JP2000268326A - Magnetoresistance effect thin-film magnetic head - Google Patents

Magnetoresistance effect thin-film magnetic head

Info

Publication number
JP2000268326A
JP2000268326A JP11076233A JP7623399A JP2000268326A JP 2000268326 A JP2000268326 A JP 2000268326A JP 11076233 A JP11076233 A JP 11076233A JP 7623399 A JP7623399 A JP 7623399A JP 2000268326 A JP2000268326 A JP 2000268326A
Authority
JP
Japan
Prior art keywords
film
magnetic flux
magnetic
width
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11076233A
Other languages
Japanese (ja)
Inventor
Hideo Oura
秀男 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP11076233A priority Critical patent/JP2000268326A/en
Publication of JP2000268326A publication Critical patent/JP2000268326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistance effect thin-film magnetic head which can eliminate a Barkhausen noise and which can enhance a reproduction output. SOLUTION: In this magnetoresistance effect thin-film magnetic head of a magnetic flux induction type, the width Ws of a magnetoresistance effect element (an MR element or a GMR element) 4 is formed in the range of 0.85 times to 0.95 times the width W1 of a first magnetic flux induction film 3. In addition, the value of 1.8 times the product of the sensing-part film thickness Ts of the magnetoresistance effect element 4 multiplied by its saturation magnetic flux density Bs is set to be smaller than the product of the film thickness T1 of the first magnetic flux induction film 3 multiplied by its saturation magnetic flux density B1. In addition, the film thickness T1 of the first magnetic flux induction film 3 is set to be thinner than the element film thickness Tsa of the magnetoresistance effect element 4. In addition, a second magnetic flux induction film having a width W2 which is identical to the width W1 of the first magnetic flux induction film 3 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果型薄
膜磁気ヘッドに関し、特に磁気記録媒体からの信号磁界
を磁束誘導膜を通して磁気抵抗効果素子に導入する磁束
誘導タイプの磁気抵抗効果型薄膜磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-resistance effect type thin film magnetic head, and more particularly to a magnetic flux induction type magneto-resistance effect type thin film magnetic head for introducing a signal magnetic field from a magnetic recording medium into a magneto-resistance effect element through a magnetic flux induction film. About the head.

【0002】[0002]

【従来の技術】データストレージ、VTR等の磁気記録再
生装置には磁束誘導タイプの磁気抵抗効果型薄膜磁気ヘ
ッドが使用されている。図7は従来技術に係る磁束誘導
タイプの磁気抵抗効果型薄膜磁気ヘッドの断面図、図8
は図7のF8−F8線部分で切った磁気抵抗効果型薄膜
磁気ヘッドの平面図である。図7及び図8に示すよう
に、磁気抵抗効果型薄膜磁気ヘッドは、下部シールドコ
ア31と、上部シールドコア37と、下部シールドコア
31と上部シールドコア37との間のギャップ絶縁体3
2内に埋設された磁束誘導膜33と、磁気抵抗効果素子
34と、を備えて構成されている。
2. Description of the Related Art A magnetic recording / reproducing apparatus such as a data storage and a VTR uses a magnetic flux effect type magnetoresistive thin film magnetic head. FIG. 7 is a cross-sectional view of a magnetic flux effect type thin film magnetic head of a magnetic flux induction type according to the related art.
FIG. 8 is a plan view of the magnetoresistive thin film magnetic head taken along the line F8-F8 in FIG. As shown in FIGS. 7 and 8, the magnetoresistive thin-film magnetic head includes a lower shield core 31, an upper shield core 37, and a gap insulator 3 between the lower shield core 31 and the upper shield core 37.
2, a magnetic flux guiding film 33 buried inside and a magnetoresistive element 34.

【0003】磁気抵抗効果型薄膜磁気ヘッドの磁束誘導
膜33は、図7中及び図8中、左側において走行する図
示しないに磁気記録媒体からの信号磁界を誘導し、磁気
抵抗効果素子34に信号磁界を導入するための磁路とし
て使用されている。磁気抵抗効果素子34にはMR(Magn
eto Resistive)素子又はGMR(Giant Magneto Resistiv
e)素子が使用されている。磁気抵抗効果素子34の一
端側にはセンス電流を供給するためのリード配線36A
が電気的に接続され、他端側には磁気抵抗効果素子34
を通過した再生出力電流を取り出すためのリード配線3
6Bが電気的に接続されている。磁気抵抗効果素子34
においては、良好な再生出力特性を得る必要から磁性膜
は単磁区構造を有するように制御されている。さらに、
同様な目的で磁束誘導膜はトラック幅方向が容易磁区に
なるように制御されている。
A magnetic flux guiding film 33 of the magnetoresistive thin film magnetic head guides a signal magnetic field from a magnetic recording medium (not shown) traveling on the left side in FIGS. It is used as a magnetic path for introducing a magnetic field. The MR (Magn)
eto Resistive) element or GMR (Giant Magneto Resistiv)
e) The element is used. A lead wiring 36A for supplying a sense current is provided at one end of the magnetoresistive element 34.
Are electrically connected to each other, and a magnetoresistive element 34 is
Wiring 3 for extracting the reproduction output current passing through
6B are electrically connected. Magnetoresistive element 34
In, the magnetic film is controlled so as to have a single magnetic domain structure in order to obtain good reproduction output characteristics. further,
For the same purpose, the magnetic flux guide film is controlled so that the track width direction becomes an easy magnetic domain.

【0004】[0004]

【発明が解決しようとする課題】前述の磁気抵抗効果型
薄膜磁気ヘッドにおいては、以下の点について配慮がな
されていなかった。
In the above-mentioned magnetoresistive thin-film magnetic head, the following points have not been considered.

【0005】磁気記録媒体からの信号磁界を有効に磁気
抵抗効果素子34に導入するために、図8に示すように
磁気抵抗効果素子34のトラック幅方向と同一方向の幅
Wsが、磁束誘導膜33の同一方向の幅W1と同一寸法
に設定されている。このため、磁束誘導膜33の端部の
磁区構造の乱れに起因すると考えられるノイズ成分が発
生し、磁気抵抗効果素子34のバルクハウゼンノイズを
増加させてしまい、磁気抵抗効果型薄膜磁気ヘッドの再
生出力特性を劣化させてしまうという問題点があった。
In order to effectively introduce the signal magnetic field from the magnetic recording medium into the magnetoresistive element 34, as shown in FIG. 8, the width Ws of the magnetoresistive element 34 in the same direction as the track width direction is changed to the magnetic flux inducing film. 33 are set to the same size as the width W1 in the same direction. For this reason, a noise component considered to be caused by the disturbance of the magnetic domain structure at the end of the magnetic flux guiding film 33 is generated, and Barkhausen noise of the magnetoresistive effect element 34 is increased. There is a problem that output characteristics are deteriorated.

【0006】このような再生出力特性の劣化は、磁気記
録媒体から得られる信号磁界が微弱になる今後のさらな
る高密度化へ対応することが、具体的にはトラック幅2
〜5μmの磁気抵抗効果型薄膜磁気ヘッドを実現すること
が非常に難しくなる。
[0006] Such deterioration of the reproduction output characteristics is required to cope with future higher densification in which the signal magnetic field obtained from the magnetic recording medium becomes weak.
It is very difficult to realize a magnetoresistive thin-film magnetic head of about 5 μm.

【0007】一方、単純にノイズ成分を減少させるため
に、磁束誘導膜33の幅W1に対して磁気抵抗効果素子
34の幅Wsを減少させることが考えられる。しかしな
がら、磁気抵抗効果素子34の幅Wsを単純に減少させ
てしまった場合には再生出力が低下し、逆に磁気抵抗効
果型薄膜磁気ヘッドの再生出力特性を劣化させてしまう
という問題点が生じる。
On the other hand, in order to simply reduce the noise component, it is conceivable to reduce the width Ws of the magnetoresistive element 34 with respect to the width W1 of the magnetic flux guiding film 33. However, if the width Ws of the magnetoresistive effect element 34 is simply reduced, the reproduction output decreases, and conversely, the reproduction output characteristics of the magnetoresistive thin film magnetic head deteriorate. .

【0008】本発明は上記課題を解決するためになされ
たものである。従って、本発明の目的は、バルクハウゼ
ンノイズを減少させることができ、かつ再生出力を向上
させることができる磁気抵抗効果型薄膜磁気ヘッドを提
供することである。さらに、本発明の目的は、簡易な製
造プロセスによって、バルクハウゼンノイズを抑制させ
ることができ、再生出力をより一層向上させることがで
きる磁気抵抗効果型薄膜磁気ヘッドを提供することであ
る。
The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a magnetoresistive thin-film magnetic head capable of reducing Barkhausen noise and improving reproduction output. It is a further object of the present invention to provide a magnetoresistive thin film magnetic head capable of suppressing Barkhausen noise by a simple manufacturing process and further improving reproduction output.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、この発明の第1の特徴は、磁気抵抗効果型薄膜磁気
ヘッドにおいて、磁気記録媒体からの信号磁界を誘導
し、幅W1、膜厚T1及び飽和磁束密度B1を有する第
1磁束誘導膜と、第1磁束誘導膜で誘導された信号磁界
を導入し、幅Ws、センス部膜厚Ts、飽和磁束密度B
s及び素子膜厚Tsaを有する磁気抵抗効果素子と、を
備え、以下の(1)式乃至(3)式を満たして形成され
たことである。
In order to solve the above-mentioned problems, a first feature of the present invention is to provide a magnetoresistive thin-film magnetic head which induces a signal magnetic field from a magnetic recording medium, and has a width W1 and a film width W1. A first magnetic flux induction film having a thickness T1 and a saturation magnetic flux density B1 and a signal magnetic field induced by the first magnetic flux induction film are introduced, and a width Ws, a sensing portion film thickness Ts, and a saturation magnetic flux density B
s and a magnetoresistive element having an element film thickness Tsa, and are formed by satisfying the following equations (1) to (3).

【0010】(1)0.85W1<Ws<0.95W1 (2)1.8×Ts×Bs<T1×B1 (3)Tsa>T1 この発明の第1の特徴に係る磁気抵抗効果型薄膜磁気ヘ
ッドにおいて、磁気抵抗効果素子にはMR素子又はGMR素
子を実用的に使用することができる。この発明の第1の
特徴に係る磁気抵抗効果型薄膜磁気ヘッドにおいては、
第1磁束誘導膜の幅W1の0.95倍よりも磁気抵抗効果素
子の幅Wsを小さくしたので、バルクハウゼンノイズを
減少させることができ、第1磁束誘導膜の幅W1の0.85
倍よりも磁気抵抗効果素子の幅Wsを大きくしたので、
再生出力の低下を防止することができる。再生出力の低
下は詳細には1dB以内にとどめることができる。さら
に、この発明の第1の特徴に係る磁気抵抗効果型薄膜磁
気ヘッドにおいては、磁気抵抗効果素子のセンス部膜厚
Tsと飽和磁束密度Bsとの積を1.8倍した値を第1磁
誘導誘膜の膜厚T1と飽和磁束密度B1との積よりも小
さく設定したことにより、磁気記録媒体からの信号磁界
を第1磁束誘導膜で誘導し磁気抵抗効果素子に効率よく
信号磁界を導入することができるので、再生出力を向上
することができる。さらに、この発明の第1の特徴に係
る磁気抵抗効果型薄膜磁気ヘッドにおいては、磁気抵抗
効果素子の素子膜厚Tsaよりも第1磁束誘導膜の膜厚
T1を薄くしたことで、第1磁束誘導膜からシールドコ
アへの信号磁界の流出を防止することができる。従っ
て、この発明の第1の特徴に係る磁気抵抗効果型薄膜磁
気ヘッドにおいては、バルクハウゼンノイズを抑制させ
ることができ、再生出力を向上させることができるの
で、再生出力特性を向上させることができる。
(1) 0.85W1 <Ws <0.95W1 (2) 1.8 × Ts × Bs <T1 × B1 (3) Tsa> T1 In the magnetoresistive thin film magnetic head according to the first aspect of the present invention, As the resistance effect element, an MR element or a GMR element can be used practically. In the magnetoresistive thin film magnetic head according to the first aspect of the present invention,
Since the width Ws of the magnetoresistive element is smaller than 0.95 times the width W1 of the first magnetic flux induction film, Barkhausen noise can be reduced, and 0.85 times the width W1 of the first magnetic flux induction film.
Since the width Ws of the magnetoresistive element is larger than twice,
It is possible to prevent the reproduction output from lowering. The reduction in reproduction output can be kept within 1 dB in detail. Further, in the magnetoresistive thin film magnetic head according to the first aspect of the present invention, the value obtained by multiplying the product of the sensing portion film thickness Ts and the saturation magnetic flux density Bs of the magnetoresistive effect element by 1.8 is first magnetic induction. By setting the thickness smaller than the product of the film thickness T1 and the saturation magnetic flux density B1, the signal magnetic field from the magnetic recording medium is guided by the first magnetic flux induction film, and the signal magnetic field is efficiently introduced into the magnetoresistive element. Therefore, the reproduction output can be improved. Further, in the magnetoresistive thin film magnetic head according to the first aspect of the present invention, the first magnetic flux inducing film has a thickness T1 smaller than the element thickness Tsa of the magnetoresistive effect element, thereby providing the first magnetic flux. The outflow of the signal magnetic field from the induction film to the shield core can be prevented. Therefore, in the magnetoresistive thin film magnetic head according to the first aspect of the present invention, Barkhausen noise can be suppressed, and the reproduction output can be improved, so that the reproduction output characteristics can be improved. .

【0011】この発明の第2の特徴は、この発明の第1
の特徴に係る磁気抵抗効果型薄膜磁気ヘッドにおいて、
第1磁束誘導膜から磁気抵抗効果素子を通過して導出さ
れる信号磁界を誘導し、幅W2、膜厚T2及び飽和磁束
密度B2を有する第2磁束誘導膜をさらに備え、第1磁
束誘導膜の幅W1と第2磁束誘導膜の幅W2とをほぼ等
しく形成し、第1磁束誘導膜の膜厚T1と飽和磁束密度
B1との積と第2磁束誘導膜の膜厚T2と飽和磁束密度
B2との積とをほぼ等しく形成したことである。
A second feature of the present invention is the first feature of the present invention.
In the magnetoresistive thin film magnetic head according to the features of
A first magnetic flux guiding film for guiding a signal magnetic field derived from the first magnetic flux guiding film through the magnetoresistive element and having a width W2, a thickness T2, and a saturation magnetic flux density B2; The width W1 of the second magnetic flux guiding film and the width W2 of the second magnetic flux guiding film are substantially equal, and the product of the thickness T1 of the first magnetic flux guiding film and the saturation magnetic flux density B1, the thickness T2 of the second magnetic flux guiding film, and the saturation magnetic flux density That is, the product with B2 is formed substantially equal.

【0012】この発明の第2の特徴に係る磁気抵抗効果
型薄膜磁気ヘッドにおいては、第2磁束誘導膜により第
1磁束誘導膜で誘導される信号磁界をより一層効率よく
磁気抵抗効果素子に導入することができるので、再生出
力をより一層向上させることができる。再生出力は具体
的には約3dB以上向上させることができる。さらに、こ
の発明の第2の特徴に係る磁気抵抗効果型薄膜磁気ヘッ
ドにおいては、第1磁束誘導膜、第2磁束誘導膜のそれ
ぞれをほぼ同一形状で形成することができるので、第1
磁束誘導膜及び第2磁束誘導膜の成膜プロセス並びにパ
ターンニングプロセスを同一製造プロセスにすることが
でき、製造プロセスを簡単にすることができる。
In the magnetoresistive thin film magnetic head according to the second aspect of the present invention, the signal magnetic field induced by the first magnetic flux guiding film by the second magnetic flux guiding film is more efficiently introduced into the magnetoresistive element. Therefore, the reproduction output can be further improved. Specifically, the reproduction output can be improved by about 3 dB or more. Further, in the magnetoresistive thin film magnetic head according to the second aspect of the present invention, the first magnetic flux guiding film and the second magnetic flux guiding film can be formed in substantially the same shape.
The film forming process and the patterning process of the magnetic flux guiding film and the second magnetic flux guiding film can be made the same manufacturing process, and the manufacturing process can be simplified.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は本発明の実施の形態に係る
磁束誘導タイプの磁気抵抗効果型薄膜磁気ヘッドの断面
図、図2は図1のF2−F2線部分で切った磁気抵抗効
果型薄膜磁気ヘッドの平面図である。図1及び図2に示
す磁束誘導タイプの磁気抵抗効果型薄膜磁気ヘッドはデ
ータストレージ、VTR、HDD等の再生専用ヘッドとして構
成され、この磁気抵抗効果型薄膜磁気ヘッドは下部シー
ルドコア(下部磁気コア)1と、上部シールドコア(上
部磁気コア)7と、下部シールドコア1と上部シールド
コア7との間のギャップ絶縁体2と、ギャップ絶縁体2
内に埋設された第1磁束誘導膜3、磁気抵抗効果素子4
及び第2磁束誘導膜5と、を備えて構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic flux induction type magnetoresistive thin film magnetic head according to an embodiment of the present invention, and FIG. 2 is a plan view of the magnetoresistive effect thin film magnetic head taken along a line F2-F2 in FIG. It is. The magnetic induction type thin film magnetic head of the magnetic flux induction type shown in FIGS. 1 and 2 is configured as a read-only head for data storage, VTR, HDD, and the like. This magnetoresistive effect thin film magnetic head is a lower shield core (lower magnetic core). 1), an upper shield core (upper magnetic core) 7, a gap insulator 2 between the lower shield core 1 and the upper shield core 7, and a gap insulator 2
First magnetic flux guiding film 3 and magnetoresistive effect element 4 embedded in
And the second magnetic flux induction film 5.

【0014】下部シールドコア1は基板10上に絶縁層
11を介在させて配設されており、下部シールドコア1
には例えば数μmの膜厚を有するCo系アモルファス膜を
実用的に使用することができる。ギャップ絶縁体2は実
際には複数層の絶縁層で形成されており、これらの絶縁
層には例えばAl2O3膜を実用的に使用することができ
る。また、絶縁層にはSiO2膜を実用的に使用することが
できる。上部シールドコア7はギャップ絶縁体2上に配
設されており、上部シールドコア7には下部シールドコ
ア1と同様に例えば数μmの膜厚を有するCo系アモルフ
ァス膜を実用的に使用することができる。
The lower shield core 1 is disposed on a substrate 10 with an insulating layer 11 interposed therebetween.
For example, a Co-based amorphous film having a thickness of several μm can be practically used. The gap insulator 2 is actually formed of a plurality of insulating layers, and for these insulating layers, for example, an Al 2 O 3 film can be practically used. Further, an SiO 2 film can be practically used for the insulating layer. The upper shield core 7 is disposed on the gap insulator 2, and a Co-based amorphous film having a thickness of, for example, several μm can be practically used for the upper shield core 7, similarly to the lower shield core 1. it can.

【0015】第1磁束誘導膜3は、図1中及び図2中、
左側において走行する図示しない磁気記録媒体からの信
号磁界を誘導し、磁気抵抗効果素子4に信号磁界を導入
するための磁路として使用される。第2磁束誘導膜5
は、図1中及び図2中、右側に配設され、第1磁束誘導
膜3から磁気抵抗効果素子4を通過した信号磁界を誘導
するための磁路として使用される。本実施の形態におい
て、第1磁束誘導膜3、第2磁束誘導膜5は、いずれも
同一層の磁性膜で形成されており、例えばNiFe膜で形成
されている。
The first magnetic flux guiding film 3 is provided in FIG. 1 and FIG.
It is used as a magnetic path for guiding a signal magnetic field from a magnetic recording medium (not shown) running on the left side and introducing the signal magnetic field to the magnetoresistive element 4. Second magnetic flux induction film 5
1 is disposed on the right side in FIGS. 1 and 2 and is used as a magnetic path for guiding a signal magnetic field that has passed from the first magnetic flux induction film 3 through the magnetoresistive element 4. In the present embodiment, the first magnetic flux guiding film 3 and the second magnetic flux guiding film 5 are both formed of the same magnetic film, for example, a NiFe film.

【0016】本発明の実施の形態において、磁気抵抗効
果素子4にはMR素子又はGMR素子が使用される。図2に
示すように、磁気抵抗効果素子4の図2中下側の一端側
には磁気抵抗効果素子4にセンス電流を供給するリード
配線6Aが電気的に接続されている。磁気抵抗効果素子
4の図2中上側の他端側には第1磁束誘導膜3で誘導さ
れた信号磁界を電気信号に変換した再生出力を取り出す
リード配線6Bが電気的に接続されている。本実施の形
態において、リード配線6A、6Bはいずれも同一導電
層、例えばタンタル(Ta)膜及びその上層に積層された
銅(Cu)膜の複合層で形成される。
In the embodiment of the present invention, an MR element or a GMR element is used as the magnetoresistive element 4. As shown in FIG. 2, a lead wire 6A for supplying a sense current to the magnetoresistive element 4 is electrically connected to one end of the magnetoresistive element 4 at the lower side in FIG. A lead wire 6B for extracting a reproduction output obtained by converting a signal magnetic field induced by the first magnetic flux guide film 3 into an electric signal is electrically connected to the other end of the upper side of the magnetoresistive element 4 in FIG. In the present embodiment, each of the lead wires 6A and 6B is formed of the same conductive layer, for example, a composite layer of a tantalum (Ta) film and a copper (Cu) film laminated thereon.

【0017】図3(A)は本実施の形態に係る磁気抵抗
効果素子4であるMR素子の模式的な断面構成図、図3
(B)は本実施の形態に係る磁気抵抗効果素子4である
GMR素子の模式的な断面構成図である。
FIG. 3A is a schematic cross-sectional configuration diagram of an MR element which is the magnetoresistive element 4 according to the present embodiment.
(B) is the magnetoresistance effect element 4 according to the present embodiment.
FIG. 2 is a schematic cross-sectional configuration diagram of a GMR element.

【0018】図3(A)に示すMR素子400は、本実施
の形態において、軟磁性層(SAL:Soft Adjacent Laye
r)401、ギャップ層402、MR層403、保護層4
04のそれぞれを順次積層した積層構造で形成されてい
る。
In the present embodiment, the MR element 400 shown in FIG. 3A has a soft magnetic layer (SAL: Soft Adjacent Layer).
r) 401, gap layer 402, MR layer 403, protective layer 4
04 are sequentially laminated.

【0019】SAL401には例えば17nmの膜厚を有するC
oZrNb膜が使用される。ギャップ層402には例えば20n
mの膜厚を有するTa膜が使用される。MR層403には例
えば20nmの膜厚を有するNiFe膜が使用される。保護層4
04には例えば5nmの膜厚を有するTa膜が使用される。
このMR素子400の素子膜厚(SAL401から保護層4
04までのすべての合計膜厚)Tsa(MR)は62nmに設定
されている。
The SAL 401 has, for example, C having a thickness of 17 nm.
An oZrNb film is used. For example, 20n
A Ta film having a thickness of m is used. As the MR layer 403, for example, a NiFe film having a thickness of 20 nm is used. Protective layer 4
For example, a Ta film having a thickness of 5 nm is used for 04.
The film thickness of this MR element 400 (from SAL 401 to protective layer 4)
Tsa (MR) is set to 62 nm.

【0020】一方、図3(B)に示すGMR素子410は
スピンバルブ型GMR素子(SV-GMR素子)であり、本実施
の形態においてGMR素子410は下地層411、自由層
(第1磁性層)412、非磁性導電層413、固定層
(第2磁性層)414、反強磁性層415、保護層41
6のそれぞれを順次積層した積層構造で形成されてい
る。
On the other hand, the GMR element 410 shown in FIG. 3B is a spin-valve type GMR element (SV-GMR element). In this embodiment, the GMR element 410 includes an underlayer 411 and a free layer (first magnetic layer). ) 412, nonmagnetic conductive layer 413, fixed layer (second magnetic layer) 414, antiferromagnetic layer 415, protective layer 41
6 are sequentially laminated.

【0021】下地層411には例えば5nmの膜厚を有す
るTa膜が使用される。自由層412には、3.5nmの膜厚
を有するNiFe膜と、その上層に積層された0.5nmの膜厚
を有するCoFe膜との積層膜が使用される。非磁性導電層
413には例えば2.5nmの膜厚を有するCu膜が使用され
る。固定層414には例えば3nmの膜厚を有するCoFe膜
が使用される。反強磁性層415には例えば10nmの膜厚
を有するIrMn膜が使用される。保護層416には例えば
5nmの膜厚を有するTa膜が使用される。このGMR素子41
0の素子膜厚(下地層411から保護層416までのす
べての合計膜厚)Ts(GMR)は29.5nmに設定されてい
る。
As the underlayer 411, for example, a Ta film having a thickness of 5 nm is used. As the free layer 412, a laminated film of a NiFe film having a thickness of 3.5 nm and a CoFe film having a thickness of 0.5 nm laminated thereon is used. As the nonmagnetic conductive layer 413, for example, a Cu film having a thickness of 2.5 nm is used. As the fixed layer 414, for example, a CoFe film having a thickness of 3 nm is used. As the antiferromagnetic layer 415, for example, an IrMn film having a thickness of 10 nm is used. For example, the protective layer 416
A Ta film having a thickness of 5 nm is used. This GMR element 41
The element thickness of 0 (the total thickness of all layers from the underlayer 411 to the protective layer 416) Ts (GMR) is set to 29.5 nm.

【0022】このように構成される本実施の形態に係る
磁束誘導タイプの磁気抵抗効果型薄膜磁気ヘッドにおい
ては、磁気抵抗効果素子4の幅Ws(MR素子400にお
いては幅Ws(MR)、GMR素子においては幅Ws(GMR)。)
が、第1磁束誘導膜3の幅W1の0.85倍よりも大きく0.
95倍よりも小さい範囲内(0.85W1<Ws<0.95W1)
に設定されている。図4は本実施の形態に係る磁気抵抗
効果素子4の幅Ws/第1磁束誘導膜3の幅W1と再生
出力(dB)とバルクハウゼンノイズとの関係を示す図で
ある。同図4に示すように、磁気抵抗効果素子4の幅W
sが第1磁束誘導膜3の幅W1の0.95倍以上になると、
第1磁束誘導膜3の端部に磁区漏れに起因するノイズが
発生し、バルクハウゼンノイズが増大してしまう。逆に
磁気抵抗効果素子4の幅Wsを第1磁束誘導膜3の幅W
1よりも小さくして行くと、磁気抵抗効果素子4の幅W
sが第1磁束誘導膜3の幅W1の0.90倍付近から急激に
再生出力の低下が顕著になり、磁気抵抗効果素子4の幅
Wsが第1磁束誘導膜3の幅W1の0.85倍以下になると
再生出力は1dB以上も減少してしまう。因みに、磁気抵
抗効果素子4の幅Wsと第1磁束誘導膜3の幅W1とが
同一寸法に設定されている場合の再生出力は0dBであ
る。従って、バルクハウゼンノイズの発生を防止しつ
つ、再生出力の1dB以上の減少を防止するためには、前
述のように磁気抵抗効果素子4の幅Wsを第1磁束誘導
膜3の幅W1の0.85倍よりも大きく0.95倍よりも小さい
範囲内に設定することが、好ましい。この磁気抵抗効果
素子4の幅Wsと第1磁束誘導膜3の幅W1との関係は
MR素子400、GMR素子410のいずれにおいても同様
であり、MR素子400は幅Ws(MR)を第1磁束誘導膜3
の幅W1の0.85倍よりも大きく0.95倍よりも小さい範囲
内に、GMR素子410は幅Ws(GMR)を第1磁束誘導膜3
の幅W1の0.85倍よりも大きく0.95倍よりも小さい範囲
内にそれぞれ設定する。
In the magnetic induction type thin film magnetic head of the magnetic flux induction type according to the present embodiment, the width Ws of the magnetoresistive element 4 (the width Ws (MR) and the GMR of the MR element 400). The width Ws (GMR) for the element.)
Is larger than 0.85 times the width W1 of the first magnetic flux guiding film 3 and is not larger than 0.8.
Within the range smaller than 95 times (0.85W1 <Ws <0.95W1)
Is set to FIG. 4 is a diagram showing the relationship between the width Ws of the magnetoresistive effect element 4 / the width W1 of the first magnetic flux guide film 3, the reproduction output (dB), and Barkhausen noise according to the present embodiment. As shown in FIG. 4, the width W of the magnetoresistive element 4 is
When s becomes 0.95 times or more the width W1 of the first magnetic flux induction film 3,
Noise due to magnetic domain leakage is generated at the end of the first magnetic flux guide film 3, and Barkhausen noise increases. Conversely, the width Ws of the magnetoresistive element 4 is changed to the width W of the first magnetic flux induction film 3.
As the value becomes smaller than 1, the width W of the magnetoresistive element 4 becomes smaller.
When s is about 0.90 times the width W1 of the first magnetic flux induction film 3, the reproduction output sharply decreases, and the width Ws of the magnetoresistive element 4 becomes 0.85 times or less the width W1 of the first magnetic flux induction film 3. When this happens, the playback output will drop by more than 1 dB. Incidentally, when the width Ws of the magnetoresistive element 4 and the width W1 of the first magnetic flux guide film 3 are set to the same size, the reproduction output is 0 dB. Therefore, in order to prevent Barkhausen noise from occurring and to prevent the reproduction output from decreasing by 1 dB or more, as described above, the width Ws of the magnetoresistive element 4 is set to 0.85 of the width W1 of the first magnetic flux induction film 3. It is preferable to set the value in a range larger than twice and smaller than 0.95 times. The relationship between the width Ws of the magnetoresistive element 4 and the width W1 of the first magnetic flux induction film 3 is as follows.
The same applies to both the MR element 400 and the GMR element 410. The MR element 400 has a width Ws (MR) of the first magnetic flux guiding film 3.
The GMR element 410 sets the width Ws (GMR) within the range larger than 0.85 times and smaller than 0.95 times the width W1 of the first magnetic flux induction film 3.
Are set within a range larger than 0.85 times and smaller than 0.95 times of the width W1 of.

【0023】さらに、本実施の形態に係る磁束誘導タイ
プの磁気抵抗効果型薄膜磁気ヘッドにおいては、磁気抵
抗効果素子4のセンス部膜厚Tsと飽和磁束密度Bsと
の積の1.8倍の値が、第1磁束誘導膜3の膜厚T1と飽
和磁束密度B1との積よりも小さく設定され(1.8×T
s×Bs<T1×B1)、しかも磁気抵抗効果素子4の
全体の素子膜厚Tsaが、第1磁束誘導膜3の膜厚T1
よりも小さく設定されている(Tsa>T1)。
Further, in the magnetic flux induction type magnetoresistive thin film magnetic head according to the present embodiment, the value of 1.8 times the product of the thickness Ts of the sensing portion of the magnetoresistive element 4 and the saturation magnetic flux density Bs is obtained. Is set to be smaller than the product of the thickness T1 of the first magnetic flux guiding film 3 and the saturation magnetic flux density B1 (1.8 × T
s × Bs <T1 × B1), and the total element thickness Tsa of the magnetoresistive element 4 is equal to the thickness T1 of the first magnetic flux induction film 3.
(Tsa> T1).

【0024】図5は、本実施の形態に係る磁気抵抗効果
素子4であるMR素子400において、第1磁束誘導膜3
の膜厚T1と飽和磁束密度B1との積/磁気抵抗効果素
子4のセンス部膜厚Tsと飽和磁束密度Bsとの積(T
1×B1/Ts×Bs)と、再生出力(dB)と、第1磁
束誘導膜3の膜厚T1との関係を示す図である。MR素子
400において、センス部膜厚TsはMR層403の膜厚
の20nm であり、このMR層403はNiFe膜で形成されて
いるので、飽和磁束密度Bsは1.0T(テスラ)である。
センス部膜厚Tsと飽和磁束密度Bsとの積(Ts×B
s=20nm×1.0T)は20nmTになる。一方、本実施の形態
において第1磁束誘導膜3はMR層403と同様のNiFe膜
で形成されているので、飽和磁束密度B1は1.0Tであ
る。また、第1磁束誘導膜3は例えば4μmの長さに設定
される。
FIG. 5 shows the first magnetic flux guiding film 3 in the MR element 400 which is the magnetoresistive effect element 4 according to the present embodiment.
Of the thickness T1 of the magneto-resistance effect element 4 and the product of the saturation magnetic flux density Bs (T
FIG. 3 is a diagram showing a relationship between (1 × B1 / Ts × Bs), a reproduction output (dB), and a film thickness T1 of a first magnetic flux induction film 3; In the MR element 400, the sensing portion thickness Ts is 20 nm of the thickness of the MR layer 403, and since the MR layer 403 is formed of a NiFe film, the saturation magnetic flux density Bs is 1.0T (tesla).
The product of the thickness Ts of the sensing part and the saturation magnetic flux density Bs (Ts × B
s = 20nm × 1.0T) becomes 20nmT. On the other hand, in the present embodiment, since the first magnetic flux induction film 3 is formed of the same NiFe film as the MR layer 403, the saturation magnetic flux density B1 is 1.0T. The first magnetic flux guide film 3 is set to have a length of, for example, 4 μm.

【0025】ここで、図5に示すように、(T1×B1
/Ts×Bs)が約2.5のとき再生出力は0dBであるが、
(T1×B1/Ts×Bs)が約2.0付近で再生出力が
急激に減少してしまい、(T1×B1/Ts×Bs)が
1.8より小さくなった段階で再生出力は1dB以上減少して
しまう。すなわち、第1磁束誘導膜3で誘導される信号
磁界を効率良く磁気抵抗効果素子4に導入し、再生出力
を1dB以上減少させないためには、(T1×B1/Ts
×Bs)を1.8以上に設定する必要があり、この時の第
1磁束誘導膜3の膜厚T1は素子膜厚Tsa(=62nm)
よりも薄い36〜38nmになる。磁気抵抗効果素子4の素子
膜厚Tsaよりも第1磁束誘導膜3の膜厚T1を薄くで
きることは、結果的に磁気抵抗効果素子4と上部シール
ドコア7(又は下部シールドコア1)との間のギャップ
絶縁体2の膜厚に比べて、第1磁束誘導膜3と上部シー
ルドコア7(又は下部シールドコア1)との間のギャッ
プ絶縁体2の膜厚が厚くできることを意味する。従っ
て、第1磁束誘導膜3で誘導される信号磁界が上部シー
ルドコア7(又は下部シールドコア1)に流出しにくく
なり、信号磁界を磁気抵抗効果素子4に効率良く導入さ
せることができるので、再生出力を向上させることがで
きる。
Here, as shown in FIG. 5, (T1 × B1
/ Ts × Bs) is about 2.5, the playback output is 0 dB,
When (T1 × B1 / Ts × Bs) is about 2.0, the reproduction output sharply decreases, and (T1 × B1 / Ts × Bs) becomes
The playback output decreases by 1dB or more when the value becomes smaller than 1.8. That is, in order to efficiently introduce the signal magnetic field induced by the first magnetic flux induction film 3 into the magnetoresistive element 4 and not reduce the reproduction output by 1 dB or more, (T1 × B1 / Ts
× Bs) must be set to 1.8 or more. At this time, the film thickness T1 of the first magnetic flux induction film 3 is the element film thickness Tsa (= 62 nm).
Smaller than 36-38 nm. The fact that the film thickness T1 of the first magnetic flux induction film 3 can be made smaller than the device film thickness Tsa of the magnetoresistive effect element 4 results in the gap between the magnetoresistive effect element 4 and the upper shield core 7 (or the lower shield core 1). This means that the thickness of the gap insulator 2 between the first magnetic flux guide film 3 and the upper shield core 7 (or the lower shield core 1) can be larger than the thickness of the gap insulator 2 described above. Therefore, the signal magnetic field induced by the first magnetic flux guide film 3 is less likely to flow out to the upper shield core 7 (or the lower shield core 1), and the signal magnetic field can be efficiently introduced into the magnetoresistive effect element 4. The reproduction output can be improved.

【0026】一方、図6は、本実施の形態に係る磁気抵
抗効果素子4であるGMR素子410において、第1磁束
誘導膜3の膜厚T1と飽和磁束密度B1との積/磁気抵
抗効果素子4のセンス部膜厚Tsと飽和磁束密度Bsと
の積(T1×B1/Ts×Bs)と、再生出力(dB)
と、第1磁束誘導膜3の膜厚T1との関係を示す図であ
る。GMR素子410において、センス部膜厚Tsは自由
層412の膜厚であり、自由層412は膜厚3.5nmのNiF
e膜と膜厚0.5nmのCoFe膜との積層膜で形成されているの
で、センス部膜厚Tsは合計の膜厚の4.0nmである。自
由層412のNiFe膜の飽和磁束密度Bs(NiFe)は1.0T、
CoFe膜の飽和磁束密度Bs(CoFe)は1.8Tである。従っ
て、センス部膜厚Tsと飽和磁束密度Bsとの積(Ts
×Bs=3.5nm×1.0T+0.5nm×1.8T)は4.4nmTになる。
一方、前述のように、第1磁束誘導膜3はNiFe膜で形成
されているので、飽和磁束密度B1は1.0Tである。ここ
で、図6に示すように、(T1×B1/Ts×Bs)が
約2.5のとき再生出力は0dBであるが、(T1×B1/T
s×Bs)が約2.0付近で再生出力が急激に減少してし
まい、(T1×B1/Ts×Bs)が1.8を下回った段
階で再生出力は1dB以上減少してしまう。すなわち、第
1磁束誘導膜3で誘導される信号磁界を効率良く磁気抵
抗効果素子4に導入し、再生出力を1dB以上減少させな
いためには、(T1×B1/Ts×Bs)を1.8以上に
設定する必要があり、この時の第1磁束誘導膜3の膜厚
T1は素子膜厚Tsa(=29.5nm)よりも薄い8.2〜8.3
nmになる。磁気抵抗効果素子4の素子膜厚Tsaよりも
第1磁束誘導膜3の膜厚T1を薄くできることは、前述
のMR素子400の場合と同様に結果的に第1磁束誘導膜
3で誘導される信号磁界が上部シールドコア7(又は下
部シールドコア1)に流出しにくくなることを意味して
おり、従って信号磁界を磁気抵抗効果素子4に効率良く
導入させることができるので、再生出力を向上させるこ
とができる。
On the other hand, FIG. 6 shows a GMR element 410 as the magnetoresistive element 4 according to the present embodiment, in which the product of the film thickness T1 of the first magnetic flux induction film 3 and the saturation magnetic flux density B1 / the magnetoresistive element. 4, the product (T1 × B1 / Ts × Bs) of the sensing portion film thickness Ts and the saturation magnetic flux density Bs, and the reproduction output (dB)
FIG. 4 is a diagram showing a relationship between the first magnetic flux induction film 3 and a film thickness T1. In the GMR element 410, the sensing portion thickness Ts is the thickness of the free layer 412, and the free layer 412 is a 3.5 nm thick NiF
Since it is formed of a laminated film of the e film and the CoFe film having a thickness of 0.5 nm, the sense portion film thickness Ts is 4.0 nm of the total film thickness. The saturation magnetic flux density Bs (NiFe) of the NiFe film of the free layer 412 is 1.0T,
The saturation magnetic flux density Bs (CoFe) of the CoFe film is 1.8T. Therefore, the product (Ts) of the sensing portion film thickness Ts and the saturation magnetic flux density Bs
(× Bs = 3.5 nm × 1.0T + 0.5 nm × 1.8T) is 4.4 nmT.
On the other hand, as described above, since the first magnetic flux induction film 3 is formed of the NiFe film, the saturation magnetic flux density B1 is 1.0T. Here, as shown in FIG. 6, when (T1 × B1 / Ts × Bs) is about 2.5, the reproduction output is 0 dB, but (T1 × B1 / Ts).
When (s × Bs) is about 2.0, the reproduction output sharply decreases, and when (T1 × B1 / Ts × Bs) falls below 1.8, the reproduction output decreases by 1 dB or more. That is, in order to efficiently introduce the signal magnetic field induced by the first magnetic flux guiding film 3 into the magnetoresistive effect element 4 and prevent the reproduction output from decreasing by 1 dB or more, (T1 × B1 / Ts × Bs) is set to 1.8 or more. The thickness T1 of the first magnetic flux guiding film 3 at this time is 8.2 to 8.3, which is smaller than the element thickness Tsa (= 29.5 nm).
nm. The fact that the film thickness T1 of the first magnetic flux guiding film 3 can be made smaller than the device film thickness Tsa of the magnetoresistive effect element 4 is, as in the case of the above-described MR element 400, consequently induced by the first magnetic flux guiding film 3. This means that the signal magnetic field is less likely to flow out to the upper shield core 7 (or the lower shield core 1). Therefore, the signal magnetic field can be efficiently introduced into the magnetoresistive element 4, thereby improving the reproduction output. be able to.

【0027】さらに、本実施の形態に係る磁束誘導タイ
プの磁気抵抗効果型薄膜磁気ヘッドにおいては、前述の
第1磁束誘導膜3の場合と同様の理由から、図2に示す
ように第1磁束誘導膜3の幅W1と第2磁束誘導膜5の
幅W2とを同一寸法に設定している。すなわち、磁気抵
抗効果素子4の幅Wsが、第2磁束誘導膜5の幅W2の
0.85倍よりも大きく0.95倍よりも小さい範囲内(0.85W
2<Ws<0.95W2)に設定されている。さらに、磁気
抵抗効果素子4のセンス部膜厚Tsと飽和磁束密度Bs
との積の1.8倍の値が、第2磁束誘導膜5の膜厚T2と
飽和磁束密度B2との積よりも小さく設定され(1.8×
Ts×Bs<T2×B2)、しかも磁気抵抗効果素子4
の全体の素子膜厚Tsaが、第2磁束誘導膜5の膜厚T
2よりも小さく設定されている(Tsa>T2)。この
結果、本実施の形態に係る磁束誘導タイプの磁気抵抗効
果型薄膜磁気ヘッドにおいては、第1磁束誘導膜3だけ
を備えた場合に比べて、第1磁束誘導膜3及び第2磁束
誘導膜5の双方を備えた場合には、約3dBの再生出力の
向上を確認することができた。
Further, in the magnetic flux effect type thin film magnetic head of the magnetic flux induction type according to the present embodiment, for the same reason as in the case of the first magnetic flux induction film 3, the first magnetic flux is formed as shown in FIG. The width W1 of the induction film 3 and the width W2 of the second magnetic flux induction film 5 are set to the same size. That is, the width Ws of the magnetoresistance effect element 4 is equal to the width W2 of the second magnetic flux induction film 5.
Within the range larger than 0.85 times and smaller than 0.95 times (0.85W
2 <Ws <0.95W2). Further, the thickness Ts of the sensing portion of the magnetoresistance effect element 4 and the saturation magnetic flux density Bs
Is set to be smaller than the product of the film thickness T2 of the second magnetic flux induction film 5 and the saturation magnetic flux density B2 (1.8 × 1.8).
Ts × Bs <T2 × B2), and the magnetoresistance effect element 4
Is the total film thickness Tsa of the second magnetic flux induction film 5.
2 (Tsa> T2). As a result, in the magnetic flux effect type thin film magnetic head of the magnetic flux induction type according to the present embodiment, the first magnetic flux induction film 3 and the second magnetic flux induction film are compared with the case where only the first magnetic flux induction film 3 is provided. In the case where both of them were provided, it was confirmed that the reproduction output was improved by about 3 dB.

【0028】さらに、本実施の形態に係る磁束誘導タイ
プの磁気抵抗効果型薄膜磁気ヘッドの製造プロセスにお
いては、第1磁束誘導膜3、第2磁束誘導膜5のそれぞ
れを同一成膜工程と同一パターンニング工程を利用して
同一構造で形成することができるので、第1磁束誘導膜
3及び第2磁束誘導膜5を簡易に製作することができ
る。
Further, in the manufacturing process of the magnetic flux effect type thin film magnetic head of the magnetic flux induction type according to the present embodiment, each of the first magnetic flux induction film 3 and the second magnetic flux induction film 5 is the same as the same film forming step. The first magnetic flux guiding film 3 and the second magnetic flux guiding film 5 can be easily manufactured because they can be formed with the same structure using the patterning process.

【0029】以上説明したように、本発明の実施の形態
に係る磁束誘導タイプの磁気抵抗効果型薄膜磁気ヘッド
においては、第1磁束誘導膜3の幅W1の0.95倍よりも
磁気抵抗効果素子4の幅Wsを小さくしたので、バルク
ハウゼンノイズをなくすことができ、第1磁束誘導膜3
の幅W1の0.85倍よりも磁気抵抗効果素子4の幅Wsを
大きくしたので、再生出力の低下を防止することができ
る。
As described above, in the magneto-resistance effect type thin film magnetic head of the magnetic flux induction type according to the embodiment of the present invention, the magneto-resistance effect element 4 is larger than the width W 1 of the first magnetic flux induction film 3 by 0.95 times. Of the first magnetic flux guiding film 3 can be eliminated because the width Ws of the first magnetic flux guiding film 3 is reduced.
Since the width Ws of the magnetoresistive effect element 4 is larger than 0.85 times the width W1, the reduction of the reproduction output can be prevented.

【0030】さらに、本実施の形態に係る磁気抵抗効果
型薄膜磁気ヘッドにおいては、磁気抵抗効果素子4のセ
ンス部膜厚Tsと飽和磁束密度Bsとの積を1.8倍した
値を第1磁誘導誘膜3の膜厚T1と飽和磁束密度B1と
の積よりも小さく設定したことにより、磁気記録媒体か
らの信号磁界を第1磁束誘導膜3で誘導し磁気抵抗効果
素子4に効率よく導入することができるので、再生出力
を向上することができる。
Further, in the magnetoresistive thin film magnetic head according to the present embodiment, the value obtained by multiplying the product of the sensing portion film thickness Ts of the magnetoresistive effect element 4 and the saturation magnetic flux density Bs by 1.8 is used as the first magnetic induction. Since the thickness is set to be smaller than the product of the thickness T1 of the induction film 3 and the saturation magnetic flux density B1, the signal magnetic field from the magnetic recording medium is guided by the first magnetic flux induction film 3 and efficiently introduced into the magnetoresistance effect element 4. Therefore, the reproduction output can be improved.

【0031】さらに、本実施の形態に係る磁気抵抗効果
型薄膜磁気ヘッドにおいては、磁気抵抗効果素子4の素
子膜厚Tsaよりも第1磁束誘導膜3の膜厚T1を薄く
したことで、第1磁束誘導膜3から上部シールドコア7
又は下部シールドコア1への信号磁界の流出を防止する
ことができる。第1磁束誘導膜3からの信号磁界の流出
を防止できる結果、磁気抵抗効果素子4と上部シールド
コア7又は下部シールドコア1との間のギャップ絶縁体
2の薄膜化が実現できる。例えば、ギャップ絶縁体2は
150〜300nm程度の薄膜化を実現することができる。
Further, in the magnetoresistive thin film magnetic head according to the present embodiment, the thickness T1 of the first magnetic flux induction film 3 is made smaller than the film thickness Tsa of the magnetoresistive effect element 4 so that 1 Flux induction film 3 to upper shield core 7
Alternatively, the outflow of the signal magnetic field to the lower shield core 1 can be prevented. As a result of preventing the signal magnetic field from flowing out of the first magnetic flux guide film 3, the thickness of the gap insulator 2 between the magnetoresistive element 4 and the upper shield core 7 or the lower shield core 1 can be reduced. For example, the gap insulator 2
A thin film of about 150 to 300 nm can be realized.

【0032】従って、本実施の形態に係る磁気抵抗効果
型薄膜磁気ヘッドにおいては、バルクハウゼンノイズを
抑制させることができ、同時に再生出力を向上させるこ
とができるので、再生出力特性を向上させることができ
る。再生出力特性を向上させることができる結果、磁気
抵抗効果型薄膜磁気ヘッドの高密度化、具体的にはトラ
ック幅2〜5μm程度の高密度化を実現することができ
る。
Therefore, in the magnetoresistive thin film magnetic head according to the present embodiment, Barkhausen noise can be suppressed, and at the same time, the reproduction output can be improved, so that the reproduction output characteristics can be improved. it can. As a result of improving the reproduction output characteristic, it is possible to realize a high density of the magnetoresistive thin film magnetic head, more specifically, a high track density of about 2 to 5 μm.

【0033】さらに、本実施の形態に係る磁束誘導タイ
プの磁気抵抗効果型薄膜磁気ヘッドにおいては、第2磁
束誘導膜5により第1磁束誘導膜3で誘導される信号磁
界をより一層効率よく磁気抵抗効果素子4に導入するこ
とができるので、再生出力をより一層向上させることが
できる。さらに、本実施の形態に係る磁気抵抗効果型薄
膜磁気ヘッドにおいては、第1磁束誘導膜3、第2磁束
誘導膜5のそれぞれをほぼ同一形状で形成することによ
り、第1磁束誘導膜3及び第2磁束誘導膜5の成膜プロ
セス並びにパターンニングプロセスを同一製造プロセス
にすることができ、製造プロセスを簡単にすることがで
きる。
Further, in the magnetic flux effect type thin film magnetic head of the magnetic flux induction type according to the present embodiment, the signal magnetic field induced by the first magnetic flux induction film 3 by the second magnetic flux induction film 5 can be more efficiently magnetized. Since it can be introduced into the resistance effect element 4, the reproduction output can be further improved. Furthermore, in the magnetoresistive thin-film magnetic head according to the present embodiment, by forming each of the first magnetic flux guiding film 3 and the second magnetic flux guiding film 5 in substantially the same shape, the first magnetic flux guiding film 3 and the The film formation process and the patterning process of the second magnetic flux induction film 5 can be made the same manufacturing process, and the manufacturing process can be simplified.

【0034】[0034]

【発明の効果】本発明は、バルクハウゼンノイズをなく
すことができ、かつ再生出力を向上させることができる
磁気抵抗効果型薄膜磁気ヘッドを提供することができ
る。
According to the present invention, it is possible to provide a magnetoresistive thin film magnetic head capable of eliminating Barkhausen noise and improving reproduction output.

【0035】さらに、本発明は、簡易な製造プロセスに
よって、バルクハウゼンノイズを抑制させることがで
き、再生出力を向上させることができる磁気抵抗効果型
薄膜磁気ヘッドを提供することができる。
Further, the present invention can provide a magnetoresistive thin film magnetic head capable of suppressing Barkhausen noise and improving reproduction output by a simple manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る磁束誘導タイプの磁
気抵抗効果型薄膜磁気ヘッドの断面図である。
FIG. 1 is a sectional view of a magnetic flux induction type magnetoresistive thin film magnetic head according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る磁気抵抗効果型薄膜
磁気ヘッドの平面図(図1のF2−F2線部分で切った
平面図)である。
FIG. 2 is a plan view (a plan view cut along the line F2-F2 in FIG. 1) of the magnetoresistive thin-film magnetic head according to the embodiment of the present invention;

【図3】(A)は本発明の実施の形態に係るMR素子(磁
気抵抗効果素子)の模式的な断面構成図、(B)は本発
明の実施の形態に係るGMR素子(磁気抵抗効果素子)の
模式的な断面構成図である。
FIG. 3A is a schematic cross-sectional view of an MR element (magnetoresistive element) according to an embodiment of the present invention, and FIG. 3B is a GMR element (magnetoresistive effect) according to the embodiment of the present invention; FIG. 3 is a schematic cross-sectional configuration diagram of an element).

【図4】本発明の実施の形態に係る磁気抵抗効果素子の
幅/第1磁束誘導膜の幅と再生出力とバルクハウゼンノ
イズとの関係を示す図である。
FIG. 4 is a diagram showing a relationship between a width of a magnetoresistive element / a width of a first magnetic flux guiding film, a reproduction output, and Barkhausen noise according to the embodiment of the present invention.

【図5】本発明の実施の形態に係る磁気抵抗効果素子
(MR素子)において、第1磁束誘導膜の膜厚と飽和磁束
密度との積/磁気抵抗効果素子のセンス部膜厚と飽和磁
束密度との積と、再生出力と、第1磁束誘導膜の膜厚と
の関係を示す図である。
FIG. 5 is a graph showing the relationship between the product of the thickness of the first magnetic flux guiding film and the saturation magnetic flux density / the thickness of the sensing portion of the magnetoresistive effect element and the saturation magnetic flux in the magnetoresistance effect element (MR element) according to the embodiment of the present invention; FIG. 4 is a diagram illustrating a relationship between a product of a density, a reproduction output, and a film thickness of a first magnetic flux guide film.

【図6】本発明の実施の形態に係る磁気抵抗効果素子
(GMR素子)において、第1磁束誘導膜の膜厚と飽和磁
束密度との積/磁気抵抗効果素子のセンス部膜厚と飽和
磁束密度との積と、再生出力と、第1磁束誘導膜の膜厚
との関係を示す図である。
FIG. 6 is a graph showing the relationship between the product of the thickness of the first magnetic flux induction film and the saturation magnetic flux density / the thickness of the sensing portion of the magnetoresistance effect element and the saturation magnetic flux in the magnetoresistive element (GMR element) according to the embodiment of the present invention; FIG. 4 is a diagram illustrating a relationship between a product of a density, a reproduction output, and a film thickness of a first magnetic flux guide film.

【図7】従来技術に係る磁束誘導タイプの磁気抵抗効果
型薄膜磁気ヘッドの断面図である。
FIG. 7 is a sectional view of a magnetic flux induction type magnetoresistive thin film magnetic head according to a conventional technique.

【図8】従来技術に係る磁束誘導タイプの磁気抵抗効果
型薄膜磁気ヘッドの平面図である。
FIG. 8 is a plan view of a magnetic flux effect type magnetoresistive thin film magnetic head according to the related art.

【符号の説明】[Explanation of symbols]

1 下部シールドコア 2 ギャップ絶縁体 3 第1磁束誘導膜 4 磁気抵抗効果素子 400 MR素子 401 SAL 402 ギャツプ層 403 MR層 404、416 保護層 410 GMR素子 411 下地層 412 自由層 413 非磁性導電層 414 固定層 415 反強磁性層 5 第2磁束誘導膜 6A、6B リード配線 7 上部シールドコア DESCRIPTION OF SYMBOLS 1 Lower shield core 2 Gap insulator 3 1st magnetic flux induction film 4 Magnetoresistive element 400 MR element 401 SAL 402 Gap layer 403 MR layer 404, 416 Protective layer 410 GMR element 411 Underlayer 412 Free layer 413 Nonmagnetic conductive layer 414 Fixed layer 415 Antiferromagnetic layer 5 Second magnetic flux inducing film 6A, 6B Lead wiring 7 Upper shield core

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録媒体からの信号磁界を誘導し、
幅W1、膜厚T1及び飽和磁束密度B1を有する第1磁
束誘導膜と、 前記第1磁束誘導膜で誘導された信号磁界を導入し、幅
Ws、センス部膜厚Ts、飽和磁束密度Bs及び素子膜
厚Tsaを有する磁気抵抗効果素子と、 を備え、 以下の(1)式乃至(3)式を満たして形成されたこと
を特徴とする磁気抵抗効果型薄膜磁気ヘッド。 (1)0.85W1<Ws<0.95W1 (2)1.8×Ts×Bs<T1×B1 (3)Tsa>T1
1. Inducing a signal magnetic field from a magnetic recording medium,
A first magnetic flux guiding film having a width W1, a film thickness T1, and a saturation magnetic flux density B1, and a signal magnetic field induced by the first magnetic flux guiding film are introduced to obtain a width Ws, a sensing portion film thickness Ts, a saturation magnetic flux density Bs, And a magnetoresistive effect element having an element film thickness Tsa, wherein the magnetoresistive effect type thin film magnetic head is formed by satisfying the following expressions (1) to (3). (1) 0.85W1 <Ws <0.95W1 (2) 1.8 × Ts × Bs <T1 × B1 (3) Tsa> T1
【請求項2】 前記請求項1に記載の磁気抵抗効果型薄
膜磁気ヘッドにおいて、 前記第1磁束誘導膜から磁気抵抗効果素子を通過して導
出される信号磁界を誘導し、幅W2、膜厚T2及び飽和
磁束密度B2を有する第2磁束誘導膜をさらに備え、 前記第1磁束誘導膜の幅W1と第2磁束誘導膜の幅W2
とをほぼ等しく形成し、 前記第1磁束誘導膜の膜厚T1と飽和磁束密度B1との
積と第2磁束誘導膜の膜厚T2と飽和磁束密度B2との
積とをほぼ等しく形成したことを特徴とする磁気抵抗効
果型薄膜磁気ヘッド。
2. The magnetoresistive thin-film magnetic head according to claim 1, wherein a signal magnetic field derived from the first magnetic flux inducing film through the magnetoresistive element is induced to have a width W2 and a film thickness. A second magnetic flux guiding film having a magnetic flux density T2 and a saturation magnetic flux density B2; and a width W1 of the first magnetic flux guiding film and a width W2 of the second magnetic flux guiding film.
And the product of the film thickness T1 of the first magnetic flux guiding film and the saturation magnetic flux density B1 and the product of the film thickness T2 of the second magnetic flux guiding film and the saturation magnetic flux density B2 are substantially equal. A thin film magnetic head of the magnetoresistive effect type characterized by the following.
JP11076233A 1999-03-19 1999-03-19 Magnetoresistance effect thin-film magnetic head Pending JP2000268326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11076233A JP2000268326A (en) 1999-03-19 1999-03-19 Magnetoresistance effect thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11076233A JP2000268326A (en) 1999-03-19 1999-03-19 Magnetoresistance effect thin-film magnetic head

Publications (1)

Publication Number Publication Date
JP2000268326A true JP2000268326A (en) 2000-09-29

Family

ID=13599462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11076233A Pending JP2000268326A (en) 1999-03-19 1999-03-19 Magnetoresistance effect thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP2000268326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845717A (en) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 The production method of the manufacturing process and touch screen of sense film
CN108845699A (en) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 The production method of the manufacture craft and touch screen of sense film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845717A (en) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 The production method of the manufacturing process and touch screen of sense film
CN108845699A (en) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 The production method of the manufacture craft and touch screen of sense film
CN108845717B (en) * 2018-06-27 2021-04-02 广州视源电子科技股份有限公司 Manufacturing process of induction film and manufacturing method of touch screen

Similar Documents

Publication Publication Date Title
KR100331413B1 (en) Magnetoresistive effect type reproducing head and magnetic disk apparatus equipped with the reproducing head
JP2011086331A (en) Magnetoresistive effect magnetic head
JP4377777B2 (en) Magnetic head, head suspension assembly, and magnetic reproducing apparatus
JP2006134388A (en) Thin film magnetic head
US6833975B2 (en) Perpendicular magnetic recording medium and apparatus including a soft magnetic layer, an at least 20 nm thick non-magnetic layer, and a 50-90 nm gap length
JP2008192269A (en) Magnetic read head and its manufacturing method
JP2000268326A (en) Magnetoresistance effect thin-film magnetic head
JP3569259B2 (en) Perpendicular conduction type magnetoresistive element, magnetic head, and magnetic recording / reproducing device
JP3474523B2 (en) Thin film magnetic head and method of manufacturing the same
JP3611801B2 (en) Thin film magnetic head and manufacturing method thereof
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JP4254474B2 (en) Magnetoresistive thin-film magnetic head and manufacturing method thereof
JPH11120523A (en) Magnetoresistive effect head
JPH103617A (en) Magneto-resistive effect type magnetic head and its manufacture
US7828985B2 (en) Method of producing thin film magnetic head
JPH08212521A (en) Magnetic head
JP2004178659A (en) Spin valve head and magnetic recorder
JP2001256617A (en) Thin-film magnetic head and method of manufacture
JP3808392B2 (en) Magnetic head and magnetic storage device equipped with the same
JP2000207713A (en) Thin film magnetic head
JP2000090419A (en) Magneto-resistive element and its production
JPH10289423A (en) Manufacture of combined type head for vertical magnetic recording
JPH05151534A (en) Combined thin-film magnetic head
US7522386B2 (en) CPP thin-film magnetic head having auxiliary conductive layer behind element
JP2004265517A (en) Magnetic head, magnetic head assembly, and magnetic recording and reproducing device