JPS63246651A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS63246651A
JPS63246651A JP62082143A JP8214387A JPS63246651A JP S63246651 A JPS63246651 A JP S63246651A JP 62082143 A JP62082143 A JP 62082143A JP 8214387 A JP8214387 A JP 8214387A JP S63246651 A JPS63246651 A JP S63246651A
Authority
JP
Japan
Prior art keywords
cytochrome
diaphorase
electrode
immobilized
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082143A
Other languages
Japanese (ja)
Inventor
Toshihiro Akaike
敏宏 赤池
Yasuyuki Tanaka
靖之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP62082143A priority Critical patent/JPS63246651A/en
Publication of JPS63246651A publication Critical patent/JPS63246651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To determine NADH or NADPH in a sample handily and accurately, by employing diaphorase as enzyme and an immobilized cytochrome C electrode as electrode. CONSTITUTION:This biosensor is made up of diaphorase, a mediator to receive electrons being conjugated with an oxidation/reduction reaction by diaphorase and a transducer to convert the reception of the electrons into an electrical signal and the mediator of the biosensor is made of an immobilized cytochrome C. The cytochrome C herein used is preferably of a mammal type and the diaphorase herein used is preferably produced by an microorganism with the optimum growing temperature of 50-85 deg.C. The cytochrome C is used as immobilized on a water insoluble carrier in a film and preferably covers a sensitive surface of an electrode directly. In the application of the diaphorase, a water insoluble carrier is further placed on a cytochrome C electrode to immobilize it thereon.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、試料中のN A D HまたはNADPHの
濃度測定に用いられるバイオセンサに関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a biosensor used for measuring the concentration of N A D H or NADPH in a sample.

(従来の技術) NADHまたはNADPHの定量は、臨床化学分析1食
品分析などにおける生化学的分析手法の重要な手段を提
供するものである。特に臨床化学分析ではNADHまた
はNADPHの定量は必要不可欠の手段となっており、
たとえば血液、尿等の生体試料中のグルコース量の測定
、タレアチンキナーゼ活性値の測定などはNADPHの
定量によって行われている。
(Prior Art) Quantification of NADH or NADPH provides an important means for biochemical analysis techniques in clinical chemistry analysis 1 food analysis and the like. Particularly in clinical chemistry analysis, the quantification of NADH or NADPH is an essential tool.
For example, measurement of the amount of glucose in biological samples such as blood and urine, measurement of taleatin kinase activity, etc. are performed by quantifying NADPH.

たとえば、このような分析においては測定すべき物質に
適当な物質を作用させて定量しやすい形に導(ことが行
われる。適当な物質として最近酵素の使用が注目される
ようになり、多くの分析項目で酵素が主役を演するよう
になっている。定量しやすい形としてはH202あるい
はNADH(あるいはNADPH)が採用されている。
For example, in such an analysis, the substance to be measured is treated with an appropriate substance to lead it to a form that is easy to quantify.Recently, the use of enzymes has attracted attention as an appropriate substance, and many Enzymes are now playing a leading role in the analysis items.H202 or NADH (or NADPH) are used as forms that are easy to quantify.

酵素としてオキシダーゼを使用すると、H20□を定量
することになり、デヒドロゲナーゼを使用すると、NA
DHあるいはNADPHを定量することになる。両方法
を比較すると、前者は化学量論性に問題があること、溶
存酸素量の影響を受けやすいこと、還元性物質の影響を
受けやすいことなどのために後者の方法がすぐれている
とされる。
When oxidase is used as the enzyme, H20□ is quantified, and when dehydrogenase is used, NA
DH or NADPH will be quantified. Comparing both methods, the latter method is said to be superior because the former has problems with stoichiometry, is easily affected by the amount of dissolved oxygen, and is easily affected by reducing substances. Ru.

後者の方法の場合、NADHあるいはNADPHは34
0nmに特徴的な吸収スペクトルを有するので、340
nmの吸光度を測定することによって定量が行われてい
る。しかし、高価な分光光度計を要するので、より簡便
な測定法の開発が望まれている。
In the latter method, NADH or NADPH is 34
Since it has a characteristic absorption spectrum at 0 nm, 340
Quantification is performed by measuring absorbance at nm. However, since an expensive spectrophotometer is required, development of a simpler measurement method is desired.

そのために、NADHあるいはNADPHを定量するバ
イオセンサの開発に期待がよせられているが、まだ実用
的なものは得られていないのが実状である。
For this reason, expectations are high for the development of a biosensor for quantifying NADH or NADPH, but the reality is that no practical sensor has been obtained yet.

たとえば、NADHあるいはNADPHに作用する酸化
還元酵素としてジアホラーゼが極めて有用であることが
知られているので、これを利用したバイオセンサの研究
例がある。すなわち、チェノらはジアホラーゼを使用し
、メディエータ−としてフェリシアン化物を用いて、グ
ラファイト電極でN A D Hを検出するバイオセン
サを研究しているしくBiotechnol、Bioe
ng、  21 + 1905(1979)) rウイ
ナータサパトラらはジアホラーゼを使用し。
For example, it is known that diaphorase is extremely useful as an oxidoreductase that acts on NADH or NADPH, and there are research examples of biosensors using this. Specifically, Cheno et al. are researching a biosensor that uses diaphorase and ferricyanide as a mediator to detect NADH with a graphite electrode.
ng, 21 + 1905 (1979)) using diaphorase.

ジクロロフェノールインドフェノールをメディエータ−
として回転白金電極を用いてN A D IIを検出ス
るバイオセンサを研究している(Anal、Chem。
Dichlorophenolindophenol as mediator
We are currently researching a biosensor that detects NAD II using a rotating platinum electrode (Anal, Chem.

54 、1987(19B2))。54, 1987 (19B2)).

(発明が解決しようとする問題点) しかし、バイオセンサの実用性からいえば、測定に必要
な酵素、メディエータ−は全て電極に一体化して固定化
しておくことが望ましいわけであるから、これらはいず
れも実用化には問題のあるものであった。すなわち、フ
ェリシアン化物やジクロロフェノールインドフェノール
は前者は無機塩、後者は低分子物質であって、固定化が
極めて困難である。
(Problem to be solved by the invention) However, from the standpoint of practicality of the biosensor, it is desirable to integrate and immobilize all the enzymes and mediators necessary for measurement on the electrode. All of them had problems in practical application. That is, ferricyanide and dichlorophenol indophenol are extremely difficult to immobilize because the former is an inorganic salt and the latter is a low molecular weight substance.

以上のように、ジアホラーゼというすぐれた酵素が知ら
れていながら、実用的な意味でNADHあるいはN A
 D P Hの定量を可能にするバイオセンサは現在の
所知られていない。これはNADHあるいはNADPH
に作用するジアホラーゼの作用量を電気信号に変換する
ための適当なメディエータ−が得られていないことによ
ると思われる。
As mentioned above, although an excellent enzyme called diaphorase is known, in a practical sense, NADH or NA
There is currently no known biosensor that allows the quantification of DPH. This is NADH or NADPH
This seems to be due to the fact that an appropriate mediator for converting the amount of diaphorase acting on the diaphorase into an electrical signal has not been obtained.

(問題点を解決するための手段) 本発明者らは、このような問題点を解決すべく鋭意研究
を進めてきたところ、酵素としてジアホラーゼを用い、
電極として固定化チトクロムC電極を用いると、試料中
のN A D Hあるいは、N A DPHを簡便かつ
精度よ(定量することができるバイオセンサが構築でき
るということを見出し9本発明を完成した。
(Means for Solving the Problems) The present inventors have conducted intensive research to solve these problems, and found that using diaphorase as an enzyme,
We have completed the present invention by discovering that by using an immobilized cytochrome C electrode as an electrode, it is possible to construct a biosensor that can easily and accurately quantify NAD H or NADPH in a sample.

すなわち1本発明は、ジアホラーゼと、ジアホラーゼに
よる酸化還元反応と共役して電子を授受するメディエー
タ−と、その電子の授受を電気信号に変換するトランデ
ューサーとからなるバイオセンサにおいて、メディエー
タ−を固定化チトクロムCで構成したことを特徴とする
バイオセンサを要旨とするものである。
That is, 1. the present invention is a biosensor consisting of diaphorase, a mediator that transfers and receives electrons by conjugating with the redox reaction of diaphorase, and a transducer that converts the transfer of electrons into an electrical signal, in which the mediator is immobilized. The gist of the present invention is a biosensor characterized by being composed of cytochrome C.

本発明に用いられるトランデューサとしては。The transducer used in the present invention is as follows.

電気化学デバイス、半導体デバイスなどいずれも使用す
ることができるが、なかでも電気化学デバイスを使用す
るのが好ましく、たとえば酸化インジウム/酸化スズ蒸
着ガラス電極、白金電極、グラツシーカーボン電極、金
電極などがある。
Both electrochemical devices and semiconductor devices can be used, but it is preferable to use electrochemical devices, such as indium oxide/tin oxide evaporated glass electrodes, platinum electrodes, glassy carbon electrodes, gold electrodes, etc. be.

チトクロムCとしては、#乳類型チトクロムC(動物、
酵母、高等植物など)、微生物型チトクロムC(細菌な
ど)など各種のものを使用することができるが、なかで
も哺乳類型チトクロムC1特にウマ心臓由来チトクロム
Cを使用するのが好ましい。ジアホラーゼとしては、微
生物由来のもの、動物由来のものなど各種のものを使用
することができるが、なかでも最適生育温度が50℃な
いし85℃である微生物の産生ずるものが好ましい。そ
のような微生物としては、たとえばバチルス・ステアロ
サーモフィルス、バチルス・サーモブロテオリテイクス
、バチルス・アシドカルダリウスなどのバチルス属、サ
ーモアクチノマイセス属、サーマス属、サーモミクロビ
ウム属などの微生物があげられる。これらの中でも特に
好ましい微生物としては、バチルス・ステアロサーモフ
ィルスがあげられ、その具体例としてはATCC793
3゜7954.10194.12980.NCA 15
03.UK 563株(微工研菌寄第7275号、 F
CRM P −7275,昭和58年9月29日寄託)
などがある。
Cytochrome C includes #mammalian cytochrome C (animal,
Various types of cytochrome C can be used, such as yeast, higher plants, etc.), microbial cytochrome C (bacteria, etc.), but among these, mammalian cytochrome C1, particularly cytochrome C derived from horse heart, is preferably used. Various types of diaphorase can be used, including those derived from microorganisms and those derived from animals, but diaphorases produced by microorganisms with an optimum growth temperature of 50°C to 85°C are particularly preferred. Such microorganisms include, for example, microorganisms of the genus Bacillus such as Bacillus stearothermophilus, Bacillus thermobrotheoliticus, and Bacillus acidocaldarius, as well as microorganisms of the genus Thermoactinomyces, Thermus, and Thermomicrobium. can give. Among these, a particularly preferred microorganism is Bacillus stearothermophilus, and a specific example thereof is ATCC 793.
3゜7954.10194.12980. NCA 15
03. UK 563 strain (Feikoken Bacteria No. 7275, F
CRM P-7275, deposited on September 29, 1982)
and so on.

本発明におけるチトクロムCは膜状で、天然高分子物質
1合成高分子物質等の水不溶性担体2例えば、T−ベン
ジル−し−グルタミン酸部分加水分解物、ポリメタクリ
ル酸エステル部分加水分解物、サクシニル化キトサンな
どの水不溶性担体に固定化した状態で使用する。このよ
うに、チトクロムCを固定化した水不溶性担体は電極の
感応面に直接被覆するのが、チトクロムCの機能を発揮
する上において好ましい。また電極の感応面を予めタン
パク質1合成高分子物質等の水不溶性担体で被覆してお
き、ここへチトクロムCを固定化することも好ましい方
法である。
Cytochrome C in the present invention is in the form of a membrane, and includes 1 a natural polymeric substance 1 a water-insoluble carrier such as a synthetic polymeric substance 2 such as T-benzyl-thi-glutamic acid partial hydrolyzate, polymethacrylic acid ester partial hydrolyzate, succinylated It is used immobilized on a water-insoluble carrier such as chitosan. In this way, it is preferable to directly coat the sensitive surface of the electrode with the water-insoluble carrier on which cytochrome C is immobilized, in order for the cytochrome C to exhibit its functions. It is also a preferable method to cover the sensitive surface of the electrode in advance with a water-insoluble carrier such as a protein 1 synthetic polymer and to immobilize cytochrome C thereon.

本発明でチトクロムCを水不溶性担体に固定化するには
、たとえば、千畑一部編「固定化酵素」講談社(197
5)に記載されているような従来より公知の共有結合法
や吸着法を採用することができる。また架橋法あるいは
包括法などの方法を採用することもできる。
In order to immobilize cytochrome C on a water-insoluble carrier in the present invention, for example, "Immobilized Enzymes" edited by Chibata, Kodansha (197
Conventionally known covalent bonding methods and adsorption methods as described in 5) can be employed. Further, methods such as a crosslinking method or an enclosing method can also be employed.

本発明におけるジアホラーゼはチトクロムC電極上にさ
らに天然高分子物質9合成高分子物質等の水不溶性担体
、たとえば上記チトクロムCの固定化で述べた水不溶性
担体、好ましくはポリカチオン系高分子物質(キトサン
、ポリリジン誘導体。
The diaphorase of the present invention is further coated on a cytochrome C electrode with a water-insoluble carrier such as a natural polymer substance 9 or a synthetic polymer substance, such as the water-insoluble carrier mentioned above for immobilization of cytochrome C, preferably a polycationic polymer substance (chitosan). , polylysine derivative.

ポリアリルアミンコンプレックスなど)や、アニリンの
電解重合膜を用いて固定化して用いる。ジアホラーゼの
固定化方法にも上述の方法を用いることができる。
Polyallylamine complex, etc.) or aniline electrolytically polymerized membrane are used for immobilization. The above-mentioned method can also be used for immobilizing diaphorase.

チトクロムCとジアホラーゼを混合して同一の水不溶性
担体に固定化して電極の感応面に被覆して用いることも
できる。
It is also possible to use a mixture of cytochrome C and diaphorase, immobilized on the same water-insoluble carrier, and coated on the sensitive surface of the electrode.

本発明のバイオセンサを用いて、NADI(あるいはN
ADPHを測定するには、たとえば、固定化チトクロム
Cをトランスデユーサ感応面に直接被覆した上に、さら
に、固定化ジアホラーゼを被覆した多層被覆トランスデ
ユーサを緩衝液に浸し。
Using the biosensor of the present invention, NADI (or N
To measure ADPH, for example, a multilayer-coated transducer in which immobilized cytochrome C is directly coated on the transducer sensitive surface and further coated with immobilized diaphorase is immersed in a buffer solution.

測定試料の添加によって生ずるトランスデユーサでの検
出量の変化を測定する方法、チトクロムCとジアホラー
ゼの混合固定化物をトランスデユーサ感応面に直接被覆
したものを緩衝液に浸し、測定試料の添加によって生ず
るトランスデユーサでの検出量の変化を測定する方法な
どを採用することができる。
A method of measuring the change in the amount detected by a transducer caused by the addition of a measurement sample. A mixed immobilized product of cytochrome C and diaphorase is directly coated on the transducer sensitive surface, and the resultant mixture is immersed in a buffer solution, It is possible to adopt a method of measuring the resulting change in the amount detected by the transducer.

測定用の溶液としては1例えば0.O1〜0.1Mのリ
ン酸緩衝液(pH5〜10.好ましくは7〜8)の溶液
を用いればよい。
The solution for measurement is 1, for example 0. A solution of O1 to 0.1M phosphate buffer (pH 5 to 10, preferably 7 to 8) may be used.

測定温度は0〜60℃、好ましくは20〜40℃が用い
られる。
The measurement temperature used is 0 to 60°C, preferably 20 to 40°C.

(作用) 本発明のバイオセンサは1次の反応 N A D Hあるいは N A D ’  あるいは            
チトクロム C(Fe”“ )NADP” によって生ずる電子伝達量を電気化学デバイスや半導体
デバイスで検出することによって構成され。
(Function) The biosensor of the present invention performs the first-order reaction N A D H or N A D ' or
It is constructed by detecting the amount of electron transfer generated by cytochrome C(Fe)NADP with an electrochemical device or a semiconductor device.

試料中に1元々存在するNADHあるいはNADP H
量を測定できることはもちろん、試料中のNADPH以
外の測定目的物質量を適当な手段で最終的にデヒドロゲ
ナーゼの作用でrQ A D HあるいはN A D 
P H量として、結果的に試料中のNADHあるいはN
ADPH3lを測定することによって元の測定目的物’
It量を測定することができる。
NADH or NADP H originally present in the sample
Not only can the amount be measured, but also the amount of the substance to be measured other than NADPH in the sample can be determined by appropriate means, such as rQ A D H or N A D by the action of dehydrogenase.
As a result of the amount of PH, NADH or N in the sample
The original measurement object' by measuring ADPH3l
The amount of It can be measured.

(実施例) 次に本発明を実施例によって具体的に説明する。(Example) Next, the present invention will be specifically explained with reference to Examples.

実施例1 酢酸50m1にポリーT−ベンジル−し一グルタミン酸
(分子量150.000〜350,000.シグマ社製
)2gを加え、膨潤させた後、30%の臭化水素を含む
酢酸溶液10mj+に加えて30℃で25分間攪拌した
。反応液をエーテル200mj!に注ぎ込み、生じた沈
殿を濾過で集め、さらにエーテルで洗浄後、乾燥させる
ことにより、約1.7gのポリーT−ベンジル−し一グ
ルタミン酸の部分加水分解物(γ−ベンジルーし一グル
タミン酸とグルタミン酸の共重合体)を得た。ベンジル
基が加水分解された割合は約65%であった。
Example 1 2 g of poly-T-benzyl monoglutamic acid (molecular weight 150,000-350,000, manufactured by Sigma) was added to 50 ml of acetic acid to swell it, and then added to 10 mj+ of an acetic acid solution containing 30% hydrogen bromide. The mixture was stirred at 30°C for 25 minutes. Pour the reaction solution into 200mj of ether! The resulting precipitate was collected by filtration, further washed with ether, and dried to obtain about 1.7 g of a partial hydrolyzate of poly T-benzylic monoglutamic acid (γ-benzylic monoglutamic acid and glutamic acid). copolymer) was obtained. The proportion of benzyl groups hydrolyzed was approximately 65%.

得られたγ−ベンジルーし一グルタミン酸とグルタミン
酸の共重合4*o、sgをジメチルホルムアミドとエタ
ノールの(2: 1)混合溶液100m#に熔解し、こ
の溶解中に酸化スズをドープした酸化インジウムガラス
電極(日本板硝子社製、以下InzOs/Sn○2蒸着
ガラス電極と略する)を5分間浸漬した後、風乾した。
The obtained copolymerized 4*o,sg of γ-benzylic monoglutamic acid and glutamic acid was dissolved in 100 m# of a mixed solution of dimethylformamide and ethanol (2:1), and indium oxide glass doped with tin oxide during this dissolution. An electrode (manufactured by Nippon Sheet Glass Co., Ltd., hereinafter referred to as InzOs/Sn○2 evaporated glass electrode) was immersed for 5 minutes and then air-dried.

これにより、1B20*/SnO□蒸着ガラス電極上に
、lcA当たりγゴベンジルーL−グルタミン酸とグル
タミン酸の共重合体が約20μg被覆された。
As a result, about 20 μg of the copolymer of γgovendy-L-glutamic acid and glutamic acid was coated on the 1B20*/SnO□ vapor-deposited glass electrode per lcA.

ついで、この電極を100mMのアニリン、 40μM
のチトクロムC(ウマ心臓由来、シグマ社製タイプVl
)、20ユニット/m1のジアホラーゼ(バチルス・ス
テアロサーモフィルス由来、生化学工業社製)、10m
Mのリン酸緩衝液(pH7,4)からなる溶液中に漫清
し、5分間電解重合を行った。このようにして、チトク
ロムCおよびジアホラーゼを電極表面に直接被覆するこ
とにより固定化した。いわゆるチトクロムC−ジアホラ
ーゼ固定化電極を調整した。
This electrode was then treated with 100mM aniline, 40μM
Cytochrome C (derived from horse heart, type Vl manufactured by Sigma)
), 20 units/m1 of diaphorase (derived from Bacillus stearothermophilus, manufactured by Seikagaku Corporation), 10 m
The sample was immersed in a solution consisting of M phosphate buffer (pH 7.4), and electrolytically polymerized for 5 minutes. In this way, cytochrome C and diaphorase were immobilized by directly coating the electrode surface. A so-called cytochrome C-diaphorase immobilized electrode was prepared.

この電極を用い、第1図に示すような電気化学計測シス
テムを組み、NADHの存在により生ずる酸化電流値を
測定した。
Using this electrode, an electrochemical measurement system as shown in FIG. 1 was assembled to measure the oxidation current value caused by the presence of NADH.

即ち、第1図は参照極11作用極4及び対極5からなる
三電極システム(2は寒天塩橋を、3はキャピラリーを
、7は飽和塩化カリウム水溶液を示す。)を示し、一定
の電位を示すことが保証されている参照電極1に対して
作用極4の電位を+0.2■に制御した。電位の制御に
はNPGFZ−2501Aポテンシヨスタツト6 (日
厚計測社製)を用いた。また、参照極1には飽和カロメ
ル電極を、対極5には白金電極(白金線)を1作用極4
には上で調整したI n20 :l/ S n O□蒸
着ガラス電極にチトクロムCおよびジアホラーゼを被覆
固定化したものを用いた。作用極面では、添加したNA
DHに比例する量の電子が、ジアホラーゼを介して、チ
トクロームCに渡り、酸化型チトクロムCは還元型とな
るが、電極によって電子を奪われ。
That is, FIG. 1 shows a three-electrode system consisting of a reference electrode 11, a working electrode 4, and a counter electrode 5 (2 indicates an agar salt bridge, 3 indicates a capillary, and 7 indicates a saturated potassium chloride aqueous solution), and a constant potential is applied. The potential of the working electrode 4 was controlled to +0.2■ with respect to the reference electrode 1, which was guaranteed to exhibit a positive effect. NPGFZ-2501A potentiostat 6 (manufactured by Nichijo Keizoku Co., Ltd.) was used to control the potential. In addition, a saturated calomel electrode is used as the reference electrode 1, a platinum electrode (platinum wire) is used as the counter electrode 5, and 1 working electrode 4 is used.
For this purpose, the I n20 :l/S n O□ vapor-deposited glass electrode prepared above was coated and immobilized with cytochrome C and diaphorase. At the working electrode surface, the added NA
An amount of electrons proportional to DH is transferred to cytochrome C via diaphorase, and the oxidized cytochrome C becomes a reduced form, but the electrons are taken away by the electrode.

再び酸化型となり、この時のチトクロムCの酸化電流を
測定するものである。
It becomes the oxidized form again, and the oxidation current of cytochrome C at this time is measured.

試料として用いたNADH水溶液8の濃度を4゜8.1
6.32および64μMにて行い、それぞれ得られた酸
化電流値との関係を第2図に示した。
The concentration of NADH aqueous solution 8 used as a sample was 4°8.1
The test was carried out at 6.32 and 64 μM, and the relationship between the obtained oxidation current values is shown in FIG.

第2図に示すごと(、NADH濃度4〜64μMの範囲
において良好な応答性を示し1本センサによるNADH
定量が可能であることが判明した。
As shown in Figure 2, NADH with one sensor showed good response in the NADH concentration range of 4 to 64 μM.
It was found that quantitative determination was possible.

(発明の効果) 本発明のバイオセンサは、ジアホラーゼ、チトクロムC
およびそれらの酸化還元量を電気信号に変換するトラン
スデユーサ−とからなっているので、NADHまたはN
 A D P H濃度を簡単かつ迅速に、高選択性をも
って測定できるというすぐれた性能を有している。
(Effect of the invention) The biosensor of the present invention has diaphorase, cytochrome C
and a transducer that converts the amount of redox into an electrical signal.
It has an excellent ability to measure A D P H concentration easily, quickly, and with high selectivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、飽和カロメル電極、白金電極およびチトクロ
ムCとジアホラーゼを固定化したInzO=/5nOz
蒸着ガラス電極からなる三電極システムを示す図であり
、第2図はN A D H>H度とチトクロムCの酸化
電流値との関係を示す図である。 1、参照極、飽和カロメル電極 2、寒天塩橋 3、キャピラリー 4、作用極、Intox/5n02蒸着ガラス電極にチ
トクロムCおよびジアホラーゼを固定化したもの。 5、対極、白金電極。 6、ポテンシオスタット。 7、飽和塩化カリウム水溶液。 8、NADH水溶液。
Figure 1 shows a saturated calomel electrode, a platinum electrode, and InzO=/5nOz with immobilized cytochrome C and diaphorase.
FIG. 2 is a diagram showing a three-electrode system consisting of vapor-deposited glass electrodes, and FIG. 2 is a diagram showing the relationship between N A D H>H degree and the oxidation current value of cytochrome C. 1. Reference electrode, saturated calomel electrode 2, agar salt bridge 3, capillary 4, working electrode, Intox/5n02 vapor-deposited glass electrode with immobilized cytochrome C and diaphorase. 5. Counter electrode, platinum electrode. 6. Potentiostat. 7. Saturated potassium chloride aqueous solution. 8. NADH aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] (1)ジアホラーゼと、ジアホラーゼによる酸化還元反
応と共役して電子を授受するメディエーターと、その電
子の授受を電気信号に変換するトランスデューサーとか
らなるバイオセンサにおいて、メディエーターを固定化
チトクロムCで構成したことを特徴とするバイオセンサ
(1) In a biosensor consisting of diaphorase, a mediator that transfers and receives electrons by conjugating with the redox reaction of diaphorase, and a transducer that converts the transfer of electrons into an electrical signal, the mediator was composed of immobilized cytochrome C. A biosensor characterized by:
JP62082143A 1987-04-01 1987-04-01 Biosensor Pending JPS63246651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082143A JPS63246651A (en) 1987-04-01 1987-04-01 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082143A JPS63246651A (en) 1987-04-01 1987-04-01 Biosensor

Publications (1)

Publication Number Publication Date
JPS63246651A true JPS63246651A (en) 1988-10-13

Family

ID=13766208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082143A Pending JPS63246651A (en) 1987-04-01 1987-04-01 Biosensor

Country Status (1)

Country Link
JP (1) JPS63246651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
JP2007225444A (en) * 2006-02-23 2007-09-06 Denso Corp Enzyme functional electrode, biosensor and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
JP2007225444A (en) * 2006-02-23 2007-09-06 Denso Corp Enzyme functional electrode, biosensor and fuel cell

Similar Documents

Publication Publication Date Title
Dzyadevych et al. Amperometric enzyme biosensors: Past, present and future
US5665222A (en) Soybean peroxidase electrochemical sensor
US5368707A (en) Convenient determination of trace lead in whole blood and other fluids
Conrath et al. A novel enzyme sensor for the determination of inorganic phosphate
Crumbliss et al. A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood
Bertocchi et al. Amperometric ammonium ion and urea determination with enzyme-based probes
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Kirstein et al. Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase
Bu et al. NAD (P) H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels
Lobo-Castanon et al. A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate
Castilho et al. Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples
US20170191105A1 (en) Enzyme electrode
Bardeletti et al. Amperometric enzyme electrodes for substrate and enzyme activity determinations
Laurinavicius et al. Amperometric glyceride biosensor
Aydın et al. Amperometric enzyme electrode for L (+)-lactate determination using immobilized L (+)-lactate oxidase in poly (vinylferrocenium) film
Van Os et al. Glucose detection at bare and sputtered platinum electrodes coated with polypyrrole and glucose oxidase
Arai et al. Pyruvate sensor based on pyruvate oxidase immobilized in a poly (mercapto-p-benzoquinone) film
JP2000262281A (en) Crosslinked glucose dehydrogenase
Shu et al. A chemically modified carbon paste electrode with d-lactate dehydrogenase and alanine aminotranferase enzyme sequences for d-lactic acid analysis
JPS63246651A (en) Biosensor
Pereira et al. Reagentless biosensor for isocitrate using one step modified Pt-Ir microelectrode
Yao et al. Electroanalytical properties of aldehyde biosensors with a hybrid-membrane composed of an enzyme film and a redox Os-polymer film
Popescu et al. Peroxidase‐glucose oxidase‐poly (amphiphilic pyrrole) bioelectrode for selectively mediated amperometric detection of glucose
Liu et al. Polymers and enzyme biosensors
Weber et al. Developmental aspects of amperometric ATP biosensors based on entrapped enzymes