JP2000261959A - System and method for suppressing grounding - Google Patents

System and method for suppressing grounding

Info

Publication number
JP2000261959A
JP2000261959A JP11062198A JP6219899A JP2000261959A JP 2000261959 A JP2000261959 A JP 2000261959A JP 11062198 A JP11062198 A JP 11062198A JP 6219899 A JP6219899 A JP 6219899A JP 2000261959 A JP2000261959 A JP 2000261959A
Authority
JP
Japan
Prior art keywords
current
zero
phase
ground fault
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11062198A
Other languages
Japanese (ja)
Other versions
JP3841248B2 (en
Inventor
Tsumayuki Nagai
詳幸 長井
Takashi Ganji
崇 元治
Hiroshi Endo
弘 遠藤
Masaru Isozaki
優 磯崎
Hiromi Iwai
弘美 岩井
Toshiro Matsumoto
俊郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP06219899A priority Critical patent/JP3841248B2/en
Publication of JP2000261959A publication Critical patent/JP2000261959A/en
Application granted granted Critical
Publication of JP3841248B2 publication Critical patent/JP3841248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize a reverse-phase current to be injected into a system, and to prevent the return of grounding current by suppressing the grounding current by a supplied antiphase current. SOLUTION: When a grounding fault occurs, the phase voltages of bus-bars 3a-3c becomes unbalanced, and a zero-phase sequence voltage V0 is detected in a zero-phase sequence transformer, and zero-phase sequence current I02 I03 are detected by the zero-phase sequence current transformer 7b, 7c of distribution lines 5a-5c, 6a-6c. The zero-phase sequence current transformer 7a of distribution lines 4a-4c detects a resultant current Ig2 of grounding resistance component currents Ira, Irb, Irc from the grounding neural liens of the zero-phase sequence current transformers, and the zero-phase sequence currents I02 I03 detected by the zero-phase sequence current transformers 7b, 7c. From the detected zero-phase sequence voltage V0, zero-phase sequence currents I02 I03 and resultant current Ig2, a grounding fault detector 10 decides that a grounding fault occured. Consequently, a grounding current can always be suppressed stably without returning it, and to obtain in a grounding suppressing system which facilitates extinction of a grounding arc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力配電線に生じ
る瞬時地絡あるいは永続的地絡において、地絡に起因し
て発生する地絡電流を抑制することによって、地絡その
ものを抑制し、さらには、電気設備技術基準に規定され
ているB種接地工事による接地抵抗値の緩和を行う地絡
抑制システムおよび地絡抑制方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses a ground fault itself by suppressing a ground fault current generated due to a ground fault in an instantaneous ground fault or a permanent ground fault occurring in a power distribution line. Further, the present invention relates to a ground fault suppression system and a ground fault suppression method for alleviating a grounding resistance value by a class B grounding work specified in the technical standards for electrical equipment.

【0002】[0002]

【従来の技術】従来、電力配電系統において地絡事故が
発生した場合、配電線に地絡電流が流れる。この地絡に
対する対策として、通常の場合、零相変成器により地絡
故障を検出し、零相変流器により故障回線を検出した継
電器が動作し、配電線の遮断器(配電線CB)を開動作
させ当該配電線を無電圧状態にし、1分後、配電線CB
を閉動作させ、当該配電線に再送電するという再閉路動
作を行う。
2. Description of the Related Art Conventionally, when a ground fault has occurred in a power distribution system, a ground fault current flows in a distribution line. As a countermeasure against this ground fault, in a normal case, a ground fault is detected by a zero-phase transformer, a relay that detects a faulty circuit by a zero-phase current transformer operates, and a circuit breaker (distribution line CB) of a distribution line is activated. Open the distribution line to a no-voltage state, and after one minute, the distribution line CB
Is closed, and power is retransmitted to the distribution line.

【0003】しかし、配電線と導電物の一時的な接触等
が原因の瞬時地絡が発生した場合は、永久地絡とはなら
ず、地絡事故が除去される場合が多い。このような瞬時
地絡の場合に再閉路動作をさせると、停電を伴うので、
電力供給の信頼度を著しく低下させることになる。
However, when an instantaneous ground fault occurs due to a temporary contact between a distribution line and a conductive material or the like, a permanent ground fault does not occur, and a ground fault accident is often removed. Performing a reclosing operation in the case of such an instantaneous ground fault involves a power failure,
This will significantly reduce the reliability of the power supply.

【0004】そこで、瞬時地絡の場合には、配電線CB
が動作する以前に、強制接地装置により瞬時に地絡電流
を配電線から迂回させる方法や、消弧リアクトルを装備
して地絡電流の一部を相殺する方法により、地絡電流を
抑制して配電線CBを動作させない手法が考案されてい
る。
Therefore, in the case of an instantaneous ground fault, the distribution line CB
Before the system operates, the ground fault current can be suppressed by a method of instantaneously bypassing the ground fault current from the distribution line by the forced grounding device, or a method of equipping an arc-extinguishing reactor to offset part of the ground fault current. A method of not operating the distribution line CB has been devised.

【0005】しかし、地絡電流を迂回させる方法(送電
側の電源に迂回回路を設ける)では、地絡電流の電流値
が低減されるわけではなく、電気設備技術基準に定めら
れているB種接地工事により、地絡電流値に応じた接地
抵抗が必要となり、多大な工事費が必要となる。
However, the method of bypassing the ground fault current (providing a bypass circuit in the power source on the power transmission side) does not necessarily reduce the current value of the ground fault current, and does not reduce the type B of the electrical equipment technical standard. The grounding work requires a grounding resistance according to the ground fault current value, which requires a large construction cost.

【0006】また、消弧リアクトルを装備して地絡電流
の一部を相殺する方法(コンデンサCに対してコイルL
を挿入したLC共振回路を設ける)は、送電側に接地点
があることが必要であり、送電側の形態が限定される。
A method of equipping an arc-extinguishing reactor to cancel a part of a ground fault current (a coil L is connected to a capacitor C)
Is necessary to have a ground point on the power transmission side, and the form of the power transmission side is limited.

【0007】さらに消弧リアクトルを使用しても、相殺
できるのは対地静電容量に基づく地絡電流の基本波成分
であり、抵抗分電流や高調波電流を含む地絡電流の全て
を相殺することは原理的に不可能であり、地絡電流の残
存分の処理が課題となる。
Further, even if an arc-extinguishing reactor is used, only the fundamental component of the ground fault current based on the ground capacitance can be canceled, and all the ground fault currents including the resistance component current and the harmonic current are cancelled. This is impossible in principle, and the processing of the remaining ground fault current is an issue.

【0008】また、配電線亘長の変化により、対地静電
容量が変化する場合、リアクトル容量が一定であれば、
電流補償率が変化してしまうことになる。
Further, when the capacitance to ground changes due to a change in the distribution line length, if the reactor capacity is constant,
The current compensation rate will change.

【0009】[0009]

【発明が解決しようとする課題】そこで、送電形態への
依存性がなく、追加設備を安価に抑え、地絡電流を抑制
することが可能な地絡抑制システムおよび地絡抑制方法
として、地絡電流と逆位相の電流を注入して、地絡電流
を抑制する逆位相電流注入方式が考案された。
Accordingly, a ground fault suppressing system and a ground fault suppressing method which do not depend on the power transmission mode, can suppress additional equipment at low cost, and can suppress the ground fault current are disclosed. An anti-phase current injection method has been devised which suppresses a ground fault current by injecting a current having an opposite phase to the current.

【0010】しかし、逆位相電流注入方式において、近
似的な地絡電流として地絡回線の零相変流路で検出され
る電流を逆位相波形発生装置への入力とした場合、逆位
相波形発生装置への入出力は同じ地絡回線で行われるこ
とになる。
However, in the reverse phase current injection method, when a current detected in the zero-phase variable flow path of the ground fault line is input to the reverse phase waveform generating device as an approximate ground fault current, Input and output to the device will be performed on the same ground fault line.

【0011】従って、逆位相波形発生装置への入力は、
結果的には地絡電流と逆位相電流との残差を与えること
になる。
Therefore, the input to the antiphase waveform generator is
As a result, a residual between the ground fault current and the antiphase current is given.

【0012】このため、地絡電流は抑制されては復帰
し、復帰しては抑制されるという繰り返しが起こり、地
絡電流が復帰することにより、地絡アークが消弧しずら
いという問題が生じる。
For this reason, the ground fault current is suppressed and then restored, and then returned and then suppressed. This causes a problem that the ground fault current is hardly extinguished due to the return of the ground fault current. Occurs.

【0013】ここで、従来における地絡電流抑制原理
を、図6および図7に基づいて説明する。
Here, the conventional ground fault current suppressing principle will be described with reference to FIGS. 6 and 7. FIG.

【0014】図6は、地絡電流Ig を抑制する等価回路
を示す。100は、等価電源である。101は、地絡回
線である。102および103は健全回線である。C
1,C2およびC3は、それぞれ地絡回線101,健全
回線102および103の対地静電容量である。104
は接地形計器用変圧器(GVT;Grounding Voltage Tr
ansformer )からなる零相変圧器の一次側接地中性線で
あり、抵抗RN は零相変圧器に設けてある制限抵抗を一
次側換算した等価抵抗である。105は地絡事故検出装
置である。106は地絡電流Ig を抑制する逆位相電流
V を発生する逆位相波形発生装置である。107は地
絡回線101に設置した零相変流器に対応する等価零相
変流器であり、108および109は健全回線102お
よび103に設置した零相変流器である。なお、地絡回
線101の零相変流器は、その特性上、自回線分の電流
は検出することができない。
[0014] Figure 6 shows a suppressing equivalent circuit ground fault current I g. 100 is an equivalent power supply. 101 is a ground fault line. 102 and 103 are healthy lines. C
1, C2 and C3 are the ground capacitances of the ground fault line 101 and the healthy lines 102 and 103, respectively. 104
Is a grounding type voltage transformer (GVT; Grounding Voltage Tr)
a primary ground neutral line of zero-phase transformer comprising a ansformer), resistor R N is an equivalent resistance converted the primary side of Aru limiting resistor provided in the zero-phase transformer. 105 is a ground fault detection device. 106 is the reverse phase waveform generator for generating a reverse phase current I V suppresses the ground fault current I g. 107 is an equivalent zero-phase current transformer corresponding to the zero-phase current transformer installed on the ground fault line 101, and 108 and 109 are zero-phase current transformers installed on the healthy lines 102 and 103. The zero-phase current transformer of the ground fault line 101 cannot detect the current of its own line due to its characteristics.

【0015】健全回線102の零相変流器108で検出
される電流は零相電流I02、健全回線103の零相変流
器109で検出される電流は零相電流I03である。ま
た、零相変圧器の一次側接地中性線104には抵抗分電
流IRNが流れる。一方、地絡回線101の本来の零相変
流器で検出される電流はI02,I03,IRNのベクトル和
となる。
The current detected by the zero-phase current transformer 108 of the healthy line 102 is a zero-phase current I 02 , and the current detected by the zero-phase current transformer 109 of the healthy line 103 is a zero-phase current I 03 . Further, a resistance component current I RN flows through the primary-side grounded neutral wire 104 of the zero-phase transformer. On the other hand, the current detected by the original zero-phase current transformer of the ground fault line 101 is a vector sum of I 02 , I 03 , and I RN .

【0016】ここで、地絡電流のうちの地絡回線101
で発生する零相電流をIg1(=I01)、地絡電流のうち
の健全回線102,103および零相変圧器の一次側接
地中性線104から発生する電流をIg2(=I02+I03
+IRN)、また、地絡電流のうちの健全回線102,1
03のみから発生する電流をIg3(=I02+I03)とす
ると、地絡電流Ig は、
Here, the ground fault line 101 of the ground fault current
The current generated by the zero-phase current I g1 (= I 01 ) and the current of the ground fault current generated from the healthy lines 102 and 103 and the primary side neutral neutral line 104 of the zero-phase transformer are represented by I g2 (= I 02). + I 03
+ I RN ), and the healthy line 102,1 of the ground fault current.
When the current generated from the 03 only and I g3 (= I 02 + I 03), ground fault current I g is,

【0017】[0017]

【数1】 Ig =I01+I02+I03+IRN =Ig1+Ig2 …(1) となる。I g = I 01 + I 02 + I 03 + I RN = I g1 + I g2 (1)

【0018】次に、地絡電流の抑制動作は次のようにな
る。
Next, the operation of suppressing the ground fault current is as follows.

【0019】1.地絡回線101の等価零相変流器10
7では、地絡電流Ig のうちの健全回線および零相変圧
器の一次側接地中性線からの流入分Ig2と逆位相電流I
V との残差ΔIg2(=Ig2+IV )が検出される。
1. Equivalent zero-phase current transformer 10 of ground fault line 101
In FIG. 7, the ground current I g , the inflow I g2 from the healthy line and the primary-side grounded neutral line of the zero-phase transformer, and the antiphase current I g
Residuals and V ΔI g2 (= I g2 + I V) is detected.

【0020】2.検出された残差ΔIg2は、地絡事故検
出装置105を通じて、逆位相波形発生装置106に入
力され、そこで残差ΔIg2に応じた逆位相電流IV を生
成、注入する。
2. The detected residual ΔI g2 is input to the antiphase waveform generating device 106 through the ground fault detection device 105, and generates and injects an antiphase current IV corresponding to the residual ΔI g2 there.

【0021】3.逆位相電流IV の注入当初は、残差Δ
g2は小さくなり、次の時点での逆位相電流IV の生成
・注入量は減少する。
3. Initially injection of opposite phase current I V, the residual Δ
I g2 becomes smaller, and the amount of generation and injection of the anti-phase current IV at the next point in time decreases.

【0022】4.地絡が継続している場合、逆位相電流
V が減少した分、再度、残差ΔIg2が大きくなる。
4. When the ground fault continues, the residual ΔI g2 increases again by an amount corresponding to the decrease in the antiphase current IV .

【0023】5.1〜4の処理を繰り返し、ある一定レ
ベルで抑制率が落ち着く。
The processing of 5.1 to 4 is repeated, and the suppression rate is settled at a certain level.

【0024】このようにして、地絡電流のうちの健全回
線の零相電流分および零相変圧器の一次側接地中性線か
らの流入分の合成電流Ig2(=I02+I03+IRN)が減
少する。よって、これに応じて地絡電流Ig (=Ig1
g2)も減少する。
In this manner, the combined current I g2 (= I 02 + I 03 + I RN) of the zero-phase current of the healthy line and the inflow from the grounded neutral line on the primary side of the zero-phase transformer of the ground fault current. ) Decreases. Therefore, the ground fault current I g (= I g1 +
Ig2 ) also decreases.

【0025】図7は、従来における地絡電流Ig の抑制
原理を示すベクトル図であって、図7(a)は逆位相波
形発生装置を適用しない場合の通常の地絡状態、図7
(b)は図7(a)の状態において逆位相波形発生装置
を適用した場合のある時点での状態、図7(c)は図7
(a)の状態において逆位相波形発生装置を適用した場
合の図7(b)とは異なる時点での状態を示すものであ
る。残差ΔIg2(=Ig2+Iv )は図6の零相変流器1
07で常にモニタされている。地絡当初は、残差ΔIg2
はIg2に等しく、それに応じた逆位相電流Iv (=−Δ
g2)を生成、注入する(図7(a),(b)参照)。
注入後、図7(b)に示すように、残差ΔIg2は小さく
なり、その分地絡電流Ig も抑制される。しかし、残差
ΔIg2を常にモニタしているため、次の瞬間では、逆位
相電流IV は図7(c)に示すような小さな電流となっ
てしまう。また、I02,I03,IRNの各電流は以前のま
ま流れようとするため、Ig2(=I02+I03+IRN)は
元の大きさに戻ろうとする。そのため、Ig2の抑制効果
が小さくなり、地絡電流Ig (=Ig1+Ig2)の抑制効
果も小さくなる。
FIG. 7 is a vector diagram showing the principle of suppressing the ground fault current I g in prior art, FIG. 7 (a) in the case of not applying the antiphase waveform generator normal ground fault condition, Figure 7
7B shows a state at a certain point in time when the anti-phase waveform generator is applied in the state of FIG. 7A, and FIG.
FIG. 8B shows a state at a time different from that in FIG. 7B when the antiphase waveform generator is applied in the state of FIG. The residual ΔI g2 (= I g2 + I v ) is the zero-phase current transformer 1 in FIG.
07 is always monitored. At the beginning of the ground fault, the residual ΔI g2
Is equal to I g2 , and the corresponding antiphase current I v (= −Δ
I g2 ) is generated and injected (see FIGS. 7A and 7B).
After injection, as shown in FIG. 7 (b), the residual [Delta] I g2 decreases, correspondingly grounding current I g is also suppressed. However, since the residual ΔI g2 is constantly monitored, at the next instant, the opposite phase current IV becomes a small current as shown in FIG. 7C. In addition, since each of the currents I 02 , I 03 , and I RN tends to flow as before, I g2 (= I 02 + I 03 + I RN ) attempts to return to the original size. Therefore, the effect of suppressing I g2 is reduced, and the effect of suppressing the ground fault current I g (= I g1 + I g2 ) is also reduced.

【0026】このような図7(b),(c)の動作を繰
り返すことにより、前述したように、地絡電流Ig が復
帰して、地絡アークが消弧しずらいという問題が残る。
[0026] Such FIG. 7 (b), the by repeating the operations of (c), as described above, and the ground fault current I g is restored, ground fault arc remains a problem that extinguishing to hesitation .

【0027】そこで、本発明の目的は、系統に注入する
逆位相電流を安定させ、地絡電流の復帰を防ぎ、地絡ア
ークが消弧しやすい地絡抑制システムおよび地絡抑制方
法を提供することにある。
Accordingly, an object of the present invention is to provide a ground fault suppressing system and a ground fault suppressing method which stabilize the reverse phase current injected into the system, prevent the return of the ground fault current, and easily extinguish the ground fault arc. It is in.

【0028】[0028]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、共通の母線に接続された複数回線
の配電線を備える電力配電線における地絡電流を抑制す
るものであって、前記電力配電線の零相電圧を検出する
零相電圧検出手段および前記配電線の各零相電流を検出
する零相電流検出手段を具えるとともに、前記零相電流
検出手段により検出された電流に基づいて健全回線を判
別する健全相判別手段と、前記判別された健全回線の零
相電流のベクトル和に基づいて近似地絡電流を算出する
近似地絡電流算出手段と、前記算出された近似地絡電流
とは逆位相の逆位相電流を作成する逆位相電流作成手段
と、前記作成された逆位相電流を前記電力配電線に供給
する逆位相電流供給手段とを具え、前記供給された逆位
相電流によって前記地絡電流を抑制するようにすること
によって、地絡抑制システムを構成する。
According to the present invention, a ground fault current in a power distribution line having a plurality of distribution lines connected to a common bus is suppressed. A zero-phase voltage detecting means for detecting a zero-phase voltage of the power distribution line, and a zero-phase current detecting means for detecting each zero-phase current of the power distribution line. Sound phase discriminating means for discriminating a healthy line based on the current, approximate ground fault current calculating means for calculating an approximate ground fault current based on the vector sum of the zero phase current of the determined healthy line, and the calculated An anti-phase current generating means for generating an anti-phase current having an anti-phase with the approximate ground fault current, and an anti-phase current supplying means for supplying the generated anti-phase current to the power distribution line. Previous by antiphase current By so as to suppress the ground fault current, constitutes the land 絡抑 control systems.

【0029】また、本発明によれば、共通の母線に接続
された複数回線の配電線を備える電力配電線における地
絡電流を抑制するものであって、前記電力配電線の零相
電圧を検出する零相電圧検出工程および前記配電線の各
零相電流を検出する零相電流検出手段を具えるととも
に、前記零相電圧および前記零相電流検出工程により検
出された電流に基づいて地絡事故を検出する地絡事故検
出工程と、前記零相電流検出工程により検出された電流
に基づいて健全回線を判別する健全相判別工程と、前記
判別された健全回線の零相電流のベクトル和に基づいて
近似地絡電流を算出する近似地絡電流算出工程と、前記
算出された近似地絡電流とは逆位相の逆位相電流を作成
する逆位相電流作成工程と、前記作成された逆位相電流
を前記電力配電線に供給する逆位相電流供給工程とを具
え、前記供給された逆位相電流によって前記地絡電流を
抑制するようにすることによって、地絡抑制方法を構成
する。
According to the present invention, a ground fault current in a power distribution line having a plurality of distribution lines connected to a common bus is suppressed, and a zero-phase voltage of the power distribution line is detected. And a zero-phase current detection means for detecting each zero-phase current of the distribution line, and a ground fault based on the zero-phase voltage and the current detected in the zero-phase current detection step. Ground fault detection step of detecting the zero phase current detection step, a healthy phase determination step of determining a healthy line based on the current detected in the zero phase current detection step, based on the vector sum of the determined zero phase current of the healthy line An approximate ground-fault current calculating step of calculating an approximate ground-fault current, an anti-phase current generating step of generating an anti-phase current having a phase opposite to the calculated approximate ground-fault current, and the generated anti-phase current. To the power distribution line Comprising a phase opposite current supply step of supplying, by so as to suppress the ground fault current by the supplied antiphase current, constitutes the land 絡抑 system method.

【0030】また、かかる構成において、前記健全回線
の零相電流のベクトル和の算出は、地絡事故発生直後の
過渡状態を経過した後の前記健全回線の零相電流に対し
て行うようにするとよい。
In this configuration, the calculation of the vector sum of the zero-phase current of the healthy line is performed on the zero-phase current of the healthy line after the transient state immediately after the occurrence of the ground fault. Good.

【0031】[0031]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0032】(システム構成)図1は、本発明を表す地
絡抑制システムの構成例を示す。
(System Configuration) FIG. 1 shows a configuration example of a ground fault suppression system according to the present invention.

【0033】配電変電所1の構内において、2は電源
(電源用変圧器)である。この電源2の出力側は、母線
3a〜3cを介して、配電線4a〜4c,5a〜5c、
6a〜6cと接続されている。
In the premises of the distribution substation 1, reference numeral 2 denotes a power supply (power supply transformer). The output side of the power supply 2 is connected to distribution lines 4a to 4c, 5a to 5c, via buses 3a to 3c.
6a to 6c.

【0034】母線3a〜3cには、零相電圧Voを検出
する接地形計器用変圧器(GVT)からなる零相変圧器
8が接続されている。配電線4a〜4c,5a〜5c,
6a〜6cには、零相変流器7a〜7cが接続されてい
る。
The buses 3a to 3c are connected to a zero-phase transformer 8 including a ground-type instrument transformer (GVT) for detecting a zero-phase voltage Vo. Distribution lines 4a-4c, 5a-5c,
Zero-phase current transformers 7a to 7c are connected to 6a to 6c.

【0035】10は、配電線4a〜4c,5a〜5c、
あるいは6a〜6cのうちの事故配電線に流れる近似地
絡電流Ig3(=I02+I03)を検出する地絡電流検出手
段としての地絡事故検出装置である。なお、図1は配電
線4a〜4cが事故配電線となった場合を示している。
この地絡事故検出装置10の入力側は、零相変流器7a
〜7c,零相変圧器8と、計器用変圧器9a〜9cとが
接続されている。また、地絡事故検出装置10の出力側
は、逆位相波形発生装置20と、系統並入用の開閉器4
1とが接続されている。
Reference numeral 10 denotes distribution lines 4a to 4c, 5a to 5c,
Or a ground fault detecting device as ground fault current detecting means for detecting an accident through the distribution line approximation grounding current I g3 (= I 02 + I 03) of the 6 a to 6 c. FIG. 1 shows a case where the distribution lines 4a to 4c are accident distribution lines.
The input side of the ground fault detector 10 is connected to a zero-phase current transformer 7a.
7c, a zero-phase transformer 8 and instrument transformers 9a to 9c are connected. The output side of the ground fault detector 10 is provided with an antiphase waveform generator 20 and a switch 4
1 are connected.

【0036】20は、近似地絡電流Ig3と逆位相の逆位
相電流Iv (=−Ig3)を発生する逆位相電流発生手段
としての逆位相波形発生装置である。この逆位相波形発
生装置20の入力側は、地絡事故検出装置10の出力側
と接続されている。また、逆位相波形発生装置20の出
力側は、注入用変圧器40と接続されている。
[0036] 20 is a reverse phase waveform generator as opposite phase current generating means for generating an approximate ground fault current I g3 opposite phase of opposite phase current I v (= -I g3). The input side of the antiphase waveform generator 20 is connected to the output side of the ground fault detector 10. The output side of the anti-phase waveform generator 20 is connected to the injection transformer 40.

【0037】また、配電変電所1から引き出された配電
線4a〜4c,5a〜5c,6a〜6cには、各々負荷
30, 31,32が接続されている。C01は、配電線4
a〜4cの各相と大地との間の対地静電容量である。C
02は、配電線5a〜5cの各相と大地との間の対地静電
容量である。C03は、配電線6a〜6cの各相と大地と
の間の対地静電容量である。
Loads 30, 31, and 32 are respectively connected to the distribution lines 4a to 4c, 5a to 5c, and 6a to 6c drawn from the distribution substation 1. C 01 is distribution line 4
4a to 4c and the ground capacitance between each phase and the ground. C
02 is a ground capacitance between each phase of the distribution lines 5a to 5c and the ground. C 03 is a ground capacitance between each phase of the distribution lines 6a to 6c and the ground.

【0038】図2は、地絡事故検出装置10の内部構成
を示す。この装置10には、各種信号が入力される入力
部11と、地絡事故を検出するための事故検出部12
と、地絡事故の発生した相と、地絡事故の発生していな
い健全な配電線とを検出する比較部13と、地絡相への
系統並入用の開閉器41の投入指令を発生させる開閉器
投入指令部14と、逆位相波形発生装置20への入力と
なる近似地絡電流Ig3を算出するための演算部15と、
系統並入用の開閉器41への投入指令と近似地絡電流I
g3とを出力する出力部16とから構成されている。
FIG. 2 shows the internal configuration of the ground fault detection device 10. The device 10 includes an input unit 11 to which various signals are input, and an accident detection unit 12 for detecting a ground fault.
And a comparison unit 13 for detecting a phase in which a ground fault has occurred and a sound distribution line in which a ground fault has not occurred, and a command to turn on a switch 41 for system insertion into the ground fault phase. A switch-on commanding unit 14 to be operated, and an arithmetic unit 15 for calculating an approximate ground-fault current Ig3 to be input to the antiphase waveform generator 20;
A command to turn on the switch 41 for system paralleling and the approximate ground fault current I
g3 and an output unit 16 for outputting g3 .

【0039】図3は、逆位相波形発生装置20の内部構
成を示す。この装置20は、逆位相電流発生指令が入力
される入力部21と、入力信号波形と同じ位相波形を生
成する波形生成部22と、生成した波形を反転させる波
形反転部23と、逆位相電流Iv を出力する出力部24
とから構成されている。
FIG. 3 shows the internal configuration of the anti-phase waveform generator 20. The device 20 includes an input section 21 to which an opposite phase current generation command is input, a waveform generating section 22 for generating the same phase waveform as the input signal waveform, a waveform inverting section 23 for inverting the generated waveform, Output unit 24 that outputs I v
It is composed of

【0040】(地絡電流抑制動作)次に、地絡抑制シス
テムの動作について説明する。
(Ground-Fault Current Suppression Operation) Next, the operation of the ground-fault suppression system will be described.

【0041】いま、配電線4a〜4cのうち、c相の配
電線4cに地絡故障が発生したとする。この場合、母線
3aには、配電線4a〜4cのうち、a相の配電線4a
から対地静電容量C01に基づく零相電流i01と、配電線
5a〜5cのうち、a相の配電線5aから対地静電容量
02に基づく零相電流i02と、配電線6a〜6cのう
ち、a相の配電線6aから対地静電容量C03に基づく零
相電流i03と、零相変圧器8の接地中性線8aからの地
絡抵抗分電流のうち、a相に流れる分Iraとの合成電流
が破線矢印のごとく流れる。
Assume that a ground fault has occurred in the c-phase distribution line 4c among the distribution lines 4a to 4c. In this case, among the distribution lines 4a to 4c, the bus 3a has an a-phase distribution line 4a.
, The zero-phase current i 01 based on the ground capacitance C 01 , the zero-phase current i 02 based on the ground capacitance C 02 from the a-phase distribution line 5a among the distribution lines 5a to 5c, and the distribution lines 6a to 6c 6c, the zero-phase current i 03 based on the ground capacitance C 03 from the a-phase distribution line 6a and the ground-fault resistance component current from the grounding neutral line 8a of the zero-phase transformer 8 to the a-phase The combined current with the flowing amount Ira flows as indicated by the dashed arrow.

【0042】母線3bには、配電線4a〜4cのうち、
b相の配電線4bから対地静電容量C01に基づく零相電
流i01と、配電線5a〜5cのうち、b相の配電線5b
から対地静電容量C02に基づく零相電流i02と、配電線
6a〜6cのうち、b相の配電線6bから対地静電容量
03に基づく零相電流i03と、零相変圧器8の接地中性
線8aからの地絡抵抗分電流のうち、b相に流れる分I
rbとの合成電流が破線矢印のごとく流れる。
The bus 3b includes, among the distribution lines 4a to 4c,
from b-phase distribution line 4b and a zero-phase current i 01 based on the earth capacitance C 01, of the distribution line bodies 5a to 5c, b-phase distribution line 5b
, A zero-phase current i 02 based on the ground capacitance C 02 , a zero-phase current i 03 based on the ground capacitance C 03 from the b-phase distribution line 6b among the distribution lines 6a to 6c, and a zero-phase transformer. 8 of the ground-fault resistance current from the ground neutral wire 8a
The combined current with rb flows as indicated by the dashed arrow.

【0043】母線3cには、配電線5a〜5cのうち、
c相の配電線5cから対地静電容量C02に基づく零相電
流i02と、配電線6a〜6cのうち、c相の配電線6c
から対地静電容量C03に基づく零相電流i03と、零相変
圧器8の接地中性線8aからの地絡抵抗分電流のうち、
c相に流れる分Ircとの合成電流が破線矢印のごとく流
れる。
The bus 3c includes the distribution lines 5a to 5c
a zero-phase current i 02 based on the earth capacitance C 02 from c-phase distribution line 5c, of the distribution line 6 a to 6 c, c-phase distribution line 6c
Out of the zero-phase current i 03 based on the ground capacitance C 03 and the ground-fault resistance current from the ground neutral line 8 a of the zero-phase transformer 8.
A combined current with the current I rc flowing in the c-phase flows as indicated by the dashed arrow.

【0044】母線3a〜3cに流れる零相電流と抵抗分
電流との合成電流は、最終的には、事故配電線4a〜4
cの事故相4cの地絡点Gに破線矢印のごとく流れ込
む。すなわち、母線3a,3bに流れる零相電流と抵抗
分電流の各合成電流は、破線矢印のごとく電源2を介し
て母線3cに流れ、再度、合成電流となり、事故回線4
a〜4cの事故相4cに流れ、地絡点Gに流れていく。
The combined current of the zero-phase current and the resistance component current flowing through the buses 3a to 3c finally becomes the fault distribution lines 4a to 4c.
Flow into the ground fault point G of the accident phase 4c as shown by the dashed arrow. That is, the combined currents of the zero-phase current and the resistance component current flowing in the buses 3a and 3b flow to the bus 3c via the power supply 2 as shown by the dashed arrows, become the combined current again, and
It flows to the accident phase 4c of a to 4c, and flows to the ground fault point G.

【0045】一方、地絡事故時には、母線3a〜3cの
各相電圧が不平衡となり、零相変圧器8において零相電
圧Voが検出され、また、配電線5a〜5c,6a〜6
cの各零相変流器7b,7cにおいて各零相電流I02
03が検出される。配電線4a〜4cの零相変流器7a
では、零相変流器7b,7cで検出された零相電流
02,I03と零相変圧器8の接地中性線8aからの地絡
抵抗分電流Ira,Irb,Ircとの合成電流Ig2が検出さ
れる。これら検出された零相電圧Vo、零相電流I02
03およびIg2から、地絡事故検出装置10において地
絡事故が発生したことを判別することができる。
On the other hand, in the event of a ground fault, the phase voltages of the buses 3a to 3c become unbalanced, the zero-phase voltage Vo is detected by the zero-phase transformer 8, and the distribution lines 5a to 5c, 6a to 6
c, each zero-phase current I 02 ,
I 03 is detected. Zero-phase current transformer 7a of distribution lines 4a to 4c
Then, the zero-phase currents I 02 , I 03 detected by the zero-phase current transformers 7b, 7c and the ground-fault resistance component currents I ra , I rb , I rc from the grounding neutral line 8a of the zero-phase transformer 8 are combined current I g2 of is detected. These detected zero-phase voltage Vo, zero-phase current I 02 ,
It is possible to determine that a ground fault has occurred in the ground fault detection device 10 from I 03 and I g2 .

【0046】また、地絡事故検出装置10では、母線3
a〜3cに接続された計器用変圧器9a〜9cで検出さ
れる各相の相電圧Va〜Vcを比較することによって、
地絡相を容易に判別することができる。
In the ground fault accident detecting apparatus 10, the bus 3
By comparing the phase voltages Va to Vc of the respective phases detected by the instrument transformers 9a to 9c connected to the a to 3c,
The ground fault phase can be easily determined.

【0047】なお、各健全回線の各相を流れる零相電流
02,i03と各健全回線の零相電流I02,I03、および
地絡回線の零相変流器で検出される電流Ig2との関係
は、次のようになっている。
The zero-phase currents i 02 , i 03 flowing through each phase of each healthy line, the zero-phase currents I 02 , I 03 of each healthy line, and the currents detected by the zero-phase current transformer of the ground fault line The relationship with Ig2 is as follows.

【0048】[0048]

【数2】 Ig2=I02+I03+Ira+Irb+Irc …(2)I g2 = I 02 + I 03 + I ra + I rb + I rc (2)

【0049】[0049]

【数3】I02=3i02 …(3)## EQU3 ## I 02 = 3i 02 (3)

【0050】[0050]

【数4】I03=3i03 …(4) ここで、図2に示す地絡事故検出装置10の内部処理を
詳細に説明する。
## EQU4 ## I 03 = 3i 03 (4) Here, the internal processing of the ground fault detecting apparatus 10 shown in FIG. 2 will be described in detail.

【0051】入力部11には、零相電圧Voと、各零相
変流器で検出される電流I02,I03,Ig2と、各相の相
電圧Va〜Vcとが入力される。事故検出部12では、
零相電圧Voと各零相変流器で検出される電流I02,I
03,Ig2の両方の大きさを見て、両方とも変化が生じた
とき(AND条件)に地絡事故と判断する。この判断時
における零相変流器で検出される電流は、少なくとも1
つの大きさを見ればよい。
The input section 11 receives the zero-phase voltage Vo, the currents I 02 , I 03 , and Ig 2 detected by the respective zero-phase current transformers, and the phase voltages Va to Vc of the respective phases. In the accident detection unit 12,
Zero-phase voltage Vo and currents I 02 and I detected by each zero-phase current transformer
Looking at both magnitudes of 03 and Ig2 , when both change (AND condition), it is determined that a ground fault has occurred. At this time, the current detected by the zero-phase current transformer is at least 1
Just look at the two sizes.

【0052】このようにして地絡事故の検出が認められ
た場合、比較部13において各相の相電圧Va〜Vcの
大きさを比較して、最も小さい値の相を地絡相と判別す
る。
When the ground fault is detected in this way, the comparing unit 13 compares the magnitudes of the phase voltages Va to Vc of each phase, and determines the phase having the smallest value as the ground fault phase. .

【0053】また、比較部13では、零相電圧と、零相
変流器で検出される電流I02,I03,Ig2の大きさおよ
び位相差により、地絡回線と健全回線とを区別すること
によって、近似地絡電流Ig2と、健全回線に流れる零相
電流I02,I03とを区別する。なお、この判別方法とし
ては、配電系統に一般的に使用されている方向継電器と
同じ原理を用いる。また、各零相変流器で検出される電
流はそのピーク値同士を比較して、ピーク値が最大の回
線を地絡回線と判別する。
The comparing section 13 distinguishes a ground fault line from a healthy line based on the zero-phase voltage and the magnitudes and phase differences of the currents I 02 , I 03 , and I g2 detected by the zero-phase current transformer. By doing so, the approximate ground fault current I g2 is distinguished from the zero-phase currents I 02 and I 03 flowing through the healthy line. In addition, the same principle as that of the direction relay generally used in the distribution system is used for this determination method. Further, the peak values of the currents detected by the respective zero-phase current transformers are compared with each other, and a line having the maximum peak value is determined as a ground fault line.

【0054】開閉器投入指令部14では、比較部13か
ら出力された地絡相判別信号を受け、注入用変圧器40
を地絡相に連係する開閉器41への投入指令信号Itを
出力する。
The switch closing command section 14 receives the ground fault phase discrimination signal output from the comparing section 13 and receives the signal from the injection transformer 40.
Is output to the switch 41 linked to the ground fault phase.

【0055】一方、演算部15では、比較部13によっ
て判別された健全回線5a〜5c,6a〜6cの零相電
流I02,I03に基づいてべクトル和を求めて近似地絡電
流Ig3を算出する。このベクトル和は、瞬時値を加算す
ることによって求められる。
On the other hand, the arithmetic unit 15 obtains the vector sum based on the zero-phase currents I 02 and I 03 of the healthy circuits 5 a to 5 c and 6 a to 6 c determined by the comparing unit 13 to obtain an approximate ground fault current I g3. Is calculated. This vector sum is obtained by adding instantaneous values.

【0056】また、ベクトル和の演算は、地絡事故を検
出した後の健全回線5a〜5c,6a〜6cの零相電流
02,I03に対して実施するとよく、また、過渡状態を
経過した後の健全回線5a〜5c,6a〜6cの零相電
流I02,I03に対して実施するようにしてもよい。
The calculation of the vector sum is preferably performed on the zero-phase currents I 02 and I 03 of the healthy lines 5a to 5c and 6a to 6c after the detection of the ground fault. It may be performed for the zero-phase currents I 02 and I 03 of the healthy circuits 5a to 5c and 6a to 6c after the above.

【0057】なお、この過渡状態を経過した後の健全回
線の零相電流に対してベクトル和の演算を行う場合に、
地絡事故検出装置10内にタイマー機能を設けておい
て、地絡事故検出後から所定の時間、例えば100ms
程度経過した後の健全回線の零相電流の和に対して実施
するようにすることができる。
When the vector sum is calculated with respect to the zero-phase current of the healthy line after passing this transient state,
A timer function is provided in the ground fault detector 10, and a predetermined time, for example, 100 ms after the ground fault is detected.
This can be performed for the sum of the zero-phase currents of the healthy line after a certain degree has passed.

【0058】また、地絡事故を検出した後の過渡状態に
おいて検出される健全回線の零相電流は不規則な波形
で、かつ、高周波成分を有するものとなっているが、過
渡状態を経過した後で検出される健全回線の零相電流は
安定した波形であり、かつ過渡状態におけるほど高い高
周波成分を有するものではないため、その信号処理は容
易となる。従って、上記のような、過渡状態を経過した
後の健全回線の零相電流に対してベクトル和の演算を行
うという構成とすることにより、過渡期間をマスキング
することによって地絡事故検出後の例えば100ms程
度の多少の時間は無駄時間となるものの、健全回線の零
相電流に対する信号処理手段を簡素な構成とすることが
できるため、地絡抑制システムの低コスト化が可能とな
る。
Further, the zero-phase current of the healthy line detected in the transient state after the detection of the ground fault has an irregular waveform and a high frequency component. Since the zero-phase current of a healthy line detected later has a stable waveform and does not have a high-frequency component as high as in a transient state, its signal processing is facilitated. Therefore, as described above, by calculating the vector sum for the zero-phase current of the healthy line after the transient state has passed, the transient period is masked to detect the ground fault accident. Although a little time of about 100 ms is a waste of time, the signal processing means for the zero-phase current in a healthy line can be made simple, so that the cost of the ground fault suppression system can be reduced.

【0059】このようにして算出した近似地絡電流Ig3
は、出力部16を介して逆位相波形発生装置20へと出
力され、一方、投入指令信号Itは出力部16を介して
系統並入用の開閉器41へと出力される。
The approximate ground fault current I g3 calculated in this manner
Is output to the antiphase waveform generator 20 via the output unit 16, while the closing command signal It is output to the switch 41 for system parallelization via the output unit 16.

【0060】逆位相波形発生装置20において、入力部
21には、近似地絡電流Ig3が入力される。波形生成部
22では、入力された近似地絡電流信号と同じ電流波形
を随時生成する。波形反転部23では、波形生成部22
で生成した電流波形に、地絡電流に対して逆位相となる
ように、反転処理を施す。このようにして生成した逆位
相電流Iv は、出力部24から注入用変圧器40に出力
される。
In the anti-phase waveform generator 20, the approximate ground fault current Ig 3 is input to the input section 21. The waveform generator 22 generates the same current waveform as the input approximate ground fault current signal as needed. In the waveform inverting unit 23, the waveform generating unit 22
Is inverted so that the current waveform generated in step (1) has an opposite phase to the ground fault current. The anti-phase current I v thus generated is output from the output unit 24 to the injection transformer 40.

【0061】そして、注入用変圧器40に出力された逆
位相電流Iv は、実線矢印のごとく母線3cを経て、地
絡回線4a〜4cの地絡相4cに流れ、地絡点Gに流れ
込み、地絡電流Ig を抑制する。
The anti-phase current I v output to the injection transformer 40 flows through the bus 3c as shown by the solid line arrow, flows into the ground fault phase 4c of the ground fault lines 4a to 4c, and flows into the ground fault point G. , suppressing the ground fault current I g.

【0062】なお、上述の図1の地絡抑制システムにお
いて、注入用変圧器40と並列に数Ωの抵抗を有する誤
動作時保護用抵抗回路42が設けられている。図1のシ
ステムにおいて万一地絡相の誤判別により注入用変圧器
40が健全相に接続された場合でも、上記の抵抗回路4
2の抵抗が配電系統側で注入用変圧器40の変圧比の2
乗に比例して作用することにより、異相地絡短絡による
短絡電流を小さくすることができる。
In the above-described ground fault suppression system shown in FIG. 1, a malfunction protection resistor circuit 42 having a resistance of several Ω is provided in parallel with the injection transformer 40. In the system shown in FIG. 1, even if the injection transformer 40 is connected to the sound phase due to erroneous determination of the ground fault phase, the above-described resistance circuit 4
2 is the transformation ratio of the injection transformer 40 on the distribution system side.
By acting in proportion to the power, a short-circuit current due to a different-phase ground fault short-circuit can be reduced.

【0063】(地絡電流抑制原理)次に、地絡電流抑制
原理を、図4および図5に基づいて具体的に説明する。
(Principle of Ground Fault Current Suppression) Next, the principle of ground fault current suppression will be specifically described with reference to FIGS.

【0064】図4は、地絡電流Ig を抑制する等価回路
を示す。なお,ここでは、前述した図6の等価回路と比
較して説明するため、同一部分には同一符号を用いる。
[0064] Figure 4 shows a suppressing equivalent circuit ground fault current I g. Note that, here, the same reference numerals are used for the same portions, for the sake of comparison with the above-described equivalent circuit of FIG.

【0065】地絡電流Ig の抑制動作は、次のようにな
る。
[0065] land suppressing operation of the fault current I g is as follows.

【0066】(1)地絡電流Ig のうちの、各健全回線
102,103に流れる零相電流I02,I03の和と接地
形計器用変圧器(GVT)からなる零相変圧器の一次側
接地中性線104から流れる抵抗分電流IRNとの合成電
流Ig2(=I02+I03+IRN)と逆位相電流Iv との残
差(=Ig2+Iv =I02+I03+IRN+Iv )はモニタ
せず、各健全回線の零相電流の和Ig3(=I02+I03
のみをモニタする。
[0066] (1) location of the fault current I g, of the zero-phase transformers each consisting of healthy zero-phase flows through the line 102 and 103 current I 02, the sum and the ground-type instrument transformers of I 03 (GVT) The residual (= I g2 + I v = I 02 + I 03 ) between the combined current I g2 (= I 02 + I 03 + I RN ) with the resistance component current I RN flowing from the primary side grounded neutral wire 104 and the opposite phase current I v + I RN + I v ) is not monitored, and the sum I g3 (= I 02 + I 03 ) of the zero-phase current of each healthy line is not monitored.
Monitor only.

【0067】(2)各健全回線の零相電流の和Ig3(=
02+I03)に従って逆位相電流Ivを生成し、配電系
統に注入する。
(2) The sum I g3 (=
I 02 + I 03 ) to generate an antiphase current I v and inject it into the distribution system.

【0068】(3)地絡電流Ig (=I01+I02+I03
+IRN)のうち、各健全回線の零相電流の和Ig3(=I
02+I03)の分を抑制することにより、地絡電流Ig
抑制する。
(3) Ground fault current I g (= I 01 + I 02 + I 03
+ I RN ), the sum of the zero-phase currents I g3 (= I
02 + min by inhibiting the I 03), inhibiting the ground fault current I g.

【0069】(4)各健全回線の零相電流は、地絡事故
原因が除去されない限り流れ続けるため、地絡電流Ig
と逆位相電流Iv との残差が小さくなっても、逆位相電
流Ivの生成・注入量は減少せず、安定的に地絡電流を
抑制する。
[0069] (4) zero-phase current of each sound line, in order to continue to flow as long as the ground fault cause of the accident is not removed, the ground fault current I g
Even if the residual between the anti-phase current I v and the anti-phase current I v becomes small, the amount of generation and injection of the anti-phase current I v does not decrease, and the ground fault current is stably suppressed.

【0070】図5は、本発明による地絡電流Ig の抑制
原理を示すベクトル図であって、図5(a)は逆位相波
形発生装置を適用しない場合の通常の地絡状態、図5
(b)は図5(a)の状態において逆位相波形発生装置
を適用した場合の状態を示すものである。図5(a)に
示される各健全回線の零相電流I02,I03が図4の等価
回路の零相変流器108,109によりそれぞれ検出さ
れ、その和Ig3(=I02+I03)が常にモニタされてい
る。このIg3に従って図5(b)に示されるように逆位
相電流IV (=−Ig3)が生成、注入されることによ
り、地絡電流Ig のうち、Ig3の分が抑制され、地絡電
流Ig も抑制される。
[0070] Figure 5 is a vector diagram showing the principle of suppressing the ground fault current I g according to the invention, FIG. 5 (a) in the case of not applying the antiphase waveform generator normal ground fault condition, Figure 5
FIG. 5B shows a state in which the anti-phase waveform generator is applied in the state of FIG. Zero-phase currents I 02 and I 03 of each healthy line shown in FIG. 5A are detected by the zero-phase current transformers 108 and 109 of the equivalent circuit of FIG. 4, respectively, and the sum I g3 (= I 02 + I 03) is obtained. ) Is always monitored. The antiphase current I V (= -I g3) As shown in FIG. 5 (b) in accordance with I g3 is generated by being injected, among the ground fault current I g, min I g3 is suppressed, ground fault current I g is also suppressed.

【0071】なお、地絡電流Ig と各回線の零相電流お
よび零相電圧器の一次側接地中性線で流れる抵抗分電流
との関係についてもう一度整理しておくと次の通りであ
る。
[0071] Incidentally, as follows idea to arrange again the relationship between the resistance component current flowing in the primary side ground neutral line of the ground fault current I g and the zero-phase current and zero-phase voltage unit for each line.

【0072】[0072]

【数5】 Ig =I01+I02+I03+IRN =Ig1+Ig3+IRN =Ig1+Ig2 …(5) ここで、 Ig1=I01g2=Ig3+IRNg3=I02+I0301:地絡回線101自身で流れる零相電流であり、零
相変流器では検出できない電流である。
I g = I 01 + I 02 + I 03 + I RN = I g1 + I g3 + I RN = I g1 + I g2 (5) where I g1 = I 01 Ig 2 = I g3 + I RN I g3 = I 02 + I 03 I 01 : Zero-phase current flowing through the ground fault line 101 itself, which cannot be detected by the zero-phase current transformer.

【0073】I02:健全回線102で流れる零相電流。I 02 : Zero-phase current flowing in the healthy line 102

【0074】I03:健全回線103で流れる零相電流。I 03 : Zero-phase current flowing in the healthy line 103

【0075】IRN:零相変圧器の一次側接地中性線10
4で流れる抵抗分電流以上のように、本発明による地絡
抑制システムおよび地絡抑制方法では、従来のように地
絡回線に流れる地絡電流Ig のうちの、各健全回線に流
れる零相電流と零相変圧器の一次側接地中性線から流れ
る抵抗分電流IRNとの合成電流Ig2(=I02+I03+I
RN)と逆位相電流IV との残差(=Ig2+IV =I02
03+IRN+IV )をモニタするのではなく、各健全回
線の零相電流の和Ig3(=I02+I03)のみをモニタす
るようにしているため、地絡電流Ig を復帰させること
なく安定的に抑制することが可能となる。
I RN : Neutral wire 10 on the primary side of the zero-phase transformer
As resistance component current or flowing at 4, in the land絡抑control systems and land絡抑system process according to the invention, of the ground fault current I g where as in the prior art flows in the earth絡回line, zero-phase flowing to the healthy line The current I g2 (= I 02 + I 03 + I) obtained by combining the current and the resistance component current I RN flowing from the primary-side neutral wire of the zero-phase transformer.
RN) and residuals opposite phase current I V (= I g2 + I V = I 02 +
I 03 + I RN + I V ) instead of monitoring, because you have to monitor only the sum I g3 (= I 02 + I 03) of the zero-phase current of each sound channel to return the ground fault current I g It is possible to stably suppress the occurrence without any problem.

【0076】なお、図1の構成例では、上述のように、
電力配電線と注入用変圧器40との間に開閉器41を設
け、地絡事故検出装置10からの開閉器投入信号Itに
よる開閉器41の投入操作によって注入用変圧器20を
地絡相に連系する構成としているが、本発明による地絡
抑制システムの構成は上記に限定されるものではなく、
電力配電線の任意の相に注入用変圧器40を接続してお
く構成としてもよい。このような構成とすれば、注入用
変圧器40を連系させる相を選択するのにかかるステッ
プを省略できるので、地絡事故検出装置10の構成を簡
素化することができる。
In the configuration example of FIG. 1, as described above,
A switch 41 is provided between the power distribution line and the injection transformer 40, and the injection transformer 20 is turned into a ground fault phase by a closing operation of the switch 41 by the switch closing signal It from the ground fault detection device 10. Although the configuration is interconnected, the configuration of the ground fault suppression system according to the present invention is not limited to the above,
The configuration may be such that the injection transformer 40 is connected to an arbitrary phase of the power distribution line. With such a configuration, the step of selecting a phase for interconnecting the injection transformer 40 can be omitted, so that the configuration of the ground fault detection device 10 can be simplified.

【0077】[0077]

【発明の効果】以上説明したように、本発明によれば、
健全回線の零相電流のベクトル和に基づいて近似地絡電
流を算出し、その算出された近似地絡電流とは逆位相の
逆位相電流を電力配電線に供給するようにしたので、地
絡電流を復帰させることなく常に安定的に抑制すること
ができ、地絡アークが消弧し易い地絡抑制システムおよ
び地絡抑制方法を提供することができる。
As described above, according to the present invention,
An approximate ground fault current is calculated based on the vector sum of the zero-phase current of the healthy line, and a reverse-phase current having a phase opposite to the calculated approximate ground fault current is supplied to the power distribution line. The present invention can provide a ground fault suppression system and a ground fault suppression method that can stably suppress current without returning the current and easily extinguish a ground fault arc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である地絡抑制システムを
示す構成図である。
FIG. 1 is a configuration diagram illustrating a ground fault suppression system according to an embodiment of the present invention.

【図2】地絡事故検出装置の回路構成を示すブロック図
である。
FIG. 2 is a block diagram illustrating a circuit configuration of the ground fault detection device.

【図3】逆位相波形発生装置の回路構成を示すブロック
図である。
FIG. 3 is a block diagram showing a circuit configuration of the anti-phase waveform generator.

【図4】本発明による地絡電流抑制原理を示す回路図で
ある。
FIG. 4 is a circuit diagram showing the principle of ground fault current suppression according to the present invention.

【図5】本発明による地絡電流抑制原理を示すベクトル
図であって、(a)は逆位相波形発生装置を適用しない
場合の通常の地絡状態、(b)は図5(a)の状態にお
いて逆位相波形発生装置を適用した場合の状態を示す。
5A and 5B are vector diagrams showing the principle of ground fault current suppression according to the present invention, wherein FIG. 5A is a normal ground fault state when an anti-phase waveform generator is not applied, and FIG. The state when the anti-phase waveform generator is applied in the state is shown.

【図6】従来における地絡電流抑制原理を示す回路図で
ある。
FIG. 6 is a circuit diagram showing a conventional ground fault current suppressing principle.

【図7】従来における地絡電流抑制原理を示すベクトル
図であって、(a)は逆位相波形発生装置を適用しない
場合の通常の地絡状態、(b)は図7(a)の状態にお
いて逆位相波形発生装置を適用した場合のある時点での
状態、(c)は図7(a)の状態において逆位相波形発
生装置を適用した場合の図7(b)とは異なる時点での
状態を示す。
7A and 7B are vector diagrams showing a conventional ground fault current suppression principle, where FIG. 7A shows a normal ground fault state when an antiphase waveform generator is not applied, and FIG. 7B shows a state of FIG. 7A. 7C shows a state at a certain time when the anti-phase waveform generator is applied, and FIG. 7C shows a state at a time different from FIG. 7B when the anti-phase waveform generator is applied in the state of FIG. Indicates the status.

【符号の説明】[Explanation of symbols]

1 配電変電所 2 電源(電源用変圧器) 3a〜3c 母線 4a〜4c 配電線(事故配電線) 5a〜5c 配電線(健全配電線) 6a〜6c 配電線(健全配電線) 7a〜7c 零相変流器 8 零相変圧器 8a 零相変圧器の一次側接地中性線 9a〜9c 計器用変圧器 10 地絡事故検出装置 20 逆位相波形発生装置 30〜32 配電線負荷 40 注入用変圧器 41 系統並入用開閉器 42 誤動作時保護用抵抗回路 Ig 地絡電流 IV 逆位相電流 V0 零相電圧 Ig2,I02,I03 配電線4a〜4c,5a〜5c,6
a〜6cの各零相変流器で検出される電流
DESCRIPTION OF SYMBOLS 1 Distribution substation 2 Power supply (power supply transformer) 3a-3c Bus 4a-4c Distribution line (accident distribution line) 5a-5c Distribution line (healthy distribution line) 6a-6c Distribution line (healthy distribution line) 7a-7c Zero Phase current transformer 8 Zero-phase transformer 8a Zero-phase transformer primary-side grounded neutral wire 9a to 9c Instrument transformer 10 Ground fault detection device 20 Reverse phase waveform generator 30-32 Distribution line load 40 Injection transformer vessel 41 lines parallel needful switches 42 malfunction during protection resistor circuit I g grounding current I V antiphase current V 0 the zero-phase voltage I g2, I 02, I 03 distribution line 4 a to 4 c, bodies 5a to 5c, 6
currents detected by the zero-phase current transformers a to 6c

───────────────────────────────────────────────────── フロントページの続き (72)発明者 元治 崇 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 遠藤 弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 磯崎 優 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 岩井 弘美 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 松本 俊郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2G014 AA04 AA08 AA27 AB25 AB33 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Motoharu 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Inside Kansai Electric Power Company (72) Inventor Hiroshi Endo 1st Tanabe Nitta, Kawasaki-ku, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. (72) Yu Isozaki, Inventor 1-1 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Fuji Electric Co., Ltd. (72) Hiromi Iwai 1st Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture No. 1 Inside Fuji Electric Co., Ltd. (72) Inventor Toshiro Matsumoto 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture F-term inside Fuji Electric Co., Ltd. 2G014 AA04 AA08 AA27 AB25 AB33

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 共通の母線に接続された複数回線の配電
線を備える電力配電線における地絡電流を抑制するもの
であって、 前記電力配電線の零相電圧を検出する零相電圧検出手段
および前記配電線の各零相電流を検出する零相電流検出
手段を具えるとともに、 前記零相電圧および前記零相電流検出手段により検出さ
れた電流に基づいて地絡事故を検出する地絡事故検出手
段と、 前記零相電流検出手段により検出された電流に基づいて
健全回線を判別する健全相判別手段と、 前記判別された健全回線の零相電流のベクトル和に基づ
いて近似地絡電流を算出する近似地絡電流算出手段と、 前記算出された近似地絡電流とは逆位相の逆位相電流を
作成する逆位相電流作成手段と、 前記作成された逆位相電流を前記電力配電線に供給する
逆位相電流供給手段とを具え、前記供給された逆位相電
流によって前記地絡電流を抑制することを特徴とする地
絡抑制システム。
1. A zero-phase voltage detecting means for suppressing a ground fault current in a power distribution line having a plurality of distribution lines connected to a common bus, and detecting a zero-phase voltage of the power distribution line. And a zero-phase current detecting means for detecting each zero-phase current of the distribution line, and a ground fault which detects a ground fault based on the zero-phase voltage and the current detected by the zero-phase current detecting means. Detecting means, sound phase determining means for determining a healthy circuit based on the current detected by the zero-phase current detecting means, and an approximate ground fault current based on a vector sum of the determined zero-phase current of the healthy circuit. An approximate ground fault current calculating means for calculating; an antiphase current generating means for generating an antiphase current having a phase opposite to the calculated approximate ground fault current; and supplying the generated antiphase current to the power distribution line. Out of phase current And a supply means for suppressing the ground fault current by the supplied antiphase current.
【請求項2】 前記健全回線の零相電流のベクトル和の
算出は、地絡事故発生直後の過渡状態を経過した後の前
記健全回線の零相電流に対して行うことを特徴とする請
求項1記載の地絡抑制システム。
2. The method according to claim 1, wherein the calculation of the vector sum of the zero-phase current of the healthy line is performed on the zero-phase current of the healthy line after a transient state immediately after the occurrence of the ground fault. 2. The ground fault suppression system according to 1.
【請求項3】 共通の母線に接続された複数回線の配電
線を備える電力配電線における地絡電流を抑制するもの
であって、 前記電力配電線の零相電圧を検出する零相電圧検出工程
および前記配電線の各零相電流を検出する零相電流検出
工程を具えるとともに、 前記零相電圧および前記零相電流検出工程により検出さ
れた電流に基づいて地絡事故を検出する地絡事故検出工
程と、 前記零相電流検出工程により検出された電流に基づいて
健全回線を判別する健全相判別工程と、 前記判別された健全回線の零相電流のベクトル和に基づ
いて近似地絡電流を算出する近似地絡電流算出工程と、 前記算出された近似地絡電流とは逆位相の逆位相電流を
作成する逆位相電流作成工程と、 前記作成された逆位相電流を前記電力配電線に供給する
逆位相電流供給工程とを具え、前記供給された逆位相電
流によって前記地絡電流を抑制することを特徴とする地
絡抑制方法。
3. A zero-phase voltage detecting step for suppressing a ground fault current in a power distribution line including a plurality of distribution lines connected to a common bus, and detecting a zero-phase voltage of the power distribution line. And a zero-phase current detection step of detecting each zero-phase current of the distribution line, and a ground fault that detects a ground fault based on the zero-phase voltage and the current detected in the zero-phase current detection step. A detecting step, a healthy phase determining step of determining a healthy line based on the current detected in the zero-phase current detecting step, and an approximate ground fault current based on a vector sum of the determined zero-phase current of the healthy line. An approximate ground fault current calculating step of calculating; an antiphase current generating step of generating an antiphase current having a phase opposite to the calculated approximate ground fault current; and supplying the generated antiphase current to the power distribution line. Out of phase current A supply step, wherein the ground fault current is suppressed by the supplied opposite phase current.
【請求項4】 前記健全回線の零相電流のベクトル和の
算出は、地絡事故発生直後の過渡状態を経過した後の前
記健全回線の零相電流に対して行うことを特徴とする請
求項3記載の地絡抑制方法。
4. The method according to claim 1, wherein the calculation of the vector sum of the zero-phase current of the healthy line is performed on the zero-phase current of the healthy line after a transient state immediately after the occurrence of the ground fault occurs. 3. The ground fault suppression method according to 3.
JP06219899A 1999-03-09 1999-03-09 Ground fault suppression system and ground fault suppression method Expired - Fee Related JP3841248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06219899A JP3841248B2 (en) 1999-03-09 1999-03-09 Ground fault suppression system and ground fault suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06219899A JP3841248B2 (en) 1999-03-09 1999-03-09 Ground fault suppression system and ground fault suppression method

Publications (2)

Publication Number Publication Date
JP2000261959A true JP2000261959A (en) 2000-09-22
JP3841248B2 JP3841248B2 (en) 2006-11-01

Family

ID=13193222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06219899A Expired - Fee Related JP3841248B2 (en) 1999-03-09 1999-03-09 Ground fault suppression system and ground fault suppression method

Country Status (1)

Country Link
JP (1) JP3841248B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473798B1 (en) * 2002-02-20 2005-03-08 명지대학교 Method for detecting line to ground fault location for power systems
KR100474192B1 (en) * 2002-11-13 2005-03-11 명지대학교 Method for detecting fault location on transmission line using travelling waves
KR100709616B1 (en) 2005-11-15 2007-04-19 최면송 Line to ground fault location method for under ground cable system
KR100934448B1 (en) 2007-10-17 2009-12-29 한국산업기술대학교산학협력단 Non-contact measuring method of current flowing in a plurality of superconducting wires connected in parallel
KR100947834B1 (en) 2008-01-24 2010-03-18 한전케이디엔주식회사 Algorism and system for detecting of a line-to-earth fault in ungrounded distribution power systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473798B1 (en) * 2002-02-20 2005-03-08 명지대학교 Method for detecting line to ground fault location for power systems
KR100474192B1 (en) * 2002-11-13 2005-03-11 명지대학교 Method for detecting fault location on transmission line using travelling waves
KR100709616B1 (en) 2005-11-15 2007-04-19 최면송 Line to ground fault location method for under ground cable system
KR100934448B1 (en) 2007-10-17 2009-12-29 한국산업기술대학교산학협력단 Non-contact measuring method of current flowing in a plurality of superconducting wires connected in parallel
KR100947834B1 (en) 2008-01-24 2010-03-18 한전케이디엔주식회사 Algorism and system for detecting of a line-to-earth fault in ungrounded distribution power systems

Also Published As

Publication number Publication date
JP3841248B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
EP0872004B1 (en) Transformerless conditioning of a power distribution system
US7660088B2 (en) System, apparatus and method for compensating the sensitivity of a sequence element in a line current differential relay in a power system
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
KR20120091141A (en) System and method for polyphase ground-fault circuit-interrupters
EP0637865B1 (en) Transformer differential relay
CN114026762B (en) Arc suppression system and method
JP2000261959A (en) System and method for suppressing grounding
JP3836620B2 (en) Protection device for ground fault current suppression device and ground fault suppression method
JP2002320325A (en) Power transmission and distribution equipment
JPH027248B2 (en)
JP2591525B2 (en) Circuit breaker test equipment
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
Codling et al. Adaptive relaying. A new direction in power system protection
JP3101736B2 (en) Distribution line protection device
JP2003219553A (en) Ground direction relay for low voltage cable way
JP2000092698A (en) Grounding suppression system and method
JP2001258149A (en) Transmission and distribution apparatus
Ataullayev et al. Principles of protection against single phase earth faults in networks with capacitive current compensation
SU1201945A1 (en) Device for automatic shutting of faulted phase in isolated neutral system
JPH0210654B2 (en)
WO2004040733A1 (en) Differential protection for synchronous machines
JPH09103025A (en) Leakage protection system
JPH01114324A (en) Selective ground-fault relay
CN111181145A (en) Arc suppression system and method
JPS605727A (en) Defect current breaking system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees