hanger die, and the surface temperature difference between the front side and the back side of the molten sheet is within 15 ° C. And then moving the molten sheet to a cooling step so as to be solidified, thereby providing a method for producing the thermoplastic polymer sheet.

【0016】本願の第3の発明は前記の熱可塑性高分子
シートを基板としてなる透明電極シートを提供するもの
である。
A third aspect of the present invention provides a transparent electrode sheet using the above-mentioned thermoplastic polymer sheet as a substrate.

【0017】[0017]

【発明の実施の形態】本発明では、ダイスリップ先端か
ら冷却ロール間におけるシート表面の温度分布をできる
だけ少なくなるよう保持したことにより予想外に均一な
シートが得られた。通常の溶融押し出し法のダイリップ
先端ゾーンは輻射熱により加熱され、溶融シートに不均
一な温度分布が生じないような一応の手段が施されてい
る。しかしながら、空気を媒体とする熱放散により高分
子シートは温度低下が生じ、シート表面の表側と裏側、
シートの幅方向における左右の位置で不均一な温度分布
が生ずる。更に、冷却部分への接触で完全に分子配向が
固化される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an unexpectedly uniform sheet was obtained by maintaining the temperature distribution on the sheet surface from the tip of the die slip to the cooling roll as small as possible. The die lip tip zone in the usual melt extrusion method is heated by radiant heat, and a measure is taken to prevent a non-uniform temperature distribution from occurring in the molten sheet. However, due to heat dissipation using air as a medium, the temperature of the polymer sheet decreases, and the front and back sides of the sheet surface,
An uneven temperature distribution occurs at left and right positions in the sheet width direction. Further, the molecular orientation is completely solidified by contact with the cooling portion.

【0018】本発明方法では、リップ先端から冷却ロー
ルまでの区間をシートの流れに沿って充分な断熱を行い
厳重な温度管理を行う。例えば、ダイスより溶融押し出
しされたフィルムが冷却ロールにタッチするまでの間を
金属板や断熱材により外気から遮断することにより温度
管理を行う方法や、更にはヒーター等を設置し強制的に
温度を制御し管理する方法等が挙げられる。また、冷却
ロールやダイス付近で起こる気流による温度変化をなく
すための邪魔板を設置する方法や、更には、気流を発生
させないために室内の雰囲気温度を制御することも挙げ
られるが、リップ先端から冷却ロールまでの区間をシー
ト流れに沿って厳重な温度管理を行う事ができれば種々
の方法のいずれを用いてもよい。
In the method of the present invention, the section from the tip of the lip to the cooling roll is sufficiently insulated along the flow of the sheet and strict temperature control is performed. For example, a method of controlling the temperature by shutting off the film extruded from the die until the film touches the cooling roll from the outside air with a metal plate or a heat insulating material, or installing a heater etc. to forcibly control the temperature A method of controlling and managing is included. In addition, there is a method of installing a baffle plate for eliminating a temperature change due to an air flow occurring near a cooling roll or a die, and furthermore, controlling an ambient temperature in a room so as not to generate an air flow. Any of various methods may be used as long as strict temperature control can be performed along the sheet flow in the section up to the cooling roll.

【0019】溶融押し出しされた熱可塑性高分子シート
が冷却部分に移送される過程において、帯状の熱可塑性
高分子シートの表側と裏側との表面温度差は15℃以
内、好ましくは10℃以内に設定する。高分子シートの
表側と裏側の表面温度差がこれより大きいと、高分子シ
ートの厚み方向の複屈折が増加し、ダイラインと呼ばれ
るシート表面の凹凸が大きくなり表面精度が悪化する。
In the process in which the melt-extruded thermoplastic polymer sheet is transferred to the cooling part, the surface temperature difference between the front side and the back side of the belt-shaped thermoplastic polymer sheet is set within 15 ° C., preferably within 10 ° C. I do. If the surface temperature difference between the front side and the back side of the polymer sheet is larger than this, birefringence in the thickness direction of the polymer sheet will increase, and irregularities on the sheet surface called die lines will increase, and surface accuracy will deteriorate.

【0020】また、溶融押し出しされた熱可塑性高分子
シートが冷却部分に移送される過程において、帯状の前
記溶融シートの幅方向の表面温度差を15℃以内、好ま
しくは10℃以内に設定する。シートの幅方向の表面温
度差がこれより大きいと厚み精度が低下する。これはダ
イスリップから高分子シートが延伸され冷却ロールで冷
却される際に、温度分布による弾性率の差により延伸ム
ラが発生することに起因すると考えられる。また、冷却
ロールへの密着性にもムラが生じ、冷却効率の不均一に
より平面及び厚み方向の複屈折が悪化する。更には、上
記同様にダイラインが増大し、シートの表面精度が悪化
する。
In the process in which the melt-extruded thermoplastic polymer sheet is transferred to the cooling part, the surface temperature difference in the width direction of the strip-shaped molten sheet is set within 15 ° C., preferably within 10 ° C. If the surface temperature difference in the width direction of the sheet is larger than this, the thickness accuracy is reduced. This is considered to be caused by uneven stretching caused by a difference in elasticity due to temperature distribution when the polymer sheet is stretched from the die slip and cooled by the cooling roll. In addition, the adhesiveness to the cooling roll also becomes uneven, and the birefringence in the plane and in the thickness direction deteriorates due to uneven cooling efficiency. Further, the die line increases as described above, and the surface accuracy of the sheet deteriorates.

【0021】本発明においては、溶融押し出しされた熱
可塑性高分子シートのガラス転移点をTgとすると、T
ダイ、コートハンガーダイなどのダイスの温度(D1)
はTg+80<D1<Tg+150[℃]である。Tダ
イもしくはコートハンガーダイの温度(D1)がTg+
80[℃]以下であると樹脂粘度が高く、ダイスに背圧
がかかり押し出すことができない。またD1がTg+1
50[℃]以上であると樹脂が熱分解を起こし、変色ま
たは異物の発生につながる。
In the present invention, assuming that the glass transition point of the melt-extruded thermoplastic polymer sheet is Tg,
Temperature of dies such as dies and coat hanger dies (D1)
Is Tg + 80 <D1 <Tg + 150 [° C.]. The temperature (D1) of T die or coat hanger die is Tg +
If the temperature is lower than 80 [° C.], the resin has a high viscosity and a back pressure is applied to the die, so that the die cannot be extruded. D1 is Tg + 1
When the temperature is higher than 50 ° C., the resin is thermally decomposed, which leads to discoloration or generation of foreign matter.

【0022】冷却部分に接するときの高分子シートの表
面温度(S1)はTg+30<S1<Tg+100
[℃]である。高分子シートの表面温度(S1)がTg
+30[℃]以下であるとダイスリップから高分子シー
トが延伸され冷却ロールで冷却されるが延伸の際に高分
子シートの平面における複屈折が増加する。高分子シー
トの表面温度(S1)が、Tg+100[℃]以上であ
ると冷却ロールとの温度差が大きすぎシート化される際
の応力が大きくなるため複屈折が増加したり、冷却能力
不足になりやすく冷却ロールに高分子シートが融着し外
観不良となる。
The surface temperature (S1) of the polymer sheet when coming into contact with the cooling portion is Tg + 30 <S1 <Tg + 100
[° C.]. The surface temperature (S1) of the polymer sheet is Tg
When the temperature is lower than +30 [° C.], the polymer sheet is stretched from the die slip and cooled by the cooling roll, but the birefringence in the plane of the polymer sheet increases during stretching. If the surface temperature (S1) of the polymer sheet is equal to or higher than Tg + 100 [° C.], the temperature difference from the cooling roll is too large, and the stress when the sheet is formed becomes large, so that the birefringence increases and the cooling capacity becomes insufficient. The polymer sheet is easily fused to the cooling roll, resulting in poor appearance.

【0023】また、冷却ロール温度(R1)はTg−3
0<R1<Tg+30[℃]である。冷却ロール温度
(R1)がTg−30[℃]以下であると冷却シワが発
生し外観不良となる。冷却ロール温度(R1)がTg+
30[℃]以上であると冷却ロールに高分子シートが融
着し外観不良となる。
The cooling roll temperature (R1) is Tg-3.
0 <R1 <Tg + 30 [° C.]. If the cooling roll temperature (R1) is lower than Tg-30 [° C.], cooling wrinkles occur and the appearance becomes poor. Cooling roll temperature (R1) is Tg +
If the temperature is higher than 30 ° C., the polymer sheet is fused to the cooling roll, resulting in poor appearance.

【0024】熱可塑性高分子シートの厚みは、150〜
1000μmが好ましく、更に好ましくは200〜50
0μmである。高分子シートの厚みがこれより薄いと汎
用の液晶パネル製造ラインを用いた場合の取り扱いが困
難であり、また、液晶のセルギャップ保持が難しく、特
に、大面積の液晶表示素子ではセルギャップ保持をする
ことができない。一方、厚さがこの範囲を越えると液晶
表示がダブルイメージと呼ばれる表示不良を起こし、更
に液晶表示素子の厚みが厚くなり機能上好ましくない。
The thickness of the thermoplastic polymer sheet is from 150 to
1000 μm is preferable, and 200 to 50 is more preferable.
0 μm. If the thickness of the polymer sheet is thinner than this, it is difficult to handle when using a general-purpose liquid crystal panel manufacturing line, and it is difficult to maintain the cell gap of the liquid crystal, especially for large-area liquid crystal display devices. Can not do it. On the other hand, if the thickness exceeds this range, the liquid crystal display causes a display defect called double image, and the thickness of the liquid crystal display element is further increased, which is not preferable in function.

【0025】平面のリタデーションは、好ましくは、2
0nm以下、更に好ましくは10nm以下である。平面
のリタデーションとは、Re=(Nx−Ny)×dで表
されるもので、Nxは高分子シート面内の最大の屈折率
であり、Nyは高分子シート面内の最小の屈折率であ
る。dはシートの厚みである。リタデーションが20n
mを越えると液晶表示のコントラストの低下が発生し、
表示が明瞭に見えなくなる。
The retardation of the plane is preferably 2
It is 0 nm or less, more preferably 10 nm or less. The flat retardation is represented by Re = (Nx−Ny) × d, where Nx is the maximum refractive index in the polymer sheet plane, and Ny is the minimum refractive index in the polymer sheet plane. is there. d is the thickness of the sheet. 20n retardation
m, the contrast of the liquid crystal display decreases,
The display becomes invisible.

【0026】高分子シートの面内の厚み公差は20μm
以下が好ましく、更に好ましくは10μm以下である。
面内の厚み公差が20μmを越えると、液晶セルの組立
時において、ハーフカットしてもセルが分割されないと
いうことが起こる。また、高精度なスペーサー用の用途
としては使用が困難となる。
The in-plane thickness tolerance of the polymer sheet is 20 μm.
Or less, more preferably 10 μm or less.
If the in-plane thickness tolerance exceeds 20 μm, the cell may not be divided even if it is half-cut at the time of assembling the liquid crystal cell. In addition, it is difficult to use it for a high-precision spacer.

【0027】高分子シートの表面粗さの最大(Rmax)
は、0.1μm以下が好ましく、更に好ましくは、0.0
5μm以下である。表面粗さの最大が0.1μmより大
きいと液晶のセルギャップ異常が発生し、表示不良が生
ずる。
Maximum surface roughness (Rmax) of the polymer sheet
Is preferably 0.1 μm or less, more preferably 0.0 μm or less.
5 μm or less. If the maximum of the surface roughness is larger than 0.1 μm, an abnormal cell gap of the liquid crystal occurs and a display failure occurs.

【0028】本発明にて用いられる熱可塑性高分子のガ
ラス転移点(Tg)は、150℃以上であるのが好まし
く、更に好ましくは180℃以上である。熱可塑性高分
子のTgが150℃未満になると液晶組立工程の熱処
理、例えば、配向膜焼成及びシール硬化温度においてシ
ートが軟化し製品に不具合を生じる。かかる熱可塑性樹
脂としては、例えばポリサルホン、ポリエーテルサルホ
ン、ポリエーテルイミド、ノルボルネン系樹脂、ポリア
リレート及びこれらをブレンドした樹脂を挙げることが
でき、特にポリエーテルサルホンが耐熱性、透明性、寸
法変化が少ない点で好ましい。また本発明に用いられる
樹脂には、その目的に応じて添加剤として少量の安定
剤、滑剤、染料等を配合してもよい。
The glass transition point (Tg) of the thermoplastic polymer used in the present invention is preferably 150 ° C. or higher, more preferably 180 ° C. or higher. If the Tg of the thermoplastic polymer is lower than 150 ° C., the sheet is softened at the heat treatment in the liquid crystal assembling step, for example, at the temperature of firing the alignment film and curing the seal, resulting in a product failure. Examples of such a thermoplastic resin include polysulfone, polyethersulfone, polyetherimide, norbornene-based resin, polyarylate and a resin obtained by blending them. This is preferable in that there is little change. The resin used in the present invention may contain a small amount of a stabilizer, a lubricant, a dye or the like as an additive depending on the purpose.

【0029】本発明のシートの光学的物性は次の方法に
より測定した。 シート温度の測定方法:熱電対をダイスより溶融押し
出しされた該熱可塑性高分子シートの表面に接触させ温
度を測定した。 シート厚み:接触式のダイヤルゲージで高分子シート
の面内を測定した平均値である。 シート面内の厚み公差:接触式のダイヤルゲージで高
分子シートの面内を測定した最大値と最小値の差であ
る。
The optical properties of the sheet of the present invention were measured by the following methods. Measurement method of sheet temperature: A thermocouple was brought into contact with the surface of the thermoplastic polymer sheet melt-extruded from a die, and the temperature was measured. Sheet thickness: It is an average value measured in the plane of the polymer sheet with a contact type dial gauge. In-plane thickness tolerance: The difference between the maximum and minimum values measured in the plane of the polymer sheet with a contact dial gauge.

【0030】高分子シートの表面粗さの最大(Rma
x) 接触式の精密段差計(TENCOR INSTRUMENTS製 AIPHA-STE
P200)により、高分子シートの幅方向に2mmのスキャ
ン幅にて全幅を測定した凹凸の最大値である。 高分子シートのリタデーション オリンパス光学(株)製偏光顕微鏡BH2とベレックコン
ペンセーターを用い、波長550nmでのリタデーショ
ンを測定した。
The maximum surface roughness (Rma) of the polymer sheet
x) Contact type precision step meter (AIPHA-STE manufactured by TENCOR INSTRUMENTS)
P200) is the maximum value of the concavities and convexities measured over the entire width at a scan width of 2 mm in the width direction of the polymer sheet. Retardation of Polymer Sheet The retardation at a wavelength of 550 nm was measured using a polarizing microscope BH2 manufactured by Olympus Optical Co., Ltd. and a Berek compensator.

【0031】[0031]

【実施例】つぎに本発明を実施例、比較例によりさらに
具体的に説明する。 [実施例1]ポリエーテルサルホン樹脂(住友化学工業
(株)製、ビクトレックスPES4100G、Tg=22
6℃)をコートハンガーダイより溶融押し出しし、この
溶融熱可塑性高分子シートを冷却工程に付して熱可塑性
高分子シートを製造した。また、リップ先端から冷却ロ
ールまでの間を、冷却ロールの幅で高分子シートの面か
らの距離が50mmとなる両側の位置にステンレス製のカ
バーを設置してシートを囲った。ダイス温度を350
℃、冷却ロール温度を220℃に設定した。高分子シー
トの表、裏の表面の温度差は5℃、幅方向の表面の温度
差は8℃、冷却ロールと高分子シートが接触する際の高
分子シートの温度は300℃であった。得られたシート
の厚みは400μmであった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. [Example 1] Polyether sulfone resin (Sumitomo Chemical Industries, Ltd.)
Victrex PES4100G, Tg = 22
(6 ° C.) was melt-extruded from a coat hanger die, and the molten thermoplastic polymer sheet was subjected to a cooling step to produce a thermoplastic polymer sheet. In addition, stainless steel covers were placed at both sides where the distance from the surface of the polymer sheet to the width of the cooling roll was 50 mm between the lip tip and the cooling roll to surround the sheet. Die temperature 350
° C and the cooling roll temperature were set to 220 ° C. The temperature difference between the front and back surfaces of the polymer sheet was 5 ° C., the temperature difference between the surfaces in the width direction was 8 ° C., and the temperature of the polymer sheet when the cooling roll contacted the polymer sheet was 300 ° C. The thickness of the obtained sheet was 400 μm.

【0032】その結果、高分子シートの面内厚み公差
(Rmax)は15μm、平面におけるリタデーションは
15nmであり、かつ高分子シートの表面の粗さの最大
(Rmax)は0.06μmの高度の寸法精度を有するシ
ートが得られた。
As a result, the in-plane thickness tolerance of the polymer sheet
(Rmax) is 15 μm, the retardation in the plane is 15 nm, and the maximum surface roughness of the polymer sheet is
A sheet having a high dimensional accuracy (Rmax) of 0.06 μm was obtained.

【0033】実施例1で得られたシート(厚さ400μ
m)の上に下記のように有機層を形成した。すなわち、
エポキシアクリレートプレポリマー(昭和高分子(株)
製、VR−60、分子量1540、融点70℃)100
重量部、酢酸ブチル400重量部、セロソルブアセテー
ト100重量部及びベンゾインエチルエーテル2重量部
を50℃にて攪拌、溶解して均一な溶液を調製し、これ
を前記シート上にグラビアロールコータを用いて塗布し
た。ついで、80℃で10分間加熱して溶媒を除去し、
80w/cmの高圧水銀灯により15cmの距離で30
秒間照射して樹脂を硬化させ、0.5μm厚の有機層を
形成した。有機層は両面に形成した。次に、初期真空度
3×10−4Paにて酸素/アルゴンガス9%の混合ガ
スを導入し、3×10−1Paの条件下においてDCマ
グネトロン法により前記シート上にSiOの無機層を
成膜した(500Å厚)。この無機膜の酸素バリヤー性
をモコン法により測定したところ1cc/24hr・m
であり、表面抵抗率を測定したところ8.1×10
12Ωであった。
The sheet obtained in Example 1 (400 μm thick)
An organic layer was formed on m) as follows. That is,
Epoxy acrylate prepolymer (Showa Polymer Co., Ltd.)
VR-60, molecular weight 1540, melting point 70 ° C) 100
Parts by weight, 400 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate and 2 parts by weight of benzoin ethyl ether were stirred and dissolved at 50 ° C. to prepare a uniform solution, which was then coated on the sheet using a gravure roll coater. Applied. Then, heating at 80 ° C. for 10 minutes to remove the solvent,
80 w / cm high pressure mercury lamp at a distance of 15 cm
The resin was cured by irradiation for 2 seconds to form an organic layer having a thickness of 0.5 μm. Organic layers were formed on both sides. Next, a mixed gas of oxygen / argon gas of 9% was introduced at an initial degree of vacuum of 3 × 10 −4 Pa, and an inorganic layer of SiO 2 was formed on the sheet by a DC magnetron method under a condition of 3 × 10 −1 Pa. Was formed (500 mm thick). When the oxygen barrier property of this inorganic film was measured by the Mocon method, it was 1 cc / 24 hr · m.
2 , and the surface resistivity was measured to be 8.1 × 10
12 Ω.

【0034】次に同じくDCマグネトロン法により透明
導電膜を形成した。すなわち、初期真空度3×10−4
Paにて酸素/アルゴンガス4%の混合ガスを導入し、
1×10−1Paの条件下において成膜し、In/In
+Snの原子比が0.98であるIn、SnO
からなる透明導電膜を得た。測定の結果、膜厚は160
0Å、比抵抗は4×10−4Ω−cmであった。成膜
後、レジストを塗布、現像し、エッチング液として10
vol%HCl、液温40℃中でパターンエッチングし、
対角長さ3インチ、L/S=150/50μmのアクテ
ィブマトリックス用パターンを形成した。パターン形成
後、配向膜を塗布し、150℃にて2時間の焼成処理を
行った後、ラビング処理を行った。ラビング処理後、ス
ペーサーを散布し、シール剤を塗布し、150℃でシー
ル硬化させてセル化し、液晶を注入した。液晶注入後、
基板をハーフカットによりセルを分割したが問題なく分
割できた。また、偏光板をコントラストの最大となる位
置に貼り合わせ、点灯試験を行ったところ、断線は全く
見られず、シートのリタデーションや液晶のセルギャッ
プ異常による表示欠点は見られないコントラストのよい
表示を示した。
Next, a transparent conductive film was formed by the DC magnetron method. That is, the initial degree of vacuum is 3 × 10 −4.
A mixed gas of oxygen / argon gas 4% is introduced at Pa,
A film is formed under the condition of 1 × 10 −1 Pa, and In / In
In 2 O 3 , SnO 2 having an atomic ratio of + Sn of 0.98
Was obtained. As a result of the measurement, the film thickness was 160
0 °, and the specific resistance was 4 × 10 −4 Ω-cm. After film formation, a resist is applied and developed, and an etchant of 10
vol% HCl, pattern etching in liquid temperature 40 ° C,
An active matrix pattern having a diagonal length of 3 inches and L / S = 150/50 μm was formed. After pattern formation, an orientation film was applied, baked at 150 ° C. for 2 hours, and then rubbed. After the rubbing treatment, a spacer was sprayed, a sealant was applied, the seal was cured at 150 ° C. to form a cell, and a liquid crystal was injected. After liquid crystal injection,
The substrate was divided by half-cutting, but could be divided without any problem. In addition, when a polarizing plate was attached to the position where the contrast was maximized and a lighting test was performed, no break was seen at all, and a display with good contrast was observed without any display defects due to sheet retardation or liquid crystal cell gap abnormality. Indicated.

【0035】[実施例2]日本ゼオン(株)製の非晶質性
ノルボルネン系樹脂:ZEONOR1600(Tg16
5℃)を用い、ダイス温度を250℃、冷却ロール温度
を180℃に設定してシートを製造した。高分子シート
の表、裏の表面の温度差が5℃、幅方向の表面の温度差
が8℃、冷却ロールと高分子シートが接触する際の高分
子シートの温度を220℃となるように、リップ先端か
ら冷却ロールまでの間をステンレス製の囲いで囲って、
厚さ600μmのシートを成形した。その結果、高分子
シートの面内厚み公差(Rmax)が18μm、平面に於
けるリタデーションが15nmで有り、且つ、高分子シ
ートの表面の粗さの最大(Rmax)が0.06μmの高
分子シートを得た。
Example 2 Amorphous norbornene resin manufactured by Zeon Corporation: ZEONOR1600 (Tg16)
5 ° C.), the die temperature was set to 250 ° C., and the cooling roll temperature was set to 180 ° C. to produce a sheet. The temperature difference between the front and back surfaces of the polymer sheet is 5 ° C., the temperature difference between the surfaces in the width direction is 8 ° C., and the temperature of the polymer sheet when the cooling roll contacts the polymer sheet is 220 ° C. , Surround the area from the lip tip to the cooling roll with a stainless steel enclosure,
A sheet having a thickness of 600 μm was formed. As a result, a polymer sheet having an in-plane thickness tolerance (Rmax) of 18 μm, a retardation in a plane of 15 nm, and a maximum surface roughness (Rmax) of 0.06 μm of the polymer sheet is obtained. I got

【0036】[比較例1]実施例1においてステンレス
の囲いをはずした以外は同様にしてシートを製造した。
シートの裏表の温度差は17℃、幅方向は20℃であっ
た。得られたシートの厚み公差は30μm、リタデーシ
ョンは40nm、表面粗さは0.2μmであった。同様
にして液晶セルとして組み立てたところ、液晶セルのセ
ル分割時に断線が起こり、セル分割化不能による歩留ま
り低下が起こった。更に、液晶デバイスのコントラスト
が悪く、セルギャップムラによる表示不良が発生した。
Comparative Example 1 A sheet was produced in the same manner as in Example 1 except that the stainless steel enclosure was removed.
The temperature difference between the front and back of the sheet was 17 ° C, and the width direction was 20 ° C. The thickness tolerance of the obtained sheet was 30 μm, the retardation was 40 nm, and the surface roughness was 0.2 μm. Similarly, when assembled as a liquid crystal cell, disconnection occurred at the time of cell division of the liquid crystal cell, and the yield was reduced due to inability to divide the cell. Furthermore, the contrast of the liquid crystal device was poor, and display defects due to cell gap unevenness occurred.

【0037】[比較例2]実施例1において、ヒーター
を設置して、高分子シートが冷却ロールに接触する際の
温度を340℃とした以外は、実施例1と同様にしてシ
ートを作成した。得られたシートの厚み公差は25μ
m、リタデーションは70nm、シート表面粗さは0.
05μmであった。このシートを用いて、実施例1と同
様に液晶セルを組み立てたところ、コントラストが悪く
表示は見えにくいものとなった。
Comparative Example 2 A sheet was prepared in the same manner as in Example 1 except that a heater was provided and the temperature at which the polymer sheet was brought into contact with the cooling roll was set at 340 ° C. . The thickness tolerance of the obtained sheet is 25μ.
m, the retardation is 70 nm, and the sheet surface roughness is 0.1.
It was 05 μm. When a liquid crystal cell was assembled using this sheet in the same manner as in Example 1, the contrast was poor and the display was difficult to see.

【0038】[0038]

【発明の効果】本発明の熱可塑性高分子シートは平面の
リタデーションが小さく、表面平滑性に優れ、基板の反
りが少なくダイラインがない。このシートは、スペーサ
ー用シート、光学用シートとして最適で、例えばフレキ
シブル液晶表示素子用透明電極シートとして液晶表示パ
ネルに実装した場合に表示ムラのない高精細な表示を示
す。
The thermoplastic polymer sheet of the present invention has a small flat retardation, is excellent in surface smoothness, has little substrate warpage, and has no die line. This sheet is optimal as a spacer sheet and an optical sheet. For example, when it is mounted on a liquid crystal display panel as a transparent electrode sheet for a flexible liquid crystal display element, it shows a high definition display without display unevenness.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA02 AA14 AA60 AA68 AH12 AH17 BA01 BB06 BC01 BC12 4F207 AA12 AA34 AG01 AH33 AM32 KA01 KA17 KK52 KK64 KL84 5C094 AA00 AA02 AA55 BA43 DA06 EA05 EB02 FA02 FB01 GA10 JA08 JA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F071 AA02 AA14 AA60 AA68 AH12 AH17 BA01 BB06 BC01 BC12 4F207 AA12 AA34 AG01 AH33 AM32 KA01 KA17 KK52 KK64 KL84 5C094 AA00 AA02 AA55 BA43 DA06 EA05 EA05 GA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガラス転移点150℃以上の熱可塑性高
分子からなり、シート厚み150〜1000μm、シー
トの面内厚み公差(Rmax)20μm以下、シート表面
の粗さ0.1μm以下であり、かつシートの平面リタデ
ーション20nm以下である熱可塑性高分子シート。
1. A sheet made of a thermoplastic polymer having a glass transition point of 150 ° C. or higher, a sheet thickness of 150 to 1000 μm, a sheet thickness tolerance (Rmax) of 20 μm or less, a sheet surface roughness of 0.1 μm or less, and A thermoplastic polymer sheet having a sheet retardation of 20 nm or less.
【請求項2】 熱可塑性高分子がポリエーテルサルホン
である請求項1の高分子シート。
2. The polymer sheet according to claim 1, wherein the thermoplastic polymer is polyether sulfone.
【請求項3】 熱可塑性高分子をTダイ又はコートハン
ガーダイからシート状に溶融押し出しし、該溶融シート
の表側と裏側との表面温度差を15℃以内に保持しつつ
移動させ、ついで該溶融シートを冷却工程に付して固化
することを特徴とする請求項1の熱可塑性高分子シート
の製造方法。
3. A method in which a thermoplastic polymer is melt-extruded from a T-die or a coat hanger die into a sheet and is moved while maintaining the surface temperature difference between the front and back sides of the molten sheet within 15 ° C. The method for producing a thermoplastic polymer sheet according to claim 1, wherein the sheet is subjected to a cooling step to be solidified.
【請求項4】 溶融シートの幅方向の表面温度差が15
℃以内である請求項3の熱可塑性高分子シートの製造方
法。
4. A difference in surface temperature in the width direction of the molten sheet is 15
The method for producing a thermoplastic polymer sheet according to claim 3, wherein the temperature is within ° C.
【請求項5】 ダイスと冷却工程との間に断熱を施して
なる請求項3又は4の熱可塑性高分子シートの製造方
法。
5. The method for producing a thermoplastic polymer sheet according to claim 3, wherein heat is provided between the die and the cooling step.
【請求項6】 熱可塑性高分子のガラス転移点をTg、
Tダイ又はコートハンガーダイの温度をD1とすると、
Tg+80℃<D1<Tg+150℃であり、冷却工程
に付されるときの熱可塑性高分子の表面温度をS1とす
ると、Tg+30℃<S1<Tg+100℃であり、冷
却ロール温度をR1とすると、Tg−30℃<R1<T
g+30℃である請求項3の熱可塑性高分子シートの製
造方法。
6. The glass transition point of the thermoplastic polymer is Tg,
Assuming that the temperature of the T die or the coat hanger die is D1,
Tg + 80 ° C. <D1 <Tg + 150 ° C. If the surface temperature of the thermoplastic polymer when subjected to the cooling step is S1, Tg + 30 ° C. <S1 <Tg + 100 ° C. If the cooling roll temperature is R1, Tg− 30 ° C <R1 <T
The method for producing a thermoplastic polymer sheet according to claim 3, wherein the temperature is g + 30 ° C.
【請求項7】 請求項1の熱可塑性高分子シートを基板
としてなる透明電極シート。
7. A transparent electrode sheet using the thermoplastic polymer sheet according to claim 1 as a substrate.
JP07513799A 1999-03-19 1999-03-19 Method for producing thermoplastic polymer sheet Expired - Fee Related JP3533101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07513799A JP3533101B2 (en) 1999-03-19 1999-03-19 Method for producing thermoplastic polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07513799A JP3533101B2 (en) 1999-03-19 1999-03-19 Method for producing thermoplastic polymer sheet

Publications (2)

Publication Number Publication Date
JP2000273204A true JP2000273204A (en) 2000-10-03
JP3533101B2 JP3533101B2 (en) 2004-05-31

Family

ID=13567518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07513799A Expired - Fee Related JP3533101B2 (en) 1999-03-19 1999-03-19 Method for producing thermoplastic polymer sheet

Country Status (1)

Country Link
JP (1) JP3533101B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233604A (en) * 2003-01-30 2004-08-19 Nippon Zeon Co Ltd Optical film and method of manufacturing the same
JP2007090859A (en) * 2005-09-05 2007-04-12 Sony Corp Manufacturing method of optical film
JP2009154518A (en) * 2007-12-05 2009-07-16 Fujifilm Corp Apparatus for manufacturing thermoplastic resin film and method for manufacturing thermoplastic resin film
US7785503B2 (en) 2002-03-25 2010-08-31 Zeon Corporation Optical film and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785503B2 (en) 2002-03-25 2010-08-31 Zeon Corporation Optical film and process for producing the same
JP2004233604A (en) * 2003-01-30 2004-08-19 Nippon Zeon Co Ltd Optical film and method of manufacturing the same
JP2007090859A (en) * 2005-09-05 2007-04-12 Sony Corp Manufacturing method of optical film
JP4506733B2 (en) * 2005-09-05 2010-07-21 ソニー株式会社 Manufacturing method of optical film
JP2009154518A (en) * 2007-12-05 2009-07-16 Fujifilm Corp Apparatus for manufacturing thermoplastic resin film and method for manufacturing thermoplastic resin film

Also Published As

Publication number Publication date
JP3533101B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
JP2006309033A (en) Method for manufacturing film for optics
JP2004046194A (en) Manufacturing method for optical compensator
JP6760264B2 (en) Method for manufacturing diagonally stretched film
JP4277531B2 (en) Optical film and method for producing the same
JP3533101B2 (en) Method for producing thermoplastic polymer sheet
JP2001079929A (en) Method and apparatus for producing thermoplastic polymer sheet
JP2000239408A (en) Optical sheet and liquid crystal display device using same
JP3698910B2 (en) Method for producing thermoplastic polymer sheet
KR100479618B1 (en) The preparation method of plastic optical film for the use of display
JP2002172675A (en) Polymeric sheet, method of manufacturing polymeric sheet, and liquid crystal display device
JP3701810B2 (en) Method for producing thermoplastic polymer sheet
JP4742460B2 (en) Thermoplastic resin film manufacturing method and display element substrate using the same
JP4366771B2 (en) Method for producing thermoplastic polymer sheet
WO2000048820A1 (en) Production method for thermoplastic polymer sheet and optical sheet
JP2001088215A (en) Method for producing polymeric sheet and optical polymeric sheet using the same
JP2001264534A (en) Optical film and its manufacturing method
JP2003033962A (en) Method for producing thermoplastic resin film and substrate for display element using the same
US7334769B2 (en) Resin molding machine and member for resin molding machine having film in passive state
JP4491121B2 (en) Polymer sheet, polymer sheet manufacturing method, and liquid crystal display device
TW578016B (en) Optical film, its process and polarizing sheet
JP2002103448A (en) Method for producing thermoplastic resin film for liquid crystal substrate
JP2002172676A (en) Polymeric sheet, method of manufacturing polymeric sheet, and liquid crystal display device
JP3638246B2 (en) Polymer sheet manufacturing method and optical polymer sheet
JP2001279008A (en) Method for producing polymer film sheet and polymer film sheet produced thereby
JP2001328213A (en) Plastic sheet having smoothness and optical sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees