JP2000262281A - Crosslinked glucose dehydrogenase - Google Patents

Crosslinked glucose dehydrogenase

Info

Publication number
JP2000262281A
JP2000262281A JP11074219A JP7421999A JP2000262281A JP 2000262281 A JP2000262281 A JP 2000262281A JP 11074219 A JP11074219 A JP 11074219A JP 7421999 A JP7421999 A JP 7421999A JP 2000262281 A JP2000262281 A JP 2000262281A
Authority
JP
Japan
Prior art keywords
enzyme
glucose
crosslinked
pqqgdh
pqq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11074219A
Other languages
Japanese (ja)
Inventor
Koji Hayade
広司 早出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11074219A priority Critical patent/JP2000262281A/en
Publication of JP2000262281A publication Critical patent/JP2000262281A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new enzyme for glucose sensors, etc., comprising PQQ glucose dehydrogenase crosslinked by a bifunctional reagent, having high heat stability and capable of simply and rapidly measuring blood glucose level useful for diagnose, etc., of diabetes mellitus. SOLUTION: This enzyme is a new water-soluble PQQ glucose dehydrogenase (PQQGDH) crosslinked by a bifunctional reagent and is improved so as to increase heat stability and useful for glucose sensor elements, etc., capable of simply and rapidly measuring blood glucose level which is important for diagnosis of diabetes mellitus, home control, etc., of patients. The enzyme is obtained by incubating a glucose dehydrogenase derived from Acinetobacter calcoaceticus in the presence of 1 mM pyrroloquinolinequinone(PQQ) and 1 mM CaCl2 at room temperature for 30 min and adding a bifunctional reagent thereto and stirring these components at room temperature for 30 min to carry out crosslinking reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱安定性を高める
ように改良されたグルコースデヒドロゲナーゼに関す
る。
TECHNICAL FIELD The present invention relates to a glucose dehydrogenase improved to increase thermostability.

【0002】[0002]

【従来の技術】糖尿病患者は年々増加する傾向にあり、
糖尿病の診断や、患者の在宅管理が非常に重要であるた
め、血糖値を簡便かつ迅速に測定しうるグルコースセン
サーが開発されている。グルコースセンサー素子として
は、グルコースオキシダーゼ(GOD)が最もよく用い
られている。GODは、熱に安定であり、安価に大量に
供給される酵素であるため、頻繁に用いられてきた。G
ODのグルコースの検出原理としては、GODのグルコ
ースの酸化反応の際に消費される酸素を検出する酸素電
極型または生成される過酸化水素を検出する過酸化水素
電極型が開発された。しかしこの方法では高い印加電位
のため、血液中の他の酸化還元物質に影響を受けてしま
うため、1980年代からは様々な電子メディエーター
を用いて、印加電位をさげるメディエーター型のセンサ
ーが開発されてきている。しかしGODは、溶存酸素濃
度が高くなると電子をメディエーターではなく酸素にも
渡してしまうため、正確な測定ができない。そこで、溶
存酸素濃度に影響されないメディエーター型の理想的な
センサー素子としてグルコース脱水素酵素(GDH)が
注目されるようになった。GDHのなかでも、補酵素結
合型のPQQグルコース脱水素酵素(PQQGDH)
は、触媒活性が高く、ターンオーバー数が高いため、応
答電流値が高く、応答時間もはやい。つまり、正確で迅
速な測定が可能である。また、補酵素結合型であるため
反応溶液中に高価な補酵素を添加する必要がない。さら
に、酵素が水溶性であれば緩衝溶液中に界面活性剤が不
要であり、取り扱いが容易であるという利点があるた
め、Acinetobacter calcoacet
icus由来の水溶性PQQGDH(PQQGDH−
B)はグルコースセンサーの素子として非常に理想的で
ある。
2. Description of the Related Art Diabetes patients tend to increase year by year,
Since diabetes diagnosis and home care of patients are very important, glucose sensors capable of simply and quickly measuring a blood glucose level have been developed. Glucose oxidase (GOD) is most often used as a glucose sensor element. GOD has been frequently used because it is an enzyme that is stable to heat and is supplied in large quantities at low cost. G
As the principle of detecting OD glucose, an oxygen electrode type for detecting oxygen consumed in the oxidation reaction of GOD glucose or a hydrogen peroxide electrode type for detecting generated hydrogen peroxide has been developed. However, since this method is affected by other redox substances in the blood due to the high applied potential, mediator sensors that reduce the applied potential using various electron mediators have been developed since the 1980s. ing. However, GOD transfers electrons to oxygen instead of the mediator when the dissolved oxygen concentration is high, so that accurate measurement cannot be performed. Thus, glucose dehydrogenase (GDH) has been attracting attention as an ideal mediator-type sensor element that is not affected by the concentration of dissolved oxygen. Among GDH, coenzyme-linked PQQ glucose dehydrogenase (PQQGDH)
Has a high catalytic activity and a high turnover number, and therefore has a high response current value and no longer a response time. That is, accurate and quick measurement is possible. Further, since it is a coenzyme-bound type, it is not necessary to add an expensive coenzyme to the reaction solution. Furthermore, if the enzyme is water-soluble, a surfactant is not required in the buffer solution, and there is an advantage that the enzyme is easy to handle.
icus-derived water-soluble PQQGDH (PQQGDH-
B) is very ideal as an element of a glucose sensor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、PQQ
GDHは、GODと比べてダイナミックレンジが狭く、
基質特異性および安定性が低いため、実用可能なPQQ
GDHセンサーを開発するためには、これらの点で酵素
を改良する必要がある。
However, PQQ
GDH has a narrower dynamic range than GOD,
PQQ that is practical because of low substrate specificity and stability
In order to develop a GDH sensor, it is necessary to improve the enzyme in these respects.

【0004】従って、本発明は熱安定性の向上したPQ
QGDH−Bを提供することを目的とする。
Accordingly, the present invention provides a PQ having improved thermal stability.
It is intended to provide QGDH-B.

【0005】[0005]

【課題を解決する手段】本発明は、二官能性試薬により
架橋された水溶性PQQGDHを提供する。本発明の架
橋型PQQGDHは、天然の水溶性PQQGDHと比較
して高い熱安定性を有する。好ましくは、本発明のPQ
QGDHは、Acinetobacter calco
aceticus由来水溶性PQQGDHである。ま
た、好ましくは、二官能性試薬はグルタルアルデヒドで
ある。
SUMMARY OF THE INVENTION The present invention provides a water soluble PQQGDH crosslinked with a bifunctional reagent. The crosslinked PQQGDH of the present invention has higher thermal stability than natural water-soluble PQQGDH. Preferably, the PQ of the present invention
QGDH is Acinetobacter calco
aceticus-derived water-soluble PQQGDH. Also, preferably, the bifunctional reagent is glutaraldehyde.

【0006】本発明はまた、本発明に従う架橋型水溶性
PQQGDHを用いるグルコースセンサーを提供する。
[0006] The present invention also provides a glucose sensor using the crosslinked water-soluble PQQGDH according to the present invention.

【0007】[0007]

【発明の実施の形態】架橋 本発明は、二官能性試薬により架橋された水溶性PQQ
GDHを特徴とする。本明細書において用いる場合、
「二官能性試薬」とは、2つの反応性官能基を有する化
学種を表す。本発明において用いることができる二官能
性試薬としては、例えば、グルタルアルデヒドおよびグ
リオキサールが挙げられる。
DETAILED DESCRIPTION OF THE INVENTION Crosslinked The present invention relates to a water-soluble PQQ crosslinked with a bifunctional reagent.
It features GDH. As used herein,
"Bifunctional reagent" refers to a chemical species having two reactive functional groups. Bifunctional reagents that can be used in the present invention include, for example, glutaraldehyde and glyoxal.

【0008】酵素を高分子等の担体に固定化するために
二官能性試薬を用いることはよく知られている。この場
合、酵素のコンフォメーションを維持してその活性を保
持させるためには、酵素それ自体の分子内架橋を回避す
べきであると一般に考えられてきた。したがって、酵素
を分子内架橋することによりその安定性が向上したこと
は驚くべき発見であった。
It is well known to use a bifunctional reagent to immobilize an enzyme on a carrier such as a polymer. In this case, it has been generally believed that intramolecular cross-linking of the enzyme itself should be avoided in order to maintain the conformation of the enzyme and retain its activity. Therefore, it was a surprising finding that the stability of the enzyme was improved by intramolecular crosslinking.

【0009】二官能性試薬による架橋は、酵素を適当な
溶媒に溶解し、二官能性試薬を加えて室温またはそれ以
下の温度で反応させた後に、未反応試薬を除去すること
により行うことができる。反応は、酵素濃度1μg/m
l−100μg/mlの範囲で行うことが好ましい。濃
度が1μg/mlより低いと反応速度が著しく低く実用
的ではない。また、酵素濃度が100μg/mlより高
いと酵素の適正なコンフォメーションが維持されないた
めに酵素活性が低下する。さらに濃度が高くなると、分
子間架橋が生じ、酵素蛋白質が凝集して酵素活性が著し
く低下すると予測される。酵素濃度が50μg/ml以
下であることが最も好ましい。また、二官能性試薬の終
濃度は、好ましくは0.01−5%、より好ましくは
0.1−2.5%である。さらに、未反応の二官能性試
薬が溶液中に残存していると、酵素活性が低下するおそ
れがあるため、透析、カラムクロマトグラフィー等の方
法により、未反応の二官能性試薬を除去することが好ま
しい。グルコースセンサー 本発明はまた、電極上に本発明に従う架橋PQQGDH
を固定化してなるグルコースセンサーを特徴とする。電
極としては、金電極、白金電極、カーボンペースト電
極、グラッシーカーボン電極、グラファイト電極などを
用いることができる。この電極上に本発明の酵素を固定
化する。固定化方法としては、架橋試薬を用いる方法、
高分子マトリックス中に封入する方法、透析膜で被覆す
る方法、導電性ポリマーに吸着させる方法などがあり、
これらを組み合わせて用いてもよい。好ましくは本発明
の架橋型PQQGDHはホロ化した形態で電極上に固定
化するが、アポ酵素の形態で固定化し、PQQを別の層
としてまたは溶液中で提供することもできる。典型的に
は、本発明の架橋型PQQGDHを担体蛋白質と混合し
た後、グルタルアルデヒドで処理することによりカーボ
ン電極上に固定化する。好ましくは、次にアミン基を有
する試薬で処理してグルタルアルデヒドをブロッキング
する。これは、酵素の架橋処理により、固定化に必要な
遊離基の数が不十分となるため、担体蛋白質の網目を形
成させることによって酵素の漏れを防ぐことができると
考えられるからである。担体蛋白質としては、PQQG
DHの酵素活性に悪影響を与えない限り、任意の蛋白
質、例えばウシ血清アルブミンを用いることができる。
Crosslinking with a bifunctional reagent can be carried out by dissolving the enzyme in a suitable solvent, adding the bifunctional reagent, reacting at room temperature or lower, and then removing the unreacted reagent. it can. The reaction was performed at an enzyme concentration of 1 μg / m
It is preferable to carry out in the range of 1-100 μg / ml. When the concentration is lower than 1 μg / ml, the reaction rate is extremely low and is not practical. On the other hand, if the enzyme concentration is higher than 100 μg / ml, the proper conformation of the enzyme is not maintained, so that the enzyme activity decreases. If the concentration is further increased, it is expected that intermolecular cross-linking will occur, and that the enzyme protein will aggregate and the enzyme activity will be significantly reduced. Most preferably, the enzyme concentration is 50 μg / ml or less. The final concentration of the bifunctional reagent is preferably 0.01-5%, more preferably 0.1-2.5%. Furthermore, if the unreacted bifunctional reagent remains in the solution, the enzyme activity may be reduced.Therefore, it is necessary to remove the unreacted bifunctional reagent by a method such as dialysis or column chromatography. Is preferred. Glucose sensor The present invention also provides a crosslinked PQQGDH according to the invention on an electrode.
Is characterized by a glucose sensor in which is immobilized. As the electrode, a gold electrode, a platinum electrode, a carbon paste electrode, a glassy carbon electrode, a graphite electrode, or the like can be used. The enzyme of the present invention is immobilized on this electrode. As the immobilization method, a method using a crosslinking reagent,
There is a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of adsorbing to a conductive polymer,
These may be used in combination. Preferably, the crosslinked PQQGDH of the present invention is immobilized on the electrode in a holated form, but it can also be immobilized in the form of an apoenzyme and PQQ provided as a separate layer or in solution. Typically, the crosslinked PQQGDH of the present invention is immobilized on a carbon electrode by mixing with a carrier protein and treating with glutaraldehyde. Preferably, glutaraldehyde is then blocked by treatment with a reagent having an amine group. This is because the number of free radicals required for immobilization becomes insufficient by the crosslinking treatment of the enzyme, and it is considered that leakage of the enzyme can be prevented by forming a network of the carrier protein. As a carrier protein, PQQG
Any protein, such as bovine serum albumin, can be used as long as it does not adversely affect the enzyme activity of DH.

【0010】グルコース濃度の測定は、以下のようにし
て行うことができる。恒温セルにPQQおよびCaCl
2を、ならびにメディエーターを含む緩衝液を入れ、一
定温度に維持する。メディエーターとしては、フェリシ
アン化カリウム、フェロセン、オスミウム誘導体、フェ
ナジンメトサルフェートなどを用いることができる。作
用電極として本発明の改変型PQQGDHを固定化した
カーボンペースト電極を用い、対極(例えば白金電極)
および参照電極(例えばAg/AgCl電極)を用い
る。カーボンペースト電極に一定の電圧を印加して、電
流が定常になった後、グルコースを含む試料を加えて電
流の増加を測定する。標準濃度のグルコース溶液により
作製したキャリブレーションカーブに従い、試料中のグ
ルコース濃度を計算することができる。
[0010] The measurement of the glucose concentration can be performed as follows. PQQ and CaCl in constant temperature cell
2 and the buffer containing the mediator are added and maintained at a constant temperature. As the mediator, potassium ferricyanide, ferrocene, osmium derivative, phenazine methosulfate, and the like can be used. A working electrode is a carbon paste electrode on which the modified PQQGDH of the present invention is immobilized, and a counter electrode (for example, a platinum electrode)
And a reference electrode (eg, an Ag / AgCl electrode). After a constant voltage is applied to the carbon paste electrode and the current becomes steady, a sample containing glucose is added and the increase in the current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.

【0011】[0011]

【実施例】以下の実施例においては、次の試薬および装
置を用いた。基質ピロロキノリンキノン(PQQ)は三
菱瓦斯化学(株)から購入した。架橋処理にはグルタル
アルデヒド25%水溶液(一級)(キシダ化学(株))
を用いた。電極の作製には、カーボンペースト電極(内
径3.0mm、外径6.0mm)およびカーボンペース
トオイルベース(いずれもBAS社)を用いた。 実施例1 酵素の調製 PQQGDH−Bの生産には、プラスミドベクターpT
rc99A(ファルマシア社)のNcoI−HindI
II部位にPQQGDH−Bをコードする遺伝子1.5
kbを挿入して構築したプラスミドpGB2(図1)
を、PQQGDHの生産能を欠く大腸菌PP2418株
に導入して得た形質転換体を用いた。大腸菌を2リット
ルのファーメンターで常法により培養し、IPTGで誘
導した。集菌、洗浄した菌体を10mMリン酸緩衝液
(pH7.0)で懸濁し、フレンチプレスで破砕した
後、遠心分離(10000gで20分間、4℃)を2回
行い未破砕菌体を除去した。これの上清を超遠心分離
(50000r.p.m.、60分間、4℃)し、その
上清を水溶性画分として得た。これを、100倍量の1
0mMリン酸緩衝液(pH7.0)で1晩透析した。
EXAMPLES In the following examples, the following reagents and equipment were used. The substrate pyrroloquinoline quinone (PQQ) was purchased from Mitsubishi Gas Chemical Company. Glutaraldehyde 25% aqueous solution (primary) for crosslinking treatment (Kishida Chemical Co., Ltd.)
Was used. For the production of the electrodes, a carbon paste electrode (inner diameter 3.0 mm, outer diameter 6.0 mm) and a carbon paste oil base (both from BAS) were used. Example 1 Preparation of Enzyme For production of PQQGDH-B, the plasmid vector pT was used.
NcoI-HindI of rc99A (Pharmacia)
Gene 1.5 encoding PQQGDH-B at the II site
Plasmid pGB2 constructed by inserting kb (FIG. 1)
Was introduced into Escherichia coli PP2418 which lacks the ability to produce PQQGDH. Escherichia coli was cultured by a conventional method using a 2 liter fermenter and induced with IPTG. The collected and washed cells are suspended in 10 mM phosphate buffer (pH 7.0), crushed by a French press, and centrifuged (10000 g, 20 minutes, 4 ° C.) twice to remove unbroken cells. did. The supernatant was subjected to ultracentrifugation (50,000 rpm, 60 minutes, 4 ° C.), and the supernatant was obtained as a water-soluble fraction. This is 100 times the amount of 1
It was dialyzed overnight against 0 mM phosphate buffer (pH 7.0).

【0012】透析後の粗精製酵素を、0.2μmのフィ
ルターで濾過し、同じくフィルターで濾過した、10m
Mリン酸緩衝液(pH7.0)をAバッファー、0.8
MNaCl10mMリン酸緩衝液(pH7.0)をBバ
ッファーとして、Aバッファーで平衡化した陽イオン交
換カラムクロマトグラフィー用充填カラム、CMTOY
OPEARL650Mカラムを用いて、Bバッファー4
0%/60分のグラジェントによりPQQGDH−Bを
溶出させた。流速は3ml/minで行った。蛋白質の
検出には280nmの吸光度を用い、ピークの部分を分
取した。
The crude purified enzyme after dialysis was filtered through a 0.2 μm filter, and then filtered through a 10 m filter.
M phosphate buffer (pH 7.0) with A buffer, 0.8
Packing column for cation exchange column chromatography equilibrated with A buffer using MNaCl 10 mM phosphate buffer (pH 7.0) as B buffer, CMTOY
Using an OPEARL 650M column, B buffer 4
PQQGDH-B was eluted with a gradient of 0% / 60 minutes. The flow rate was 3 ml / min. For the detection of the protein, the absorbance at 280 nm was used, and the peak portion was collected.

【0013】次に、分取したサンプルを、0.2M N
aCl、10mMリン酸緩衝液(pH7.0)で平衡化
したヒドロキシアパタイトカラムに負荷し、0.2M−
0.5M NaCl、10mMリン酸緩衝液(pH7.
0)/60分のグラジェントによりPQQGDH−Bを
溶出させた。溶出は1ml/minで行い、2分ごとに
溶出液を回収した。得られた活性画分を100倍量の1
0mM MOPS緩衝液(pH7.0)で透析し、脱塩
を行った。 実施例2 PQQGDH−Bの酵素活性測定方法 PQQGDH−Bの酵素活性測定は、10mMリン酸緩
衝液pH7.0中においてPMS(フェナジンメトサル
フェート)−DCIP(2,6−ジクロロフェノールイ
ンドフェノール)を用いておこなった。DCIPの60
0nmの吸光度変化を追跡し、その吸光度の減少速度を
酵素の反応速度とした。このとき、1分間に1μmol
のDCIPが還元される酵素活性を1ユニットとした。
また、DCIPのpH7.0におけるモル吸光係数は1
6.3mM-1とした。測定には分光光度計UV−120
0(島津製作所製)を用いた。 実施例3 架橋型酵素の調製 実施例1で調製した酵素を、1mM PQQ、1mM
CaCl2の存在下で、30分間室温でインキュベート
しホロ化した。ホロ化した酵素に、終濃度0.1、1.
0、2.5%となるようにGAを加え、30分間室温で
攪拌した。未架橋対照としてGAのかわりに水を用いて
架橋処理と同様の処理を行った。これを1000倍量の
10mM MOPS緩衝液(pH7.0)で透析、また
はNAP−10カラムを用いて未反応のGAを除去し
た。これらの酵素の活性を上述の方法にしたがって測定
した。
[0013] Next, the fractionated sample was subjected to 0.2 M N
aCl, loaded on a hydroxyapatite column equilibrated with 10 mM phosphate buffer (pH 7.0), and 0.2 M-
0.5 M NaCl, 10 mM phosphate buffer (pH 7.
PQQGDH-B was eluted with a gradient of 0) / 60 min. The elution was performed at 1 ml / min, and the eluate was collected every 2 minutes. The obtained active fraction is 100 times the amount of 1
It was dialyzed against 0 mM MOPS buffer (pH 7.0) and desalted. Example 2 Method for measuring the enzyme activity of PQQGDH-B The enzyme activity of PQQGDH-B was measured using PMS (phenazine methosulfate) -DCIP (2,6-dichlorophenolindophenol) in 10 mM phosphate buffer pH 7.0. I did it. DCIP 60
The change in the absorbance at 0 nm was followed, and the rate of decrease in the absorbance was defined as the reaction rate of the enzyme. At this time, 1 μmol per minute
The enzyme activity by which DCIP was reduced was defined as 1 unit.
The molar extinction coefficient of DCIP at pH 7.0 is 1
It was 6.3 mM -1 . Spectrophotometer UV-120 for measurement
0 (manufactured by Shimadzu Corporation) was used. Example 3 Preparation of Cross-Linked Enzyme The enzyme prepared in Example 1 was added to 1 mM PQQ, 1 mM
Incubated for 30 minutes at room temperature in the presence of CaCl 2 and holated. The final concentration of 0.1, 1.
GA was added so that the concentration became 0 and 2.5%, and the mixture was stirred at room temperature for 30 minutes. As an uncrosslinked control, the same treatment as the crosslinking treatment was performed using water instead of GA. This was dialyzed against 1000 volumes of a 10 mM MOPS buffer (pH 7.0), or unreacted GA was removed using a NAP-10 column. The activity of these enzymes was measured according to the method described above.

【0014】結果を図2に示す。架橋処理前の酵素の活
性を100%とすると、0.1%GAを用いて架橋処理
をした場合、約28%の活性が維持された。高い濃度の
GAで処理した場合には、活性はより低下した。対照と
して水を用いて処理した場合には、活性は約12%に低
下した。 実施例4 熱安定性の評価 実施例1で調製した酵素を、架橋時の蛋白質濃度をそれ
ぞれ99.09、49.55、39.64、33.03
μg/mlとして、実施例3にしたがって、0.1%G
Aで架橋処理した。次に、架橋処理酵素を蛋白質濃度
1.0μg/mlに調製し、55℃で0〜40分間イン
キュベートすることにより熱処理し、酵素の残存活性を
測定した。未架橋対照としてGAのかわりに水を用いて
架橋処理と同様の処理を行った。
FIG. 2 shows the results. Assuming that the activity of the enzyme before the crosslinking treatment was 100%, when the crosslinking treatment was performed using 0.1% GA, about 28% of the activity was maintained. When treated with higher concentrations of GA, the activity was more reduced. Activity was reduced to about 12% when treated with water as a control. Example 4 Evaluation of thermostability The protein prepared at the time of crosslinking was 99.09, 49.55, 39.64, and 33.03, respectively, for the enzyme prepared in Example 1.
0.1 μg / ml according to Example 3 as μg / ml
A cross-linking treatment was performed. Next, the cross-linked enzyme was adjusted to a protein concentration of 1.0 μg / ml, heat-treated by incubating at 55 ° C. for 0 to 40 minutes, and the residual activity of the enzyme was measured. As an uncrosslinked control, the same treatment as the crosslinking treatment was performed using water instead of GA.

【0015】結果を図3に示す。架橋時の酵素濃度が約
50μg/ml以下の場合、GA架橋により熱安定性が
顕著に向上することがわかった。酵素濃度が高い場合に
は、分子間架橋が生ずるために活性が低下すると考えら
れる。 実施例5 ブロッキング GA処理後の遊離アルデヒド基をブロッキングし、その
影響を調べた。実施例1にしたがってホロ化した酵素
に、グルタルアルデヒド(GA)溶液を0.1%になる
ように加え、30分間室温で攪拌した(架橋時の蛋白質
濃度は約27μg/ml)。GAの代わりに精製水を加
え、同様の処理をおこなったものを未架橋対照とした。
これを、(1)1000倍量の10mM MOPS緩衝
液(pH7.0)で透析、(2)10mM Tris−
HCl緩衝液(pH7.0)で透析、(3)終濃度50
mMリジンとして20分間室温で攪拌したのち、10m
MMOPS緩衝液(pH7.0)で透析という3種類の
処理を行い、凍結乾燥させ、水で再溶解した。これらの
架橋酵素を55℃で0〜40分間熱処理し、残存活性を
測定した。
FIG. 3 shows the results. It was found that when the enzyme concentration at the time of crosslinking was about 50 μg / ml or less, the thermal stability was significantly improved by GA crosslinking. When the enzyme concentration is high, the activity is considered to be reduced due to intermolecular crosslinking. Example 5 Blocking The free aldehyde group after the GA treatment was blocked, and the effect was examined. A glutaraldehyde (GA) solution was added to the enzyme holated according to Example 1 to a concentration of 0.1%, followed by stirring at room temperature for 30 minutes (the protein concentration at the time of crosslinking was about 27 μg / ml). Purified water was added in place of GA, and the same treatment was carried out to obtain an uncrosslinked control.
This was dialyzed against (1) 1000-fold volume of 10 mM MOPS buffer (pH 7.0), and (2) 10 mM Tris-
Dialysis against HCl buffer (pH 7.0), (3) final concentration 50
After stirring for 20 minutes at room temperature as mM lysine, 10m
Three treatments of dialysis with MMOPS buffer (pH 7.0) were performed, freeze-dried, and redissolved in water. These crosslinked enzymes were heat-treated at 55 ° C. for 0 to 40 minutes, and the residual activities were measured.

【0016】結果を図4に示した。ブロッキングをする
ことによりさらに熱安定性が向上している。 実施例6 架橋型酵素のキャラクタリゼーション 実施例2で得られた最適条件で架橋した酵素について、
グルコース濃度0〜100mMの範囲でその活性を測定
した。結果を図5に示す。本発明の架橋型酵素のグルコ
ースに対するVmaxは388U/mgであり、Kmは
20mMであった。 実施例7 架橋型PQQGDHを用いた酵素センサーの作製 実施例1で調製した酵素サンプルを、1mM PQQ、
1mM CaCl2存在下で、30分間室温でインキュ
ベートしホロ化した。これを蛋白質濃度30μg/ml
に調整し、終濃度0.1%となるようGAを加えて30
分間室温で撹拌した後、1000倍量の10mM MO
PSで透析した。この酵素5Uにカーボンペースト20
mgを加え、1晩凍結乾燥した。これをよく混合した
後、すでにカーボンペーストが約40mg充填されたカ
ーボンペースト電極の表面だけに充填し、濾紙上で研磨
した。電極表面に1mg/mlのウシ血清アルブミン5
μlを滴加し、室温で乾燥させた。この電極を1%のG
Aを含む10mM MOPS緩衝液(pH7.0)中
で、30分間室温で処理したのち、20mMリジンを含
む10mM MOPS緩衝液(pH7.0)中で、20
分間室温で攪拌し、GAをブロッキングした。
FIG. 4 shows the results. The thermal stability is further improved by blocking. Example 6 Characterization of Cross-Linked Enzyme For the enzyme cross-linked under the optimal conditions obtained in Example 2,
The activity was measured in a glucose concentration range of 0 to 100 mM. FIG. 5 shows the results. Vmax of the crosslinked enzyme of the present invention with respect to glucose was 388 U / mg, and Km was 20 mM. Example 7 Preparation of Enzyme Sensor Using Crosslinked PQQGDH The enzyme sample prepared in Example 1 was prepared using 1 mM PQQ,
Incubation was carried out at room temperature for 30 minutes in the presence of 1 mM CaCl 2 for holiation. The protein concentration is 30 μg / ml.
And add GA so that the final concentration is 0.1%.
After stirring at room temperature for 1 minute, 1000 times the volume of 10 mM MO
Dialyzed with PS. 5 U of this enzyme is added to carbon paste 20
mg and lyophilized overnight. After this was mixed well, only the surface of the carbon paste electrode already filled with about 40 mg of carbon paste was filled and polished on filter paper. 1 mg / ml bovine serum albumin 5 on the electrode surface
μl was added dropwise and dried at room temperature. This electrode is 1% G
A in a 10 mM MOPS buffer (pH 7.0) containing 10 mM MOPS buffer (pH 7.0) for 30 minutes at room temperature.
Stirred at room temperature for minutes for blocking GA.

【0017】次に、この電極を10mM MOPS緩衝
液(pH7.0)中で1時間以上室温で攪拌し、平衡化
した。測定時以外は1mM PQQ、1mM CaCl
2 を含む10mM MOPS緩衝液(pH7.0)中
で、4℃で保存した。
Next, the electrode was stirred in a 10 mM MOPS buffer (pH 7.0) for 1 hour or more at room temperature to equilibrate. 1 mM PQQ, 1 mM CaCl except during measurement
2 was stored at 4 ° C. in a 10 mM MOPS buffer (pH 7.0).

【0018】恒温セルに1mM PQQ、1mM Ca
Cl2を含む10mM MOPS緩衝液(pH7.0)
を入れ、メディエーターとして、終濃度1mM m−P
MSを加え、総量を10mlとした。そこに作用電極と
して作製したカーボンペースト電極を用い、対極として
白金電極、参照極としてAg/AgCl電極を用いた。
測定は全て25℃で行った。+100mVの電位を印加
し、電流が定常になったところで、適当な濃度のグルコ
ースを加えて、増加した電流値を計測した。グルコース
を加えていないときの電流値を0Aとした。
1 mM PQQ, 1 mM Ca
10 mM MOPS buffer containing Cl 2 (pH 7.0)
And a final concentration of 1 mM m-P as a mediator
MS was added to bring the total volume to 10 ml. There, a carbon paste electrode prepared as a working electrode was used, a platinum electrode was used as a counter electrode, and an Ag / AgCl electrode was used as a reference electrode.
All measurements were performed at 25 ° C. A potential of +100 mV was applied, and when the current became steady, an appropriate concentration of glucose was added and the increased current value was measured. The current value when glucose was not added was set to 0A.

【0019】キャリブレーションカーブを図6に示す。
本発明の架橋型酵素を用いたグルコースセンサーによ
り、1mM−12mMの範囲でグルコースの測定が可能
であった。
FIG. 6 shows a calibration curve.
The glucose sensor using the crosslinked enzyme of the present invention was able to measure glucose in the range of 1 mM to 12 mM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、プラスミドpGB2の構造を示す。FIG. 1 shows the structure of plasmid pGB2.

【図2】 図2は、グルタルアルデヒドにより酵素を処
理した後の残存活性を示す。
FIG. 2 shows the residual activity after treatment of the enzyme with glutaraldehyde.

【図3】 図3は、本発明の架橋型酵素の熱安定性を示
す。
FIG. 3 shows the thermostability of the crosslinked enzyme of the present invention.

【図4】 図4は、グルタルアルデヒド処理後のブロッ
キングの影響を示す。
FIG. 4 shows the effect of blocking after glutaraldehyde treatment.

【図5】 図5は、種々のグルコース濃度における本発
明の架橋型酵素の活性を示す。
FIG. 5 shows the activity of the crosslinked enzyme of the present invention at various glucose concentrations.

【図6】 図6は、本発明の架橋型酵素を用いる酵素セ
ンサーのキャリブレーションカーブを示す。
FIG. 6 shows a calibration curve of an enzyme sensor using the crosslinked enzyme of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二官能性試薬により架橋された水溶性P
QQGDH。
1. A water-soluble P cross-linked by a bifunctional reagent.
QQGDH.
【請求項2】 前記PQQGDHが、Acinetob
acter calcoaceticus由来である、
請求項1記載の水溶性PQQGDH。
2. The method according to claim 1, wherein the PQQGDH is Acinetob.
from actor calcoaceticus,
The water-soluble PQQGDH according to claim 1.
【請求項3】 前記二官能性試薬がグルタルアルデヒド
である、請求項1または2記載の水溶性PQQGDH
3. The water-soluble PQQGDH according to claim 1, wherein the bifunctional reagent is glutaraldehyde.
【請求項4】 電極上に請求項1−3のいずれかに記載
の水溶性PQQGDHを固定化してなるグルコースセン
サー。
4. A glucose sensor comprising the water-soluble PQQGDH according to claim 1 immobilized on an electrode.
JP11074219A 1999-03-18 1999-03-18 Crosslinked glucose dehydrogenase Pending JP2000262281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11074219A JP2000262281A (en) 1999-03-18 1999-03-18 Crosslinked glucose dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11074219A JP2000262281A (en) 1999-03-18 1999-03-18 Crosslinked glucose dehydrogenase

Publications (1)

Publication Number Publication Date
JP2000262281A true JP2000262281A (en) 2000-09-26

Family

ID=13540872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11074219A Pending JP2000262281A (en) 1999-03-18 1999-03-18 Crosslinked glucose dehydrogenase

Country Status (1)

Country Link
JP (1) JP2000262281A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
JP2006271257A (en) * 2005-03-29 2006-10-12 Cci Corp Polyol dehydrogenase excellent in heat stability and method for producing the same
JP2008245559A (en) * 2007-03-30 2008-10-16 Cci Corp Method for producing polyol dehydrogenase
JP2008263954A (en) * 2007-03-29 2008-11-06 Cci Corp Chemically modified polyol dehydrogenation enzyme and method for producing the same
US7479383B2 (en) 2003-09-08 2009-01-20 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase excellent in substrate specificity
US8232059B2 (en) 2010-06-14 2012-07-31 Alsultan Abdulrahman A Method of identifying A. baumannii with OXA-131-like drug resistance in diabetic patients
JP2015136313A (en) * 2014-01-21 2015-07-30 株式会社ダイセル Cross-linked enzyme aggregate and microreactor comprising the same
EP2927319A1 (en) * 2014-03-31 2015-10-07 Roche Diagnostics GmbH High load enzyme immobilization by crosslinking
JP2018093872A (en) * 2006-06-29 2018-06-21 池田食研株式会社 Biosensor for glucose measurement
US10626433B2 (en) 2005-03-25 2020-04-21 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10988738B2 (en) 2002-12-24 2021-04-27 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
EP1367120A3 (en) * 2002-05-27 2004-06-02 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
US7476525B2 (en) 2002-05-27 2009-01-13 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
US11345897B2 (en) 2002-12-24 2022-05-31 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
US11225645B2 (en) 2002-12-24 2022-01-18 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
US11155789B2 (en) 2002-12-24 2021-10-26 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
US10988738B2 (en) 2002-12-24 2021-04-27 Ikeda Food Research Co., Ltd. Coenzyme-binding glucose dehydrogenase
US7479383B2 (en) 2003-09-08 2009-01-20 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase excellent in substrate specificity
US10738341B2 (en) 2005-03-25 2020-08-11 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10851398B2 (en) 2005-03-25 2020-12-01 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10883133B2 (en) 2005-03-25 2021-01-05 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10815515B2 (en) 2005-03-25 2020-10-27 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10808274B2 (en) 2005-03-25 2020-10-20 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10669565B2 (en) 2005-03-25 2020-06-02 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10626433B2 (en) 2005-03-25 2020-04-21 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10626434B2 (en) 2005-03-25 2020-04-21 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US10648011B2 (en) 2005-03-25 2020-05-12 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
JP4741270B2 (en) * 2005-03-29 2011-08-03 シーシーアイ株式会社 Polyol dehydrogenase with excellent thermal stability and method for producing the same
JP2006271257A (en) * 2005-03-29 2006-10-12 Cci Corp Polyol dehydrogenase excellent in heat stability and method for producing the same
JP2018093872A (en) * 2006-06-29 2018-06-21 池田食研株式会社 Biosensor for glucose measurement
JP2008263954A (en) * 2007-03-29 2008-11-06 Cci Corp Chemically modified polyol dehydrogenation enzyme and method for producing the same
JP2008245559A (en) * 2007-03-30 2008-10-16 Cci Corp Method for producing polyol dehydrogenase
US8232059B2 (en) 2010-06-14 2012-07-31 Alsultan Abdulrahman A Method of identifying A. baumannii with OXA-131-like drug resistance in diabetic patients
JP2015136313A (en) * 2014-01-21 2015-07-30 株式会社ダイセル Cross-linked enzyme aggregate and microreactor comprising the same
US10400233B2 (en) 2014-03-31 2019-09-03 Roche Diabetes Care, Inc. High load enzyme immobilization by crosslinking
WO2015150263A1 (en) * 2014-03-31 2015-10-08 Roche Diagnostics Gmbh High load enzyme immobilisation by crosslinking
EP2927319A1 (en) * 2014-03-31 2015-10-07 Roche Diagnostics GmbH High load enzyme immobilization by crosslinking

Similar Documents

Publication Publication Date Title
JP5843924B2 (en) A fusion protein of glucose dehydrogenase and cytochrome
JP5870027B2 (en) Sensor for fructosyl peptidyl oxidase and glycated protein assays
Crumbliss et al. A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood
US20090236222A1 (en) Biosensor
Yamashita et al. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase
US20170191105A1 (en) Enzyme electrode
EP0289344B1 (en) Amperometric method for the quantitative determination of 1,4-dihydronicotinamide adenine in solution
Huang et al. A highly-sensitive L-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode
JP2000262281A (en) Crosslinked glucose dehydrogenase
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
US20070134750A2 (en) Glucose dehydrogenase
Laurinavicius et al. Amperometric glyceride biosensor
US7244600B2 (en) Glucose dehydrogenase
JP2016042032A (en) Glucose sensor
JP2004344145A (en) Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
US20240035065A1 (en) Method for measurement in biosensors
JP7290993B2 (en) Mutant glucose oxidase and use thereof
JP2001037483A (en) Linked glucose dehydrogenase
JPH10239273A (en) Glucose sensor
JPS63246651A (en) Biosensor
JP2008268197A (en) Protein-immobilized membrane, protein immobilization method, and biosensor
JP2005270082A (en) Glucose dehydrogenase
WO2016163448A1 (en) Enzyme preparation for use in measurement of glucose