JP2001258149A - Transmission and distribution apparatus - Google Patents

Transmission and distribution apparatus

Info

Publication number
JP2001258149A
JP2001258149A JP2000069034A JP2000069034A JP2001258149A JP 2001258149 A JP2001258149 A JP 2001258149A JP 2000069034 A JP2000069034 A JP 2000069034A JP 2000069034 A JP2000069034 A JP 2000069034A JP 2001258149 A JP2001258149 A JP 2001258149A
Authority
JP
Japan
Prior art keywords
ground
circuit
power transmission
distribution
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000069034A
Other languages
Japanese (ja)
Other versions
JP3338688B2 (en
Inventor
Koichi Ito
伊藤  公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toenec Corp
Original Assignee
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toenec Corp filed Critical Toenec Corp
Priority to JP2000069034A priority Critical patent/JP3338688B2/en
Publication of JP2001258149A publication Critical patent/JP2001258149A/en
Application granted granted Critical
Publication of JP3338688B2 publication Critical patent/JP3338688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transmission and distribution apparatus capable of reducing an influence caused by a wraparound of high-frequency leakage current, ground current, constant leakage current or the like, and operating a ground leakage breaker positively. SOLUTION: Ground potential suppressors 1A, 1B are provided between a ground terminal on the low-voltage side of single- and three-phase high/low voltage transformers and a ground pole Eb (for example, class B ground). The ground leakage breakers are mounted on respective low-voltage side electric wires of the high/low voltage transformer. One terminal of ground capacitors C1-C3 is connected between a low-voltage side winding Tr2S of the three-phase three-line high/low voltage transformer Tr2 and the earth leakage breaker. The other terminal of the ground capacitors C1-C3 is connected in common, and a switch 3 serving as an electric wire switching means is provided between a common connection and the ground pole Eb (for example, class D ground). A ground leakage breaker controller 4 on/off-controls the switch 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地絡電流や高周波
電流等による影響を低減することができる送配電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission and distribution device capable of reducing the influence of a ground fault current, a high-frequency current, and the like.

【0002】[0002]

【従来の技術】従来、電力を供給する送配電装置には、
3相3線式高低圧変圧器や、単相3線式高低圧変圧器な
どが使用されている。前記高低圧変圧器の低圧側巻線の
中性点もしくは低圧側巻線端子の一つに、接地工事が施
されることがある。図9は、単相3線式高低圧変圧器T
r1の低圧側巻線の接地端子Nと、3相3線式高低圧変
圧器Tr2の低圧側巻線の接地端子TEとが、接地極E
b(例えばB種接地)に接続されていることを示した概
略図である。3相3線式高低圧変圧器Tr2の低圧側電
路には負荷5が接続されていて、負荷5の接地用端子は
接地極Ed(例えばD種接地)に接続されている。
2. Description of the Related Art Conventionally, power transmission and distribution devices for supplying power include:
A three-phase three-wire high-low voltage transformer, a single-phase three-wire high-low voltage transformer, and the like are used. Grounding work may be performed on the neutral point of the low-voltage side winding of the high-low voltage transformer or one of the low-voltage side winding terminals. FIG. 9 shows a single-phase three-wire high / low voltage transformer T
The ground terminal N of the low-voltage winding of r1 and the ground terminal TE of the low-voltage winding of the three-phase three-wire high-low voltage transformer Tr2 are connected to the ground electrode E.
FIG. 4 is a schematic diagram showing that the connection is made to a terminal b (for example, a class B ground). A load 5 is connected to the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2, and a ground terminal of the load 5 is connected to a ground electrode Ed (for example, a D-class ground).

【0003】[0003]

【発明が解決しようとする課題】このような接地方式に
よれば、以下のような問題点がある。 単相3線式高低圧変圧器Tr1や3相3線式高低圧
変圧器Tr2の低圧側電路のケーブルは、近年、長くな
っている。また、コンデンサを構成素子とするラインフ
ィルタ等を内蔵した電子機器が負荷として接続されるこ
とが多い。そのため、一般に、図5に示されているよう
に低圧側電路の対地静電容量(浮遊容量)10が大きく
なっている。このような送配電設備において、負荷5と
して、インバータ等が接続された場合、図5に示すよう
に、その高周波漏れ電流12が、負荷5の接地線30、
対地静電容量(浮遊容量)10、漏電遮断器ELCB
1、単相3線式高低圧変圧器Tr1の低圧側電路、接地
線31、3相3線式高低圧変圧器Tr2の低圧側電路で
形成される閉回路に流れる。このため、高周波漏れ電流
12によって、単相3線式高低圧変圧器Tr1の低圧側
電路に接続された電子機器が誤動作したり、漏電遮断器
ELCB1が不要にトリップする。また、周辺に設置さ
れた機器が、高周波漏れ電流12の電磁波によって影響
を受ける可能性がある。 図6に示すように、3相3線式高低圧変圧器Tr2
の低圧側電路のケーブル、例えばケーブル13が、例え
ば、接地極Edに接地された図示していない電線管に地
絡した場合、地絡点を介して地絡電流14が流れる。地
絡電流14は、破線で示すように、地絡抵抗15を有す
る地絡点、電線管に接続されている接地線30、対地静
電容量(浮遊容量)10、漏電遮断器ELCB1、単相
3線式高低圧変圧器Tr1の低圧側電路、接地線31、
3相3線式高低圧変圧器Tr2の低圧側電路で形成され
る閉回路に流れる。この場合、対地静電容量10が大き
いと、上記地絡とは関係の無い健全な単相3線式高低圧
変圧器Tr1の低圧側電路に設けられている漏電遮断器
ELCB1が不要にトリップする可能性がある。 図7に示すように、単相3線式高低圧変圧器Tr1
の低圧側電路の対地静電容量10を介して常時漏れ電流
16が流れている。低圧側電路の対地静電容量(浮遊容
量)10が大きいと、常時漏れ電流16が大きくなり、
単相3線式高低圧変圧器Tr1の低圧側電路に設けられ
ている漏電遮断器ELCB1が不要にトリップする可能
性がある。 また、このような接地方式では、零相インピーダンス
が小さいので、地絡電流が大きくなり、負荷の電気機器
に悪影響を及ぼす可能性がある。
According to such a grounding method, there are the following problems. In recent years, the cables of the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1 and the three-phase three-wire high-low voltage transformer Tr2 have become longer. Also, an electronic device having a built-in line filter or the like having a capacitor as a constituent element is often connected as a load. Therefore, generally, as shown in FIG. 5, the ground capacitance (stray capacitance) 10 of the low-voltage side electric circuit is large. In such a power transmission and distribution facility, when an inverter or the like is connected as the load 5, the high-frequency leakage current 12 as shown in FIG.
Ground capacitance (floating capacitance) 10, earth leakage breaker ELCB
1, flows into a closed circuit formed by the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1, the ground line 31, and the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2. Therefore, the high-frequency leakage current 12 causes an electronic device connected to the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1 to malfunction or the leakage breaker ELCB1 to trip unnecessarily. In addition, there is a possibility that devices installed in the vicinity are affected by the electromagnetic waves of the high-frequency leakage current 12. As shown in FIG. 6, a three-phase three-wire high-low voltage transformer Tr2
When the cable of the low voltage side electric circuit, for example, the cable 13 is grounded to a conduit (not shown) grounded to the ground electrode Ed, for example, a ground fault current 14 flows through a ground fault point. As shown by a broken line, the ground fault current 14 includes a ground fault point having a ground fault resistance 15, a ground wire 30 connected to a conduit, a ground capacitance (floating capacitance) 10, a ground leakage breaker ELCB1, a single phase. The low-voltage side electric circuit of the three-wire high-low voltage transformer Tr1, the ground line 31,
It flows to a closed circuit formed by the low-voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2. In this case, when the ground capacitance 10 is large, the earth leakage breaker ELCB1 provided on the low voltage side electric circuit of the sound single-phase three-wire high-low voltage transformer Tr1 irrespective of the ground fault unnecessarily trips. there is a possibility. As shown in FIG. 7, a single-phase three-wire high-low voltage transformer Tr1
The leakage current 16 always flows through the ground capacitance 10 of the low-voltage side electric circuit. If the ground capacitance (stray capacitance) 10 of the low-voltage side electric circuit is large, the leakage current 16 always increases,
There is a possibility that the earth leakage breaker ELCB1 provided on the low voltage side electric circuit of the single-phase three-wire type high / low voltage transformer Tr1 may unnecessarily trip. Further, in such a grounding method, since the zero-sequence impedance is small, the ground fault current becomes large, which may adversely affect the electric equipment of the load.

【0004】このように、単相3線式高低圧変圧器Tr
1及び3相3線式高低圧変圧器Tr2の低圧側電路が接
地極Ebに常時接続されているため、前述のような問題
が発生する。そこで、本発明は、高周波漏れ電流の回り
込み等による影響を低減することができる送配電設備を
提供することを目的とする。
As described above, a single-phase three-wire high / low voltage transformer Tr
Since the low-voltage side electric circuit of the one- and three-phase three-wire high-low voltage transformer Tr2 is always connected to the ground electrode Eb, the above-described problem occurs. Therefore, an object of the present invention is to provide a power transmission and distribution facility that can reduce the influence of the sneak of a high-frequency leakage current and the like.

【0005】[0005]

【課題を解決するための手段】このため、請求項1に記
載の発明は、漏電遮断器が設けられた少なくとも一つの
送配電電路と、少なくとも一つの送配電電路の、漏電遮
断器より電源側の電源側電路の接地端子と第1の接地極
との間に設けられた対地電位抑制装置と、少なくとも一
つの送配電電路の、漏電遮断器より電源側の電源側電路
と第2の接地極との間に設けられたインピーダンス回路
及び開閉手段と、開閉手段を制御する制御手段とを備
え、対地電位抑制装置は、少なくとも一つの送配電電路
の電圧が設定値以上の時に当該送配電電路の接地端子を
第1の接地極と接続し、制御手段は、少なくとも一つの
送配電電路が地絡したことを検出した時に開閉手段を制
御してインピーダンス回路を当該送配電電路と第2の接
地極との間に接続することを特徴とする送配電装置であ
る。請求項1に記載の送配電装置によれば、高周波漏れ
電流の回り込み等による影響を低減することができると
ともに、漏電遮断器を確実に動作させることができる。
これにより、安全性が向上する。
For this reason, the invention according to claim 1 provides at least one power transmission / distribution circuit provided with an earth leakage breaker and a power supply side of the at least one power transmission / distribution circuit with respect to the earth leakage breaker. A ground potential suppressing device provided between the ground terminal of the power supply side electric circuit and the first grounding electrode, and a power supply side electric circuit on the power supply side of the earth leakage breaker and at least one of the at least one transmission and distribution electric circuit. And an opening / closing means provided between the control circuit and the control means for controlling the opening / closing means.The ground potential suppressing device is configured to control the power transmission / distribution circuit when the voltage of at least one power transmission / distribution circuit is equal to or higher than a set value. When the ground terminal is connected to the first ground electrode, the control means controls the opening / closing means when detecting that at least one power transmission / distribution circuit has a ground fault, and controls the impedance circuit to connect the power transmission / distribution circuit to the second ground electrode. Connect between It is transmission and distribution apparatus and said. According to the power transmission and distribution device of the first aspect, it is possible to reduce the influence of the sneak path of the high-frequency leakage current and the like, and to reliably operate the leakage breaker.
Thereby, safety is improved.

【0006】また、請求項2に記載の発明は、請求項1
に記載の送配電装置であって、少なくとも一つの送配電
電路は、電源側に高低圧変圧器が設けられていることを
特徴とする送配電装置である。請求項2に記載の送配電
装置によれば、高低圧変圧器の低圧側電路を接地する場
合の安全性が向上する。
[0006] The invention described in claim 2 is the invention according to claim 1.
Wherein the at least one power transmission / distribution circuit is provided with a high / low voltage transformer on the power supply side. According to the power transmission and distribution device of the second aspect, the safety when the low-voltage side electric circuit of the high / low voltage transformer is grounded is improved.

【0007】また、請求項3に記載の発明は、漏電遮断
器が設けられた少なくとも一つの送配電電路と、少なく
とも一つの送配電電路の電源側に設けられた高低圧変圧
器と、第1の接地極に接地された高低圧変圧器の混触防
止板と、少なくとも一つの送配電電路の、漏電遮断器よ
り電源側の電源側電路と第2の接地極との間に設けられ
たインピーダンス回路及び開閉手段と、開閉手段を制御
する制御手段とを備え、 制御手段は、少なくとも一つ
の送配電電路が地絡したことを検出した時に開閉手段を
制御してインピーダンス回路を当該送配電電路と第2の
接地極との間に接続することを特徴とする送配電装置で
ある。請求項3に記載の送配電装置によれば、高周波漏
れ電流の回り込み等による影響を低減することができる
とともに、漏電遮断器を確実に動作させることができ
る。これにより、安全性が向上する。
According to a third aspect of the present invention, there is provided at least one power transmission / distribution circuit provided with an earth leakage breaker, a high / low voltage transformer provided on a power supply side of at least one power transmission / distribution circuit, An impedance circuit provided between a power supply side electric circuit on a power supply side of an earth leakage breaker and a second ground electrode of at least one transmission / distribution electric circuit, which is grounded to a ground electrode of the high / low voltage transformer. And control means for controlling the switching means, wherein the control means controls the switching means when detecting that at least one power transmission / distribution circuit is grounded, and causes the impedance circuit to be connected to the power transmission / distribution circuit. The power transmission and distribution device is connected between the power transmission and distribution grounds. According to the power transmission and distribution device of the third aspect, it is possible to reduce the influence of the sneak of the high-frequency leakage current and the like, and it is possible to reliably operate the leakage breaker. Thereby, safety is improved.

【0008】また、請求項4に記載の発明は、漏電遮断
器が設けられた少なくとも一つの送配電電路と、少なく
とも一つの送配電電路の電源側に設けられた高低圧変圧
器と、高低圧変圧器の低圧側電路で漏電遮断器との間に
設けられた変圧器と、変圧器の2次側電路と第2の接地
極との間に設けられたインピーダンス回路及び開閉手段
と、開閉手段を制御する制御手段とを備え、高低圧変圧
器の低圧側と変圧器の間の電路の接地端子は、第1の接
地極と接続され、制御手段は、少なくとも一つの送配電
電路が地絡したことを検出した時に開閉手段を制御して
インピーダンス回路を変圧器の2次側電路と第2の接地
極との間に接続することを特徴とする送配電装置であ
る。請求項4に記載の送配電装置によれば、高周波漏れ
電流の回り込み等による影響を低減することができると
ともに、漏電遮断器を確実に動作させることができる。
これにより、安全性が向上する。
According to a fourth aspect of the present invention, there is provided a power transmission / distribution circuit provided with an earth leakage breaker, a high / low voltage transformer provided on a power supply side of the at least one power transmission / distribution circuit, A transformer provided between the low-voltage side electric circuit of the transformer and the earth leakage breaker, an impedance circuit and switching means provided between the secondary side electric circuit of the transformer and the second ground electrode, and switching means A ground terminal of an electric circuit between the low-voltage side of the high-low voltage transformer and the transformer is connected to the first ground electrode, and the control means includes a circuit for connecting at least one transmission / distribution electric circuit to a ground fault. The power transmission and distribution device is characterized in that the switching circuit is controlled to detect the occurrence of the failure and to connect the impedance circuit between the secondary circuit of the transformer and the second grounding electrode. According to the power transmission and distribution device of the fourth aspect, it is possible to reduce the influence of the sneak path of the high-frequency leakage current and the like, and to reliably operate the leakage breaker.
Thereby, safety is improved.

【0009】また、請求項5に記載の発明は、請求項1
〜4のいずれかに記載の送配電装置であって、インピー
ダンス回路は、コンデンサ、抵抗又はリアクトルの少な
くとも1つにより構成され、開閉手段は、インピーダン
ス回路と第2の接地極との間に接続されていることを特
徴とする送配電装置である。請求項5に記載の送配電装
置によれば、インピーダンス回路の構成が簡単になる。
The invention described in claim 5 is the first invention.
5. The power transmission and distribution device according to any one of items 1 to 4, wherein the impedance circuit is configured by at least one of a capacitor, a resistor, and a reactor, and the switching unit is connected between the impedance circuit and the second ground electrode. The power transmission and distribution device is characterized in that: According to the power transmission and distribution device of the fifth aspect, the configuration of the impedance circuit is simplified.

【0010】また、請求項6に記載の発明は、請求項1
〜4のいずれかに記載の送配電装置であって、インピー
ダンス回路は、変圧器を有し、開閉手段は、変圧器の2
次側巻線と第2の接地極との間に設けられていることを
特徴とする送配電装置である。請求項6に記載の送配電
装置によれば、インピーダンス回路の構成が簡単にな
る。
The invention described in claim 6 is the first invention.
5. The power transmission and distribution device according to any one of claims 1 to 4, wherein the impedance circuit has a transformer, and the switching means includes a transformer.
A power transmission and distribution device is provided between a secondary winding and a second ground pole. According to the power transmission and distribution device described in claim 6, the configuration of the impedance circuit is simplified.

【0011】また、請求項7に記載の発明は、請求項1
〜6のいずれかに記載の送配電装置であって、第1の接
地極と第2の接地極が同一の接地極であることを特徴と
する送配電装置である。請求項7に記載の送配電装置に
よれば、接地作業が容易である。
[0011] The invention described in claim 7 is the first invention.
7. The power transmission and distribution device according to any one of claims 6 to 6, wherein the first ground electrode and the second ground electrode are the same ground electrode. According to the power transmission and distribution device described in claim 7, grounding work is easy.

【0012】[0012]

【発明の実施の形態】以下に図面を参照しながら本発明
の実施の形態を説明する。図1は、本発明の送配電装置
を低圧配電接地装置に適用した第一の実施の形態の概略
図である。図1に示す低圧配電接地装置では、例えばビ
ル内の自家用電気設備用の単相3線式高低圧変圧器Tr
1及び3相3線式高低圧変圧器Tr2が設置されてい
る。単相3線式高低圧変圧器Tr1は、例えば、高圧側
が6.6kv、低圧側が200v−100vの高低圧変
圧器である。また、3相3線式高低圧変圧器Tr2は、
例えば、高圧側が6.6kv、低圧側が200vの高低
圧変圧器である。3相3線式高低圧変圧器の低圧側電路
には、負荷5が接続されている。負荷5は接地用端子が
接地極Edに接続されている。また、単相3線式高低圧
変圧器Tr1の低圧側の接地端子N及び3相3線式高低
圧変圧器Tr2の低圧側の接地端子TEは、接地極Eb
(例えばB種接地)との間には、それぞれ対地電位抑制
装置1A、1Bが設けられている。単相3線式高低圧変
圧器Tr1の低圧側電路には、漏電遮断器ELCB1が
設けられている。3相3線式高低圧変圧器Tr2の低圧
側電路には、漏電遮断器ELCB2が設けられている。
漏電遮断器ELCB2と3相3線式高低圧変圧器Tr2
の低圧側巻線Tr2Sとの間には、それぞれ接地用コン
デンサC1〜C3の一方の端子が接続されている。ま
た、接地用コンデンサC1〜C3の他方の端子は共通接
続され、共通接続点と接地極Ed(例えばD種接地)と
の間には、電路開閉手段であるスイッチ3が設けられて
いる。スイッチ3は、漏電遮断器制御装置4によりオン
オフ制御される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a first embodiment in which the power transmission and distribution device of the present invention is applied to a low-voltage distribution and grounding device. In the low-voltage distribution and grounding apparatus shown in FIG. 1, for example, a single-phase three-wire high-low-voltage transformer Tr for private electrical equipment in a building
One and three-phase three-wire high / low voltage transformers Tr2 are installed. The single-phase three-wire high / low voltage transformer Tr1 is, for example, a high / low voltage transformer of 6.6 kv on the high voltage side and 200v-100v on the low voltage side. Also, the three-phase three-wire high-low voltage transformer Tr2 is:
For example, a high-low voltage transformer is 6.6 kv on the high voltage side and 200 v on the low voltage side. A load 5 is connected to the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer. The load 5 has a ground terminal connected to the ground electrode Ed. The low-voltage ground terminal N of the single-phase three-wire high-low voltage transformer Tr1 and the low-voltage ground terminal TE of the three-phase three-wire high-low voltage transformer Tr2 are connected to the ground electrode Eb.
(For example, class B grounding), ground potential suppressing devices 1A and 1B are provided, respectively. An earth leakage breaker ELCB1 is provided on the low voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1. An earth leakage breaker ELCB2 is provided on the low voltage side electric circuit of the three-phase three-wire high / low voltage transformer Tr2.
Earth leakage breaker ELCB2 and three-phase three-wire high / low voltage transformer Tr2
Are connected to one terminal of each of the grounding capacitors C1 to C3. The other terminals of the grounding capacitors C1 to C3 are commonly connected, and a switch 3 serving as an electric circuit opening / closing means is provided between the common connection point and a grounding pole Ed (for example, D-class grounding). The switch 3 is on / off controlled by the earth leakage breaker control device 4.

【0013】対地電位抑制装置1A、1Bは、例えば、
アレスタZnと、トライアックTと、バリスタZnt
と、コンデンサCoにより構成されている。アレスタZ
nは、過電圧が印加されると短絡現象を示し、過電圧が
消滅したときには絶縁を回復できる特性を持つ部品であ
る。トライアックTは、双方向サイリスタであり、ゲー
ト制御によって、双方向のオンまたはオフの安定状態を
保持することが可能な交流スイッチング素子である。単
相3線式高低圧変圧器Tr1の低圧側の接地端子N、あ
るいは3相3線式高低圧変圧器Tr2の低圧側の接地端
子TEと接地極Ebとの間には、アレスタZnとコンデ
ンサCoとが直列に接続されている。アレスタZnとコ
ンデンサCoとの直列回路には、トライアックTが並列
に接続されている。トライアックTのゲート端子と、コ
ンデンサCoとの間にはバリスタZntが接続されてい
る。
The ground potential suppressing devices 1A and 1B are, for example,
Arrester Zn, Triac T, Varistor Znt
And a capacitor Co. Arrester Z
n is a component having a characteristic of exhibiting a short circuit phenomenon when an overvoltage is applied and recovering insulation when the overvoltage disappears. The triac T is a bidirectional thyristor, and is an AC switching element that can maintain a bidirectional on or off stable state by gate control. An arrester Zn and a capacitor are provided between the low-voltage side ground terminal N of the single-phase three-wire high-low voltage transformer Tr1 or the low-voltage side ground terminal TE of the three-phase three-wire high-low voltage transformer Tr2 and the ground electrode Eb. Co is connected in series. A triac T is connected in parallel to a series circuit of the arrester Zn and the capacitor Co. A varistor Znt is connected between the gate terminal of the triac T and the capacitor Co.

【0014】次に、対地電位抑制装置1A,1Bの作用
を説明する。まず、対地電位抑制装置1Bの作用につい
て説明する。通常状態では、アレスタZnは、点(ア)
の対地電位がアレスタZnの動作電圧より低いためオフ
状態である。このため、トライアックTのゲート電圧は
トリガー電圧より低く、トライアックTもオフ状態であ
る。したがって、通常状態では、対地電位抑制装置1B
が動作しないため、単相3線式高低圧変圧器Tr1の低
圧側の接地端子Nと接地極Ebとの間は遮断されたまま
である。
Next, the operation of the ground potential suppressing devices 1A and 1B will be described. First, the operation of the ground potential suppressing device 1B will be described. In the normal state, the arrester Zn
Of the arrester Zn is lower than the operating voltage of the arrester Zn. Therefore, the gate voltage of the triac T is lower than the trigger voltage, and the triac T is also off. Therefore, in the normal state, the ground potential suppressing device 1B
Does not operate, the connection between the ground terminal N on the low voltage side of the single-phase three-wire type high-low voltage transformer Tr1 and the ground electrode Eb remains disconnected.

【0015】単相3線式高低圧変圧器Tr1の低圧側電
路で地絡事故が発生した場合も、点(ア)の対地電位
は、アレスタZnを動作させる電位を超えることがな
い。このため、アレスタZnはオフ状態のままであり、
トライアックTもオフ状態である。したがって、単相3
線式高低圧変圧器Tr1の低圧側の接地端子Nと接地極
Ebとの間は遮断されたままである。
Even if a ground fault occurs in the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1, the ground potential at the point (a) does not exceed the potential for operating the arrester Zn. For this reason, the arrester Zn remains in the off state,
The triac T is also off. Therefore, single phase 3
The connection between the ground terminal N on the low voltage side of the wire type high / low voltage transformer Tr1 and the ground electrode Eb remains disconnected.

【0016】以上のように、通常状態及び単相3線式高
低圧変圧器Tr1の低圧側電路の地絡時には、単相3線
式高低圧変圧器Tr1の低圧側の接地端子Nと接地極E
bとの間は遮断状態(非導通状態)である。また、3相
3線式高低圧変圧器Tr2の低圧側の接地端子TEと接
地極Ebとの間に接続された対地電位抑制装置1Aも上
記同様に、通常状態及び3相3線式高低圧変圧器Tr2
の低圧側電路の地絡時には、3相3線式高低圧変圧器T
r2の低圧側の接地端子TEと接地極Ebとの間は遮断
状態である。このため、3相3線式高低圧変圧器Tr2
の低圧側電路で地絡が発生した時の地絡電流(図6)、
あるいは3相3線式高低圧変圧器Tr2の低圧側電路に
接続されたインバータ等の負荷5からの高周波漏れ電流
(図5)が単相3線式高低圧変圧器Tr1の低圧側電路
に回り込むことがなく、単相3線式高低圧変圧器Tr1
の低圧側電路に接続された図示していない電気機器等の
不要なトリップや電子機器の誤動作等を防止することが
できる。また、高周波漏れ電流による電磁波によって周
辺に設置されている機器が影響を受けることがない。さ
らに、常時漏れ電流(図7)による悪影響を受けること
もない。
As described above, in the normal state and at the time of the ground fault of the low-voltage side electric circuit of the single-phase three-wire high / low voltage transformer Tr1, the low voltage side ground terminal N and the ground electrode of the single-phase three-wire high / low voltage transformer Tr1 are used. E
b is in a cutoff state (non-conduction state). Similarly, the ground potential suppressing device 1A connected between the ground terminal TE on the low voltage side of the three-phase three-wire high-low voltage transformer Tr2 and the ground electrode Eb also has the normal state and the three-phase three-wire high-low voltage. Transformer Tr2
Of the low-voltage side electric circuit at the time of ground fault, the three-phase three-wire high-low voltage transformer T
The state between the ground terminal TE on the low voltage side of r2 and the ground electrode Eb is in a cutoff state. Therefore, the three-phase three-wire high-low voltage transformer Tr2
Ground fault current (Fig. 6) when a ground fault occurs in the low-voltage side electric circuit of
Alternatively, a high-frequency leakage current (FIG. 5) from a load 5 such as an inverter connected to the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2 wraps around the low-voltage side electric circuit of the single-phase three-wire high-low voltage transformer Tr1. , Single-phase three-wire high-low voltage transformer Tr1
Unnecessary trips of an electric device or the like (not shown) connected to the low-voltage-side electric circuit, and malfunction of the electronic device can be prevented. Further, devices installed in the vicinity are not affected by the electromagnetic waves due to the high-frequency leakage current. Furthermore, there is no adverse effect of the constant leakage current (FIG. 7).

【0017】次に、単相3線式高低圧変圧器Tr1の低
圧側巻線Tr1Sと高圧側巻線Tr1Mとが絶縁破壊等
により混触して、高圧側の高電圧が低圧側に直接印加さ
れた場合の対地電位抑制装置1Bの作用について説明す
る。単相3線式高低圧変圧器Tr1の低圧側巻線Tr1
Sと高圧側巻線Tr1Mとが絶縁破壊等により混触して
高圧側の高電圧が低圧側に印加されると、点(ア)の対
地電位が上昇する。これにより、アレスタZnに印加さ
れる電圧が動作電圧を超えて、アレスタZnがオン状態
になるため、コンデンサCoに充電電流が流れて、点
(イ)の電位が上昇する。点(イ)の電位がバリスタZ
ntを動作させる電位まで上昇すると、バリスタZnt
がオンする。これにより、コンデンサCoの放電電流が
トライアックTのゲートに流れるため、トライアックT
がオンする。したがって、単相3線式高低圧変圧器Tr
1の低圧側の接地端子Nが接地極Ebと接続され、同変
圧器Tr1の低圧側に印加された高電圧が接地極Ebに
接地されるため、同変圧器Tr1の低圧側巻線及び低圧
側電路の対地電位の上昇が防止される。以上の対地電位
抑制装置1Bによる対地電位抑制作用は、単相3線式高
低圧変圧器Tr1の高圧側電路に設けられた遮断器がト
リップするまで、商用電源周波数の半サイクル毎に繰り
返される。
Next, the low-voltage side winding Tr1S and the high-voltage side winding Tr1M of the single-phase three-wire high / low voltage transformer Tr1 contact each other due to insulation breakdown or the like, and the high voltage on the high voltage side is directly applied to the low voltage side. The operation of the ground potential suppressing device 1B in the case of the above will be described. Low-voltage side winding Tr1 of single-phase three-wire high-low voltage transformer Tr1
When S and the high-voltage side winding Tr1M come into contact with each other due to dielectric breakdown or the like and a high voltage on the high voltage side is applied to the low voltage side, the ground potential at the point (A) increases. As a result, the voltage applied to the arrester Zn exceeds the operating voltage and the arrester Zn is turned on, so that a charging current flows through the capacitor Co and the potential at the point (a) rises. The potential at point (a) is varistor Z
When the potential rises to operate nt, the varistor Znt
Turns on. As a result, the discharge current of the capacitor Co flows to the gate of the triac T.
Turns on. Therefore, the single-phase three-wire high-low voltage transformer Tr
1 is connected to the ground electrode Eb, and the high voltage applied to the low voltage side of the transformer Tr1 is grounded to the ground electrode Eb. An increase in the ground potential of the side electric circuit is prevented. The above-described ground potential suppressing action by the ground potential suppressing device 1B is repeated every half cycle of the commercial power supply frequency until the circuit breaker provided on the high-voltage side electric circuit of the single-phase three-wire high / low voltage transformer Tr1 trips.

【0018】3相3線式高低圧変圧器Tr2の低圧側の
接地端子TEと接地極Ebとの間に接続された対地電位
抑制装置1Aによる対地電位抑制作用も、基本的な作用
は対地電位抑制装置1Bと同じである。即ち、通常状態
及び3相3線式高低圧変圧器Tr2の低圧側電路の地絡
時には、対地電位抑制装置1Aは動作しない。また、3
相3線式高低圧変圧器Tr2の低圧側巻線Tr2Sと高
圧側巻線Tr2Mとが絶縁破壊等により混触して高電圧
が低圧側に印加された場合には、対地電位抑制装置1A
が動作し、3相3線式高低圧変圧器Tr2の低圧側巻線
の接地端子TEが接地極Ebに接続される。これによ
り、同変圧器Tr2の低圧側に印加された高電圧が接地
極Ebに接地されるため、同変圧器Tr2の低圧側巻線
及び低圧側電路の対地電位が上昇することはない。
The ground potential suppressing device 1A connected between the ground terminal TE on the low voltage side of the three-phase three-wire high / low voltage transformer Tr2 and the ground electrode Eb has a ground potential suppressing effect. It is the same as suppression device 1B. That is, the ground potential suppressing device 1A does not operate in the normal state and at the time of the ground fault of the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2. Also, 3
When the low voltage side winding Tr2S and the high voltage side winding Tr2M of the phase three-wire type high / low voltage transformer Tr2 are in contact with each other due to dielectric breakdown or the like and a high voltage is applied to the low voltage side, the ground potential suppressing device 1A
Operates, and the ground terminal TE of the low-voltage side winding of the three-phase three-wire high-low voltage transformer Tr2 is connected to the ground electrode Eb. As a result, the high voltage applied to the low voltage side of the transformer Tr2 is grounded to the ground electrode Eb, so that the ground potential of the low voltage side winding and the low voltage side electric circuit of the transformer Tr2 does not increase.

【0019】以上のように、対地電位抑制装置1A,1
Bは、高低圧変圧器Tr1,Tr2が通常状態の場合と
低圧側電路が地絡した場合には、高低圧変圧器Tr1,
Tr2の低圧側の接地端子と接地極Ebとの間を遮断し
ているため、インバータ等からの高周波漏れ電流や地絡
電流等が一方の変圧器の低圧側電路から他方の変圧器の
低圧側電路に回り込むのを阻止することができる。これ
により、正常側の低圧側電路に接続された電子機器が誤
動作したり、漏電遮断器ELCB1が不要にトリップさ
れたり、高周波漏れ電流の電磁波により周辺に設置され
ている機器が影響を受けるという問題を防止することが
できる。また、常時漏れ電流による影響を防止すること
ができる。そして、各変圧器Tr1、Tr2の低圧側巻
線と高圧側巻線とが絶縁破壊等により混触して高電圧が
低圧側に印加された場合には、低圧側の接地端子Nある
いはTEが接地極Ebと接続されるため、低圧側電路の
対地電位が異常上昇するのを防止することができる。
As described above, the ground potential suppressing devices 1A, 1
B indicates whether the high-low voltage transformers Tr1 and Tr2 are in the normal state and the low-voltage side electric circuit has a ground fault.
Since the connection between the ground terminal on the low voltage side of Tr2 and the ground electrode Eb is interrupted, a high frequency leakage current or a ground fault current from an inverter or the like is reduced from the low voltage side electric circuit of one transformer to the low voltage side of the other transformer. It can be prevented from going around the electric circuit. As a result, the electronic device connected to the normal low-voltage side electric circuit malfunctions, the leakage breaker ELCB1 is unnecessarily tripped, and the devices installed in the vicinity are affected by the electromagnetic wave of the high-frequency leakage current. Can be prevented. Further, it is possible to prevent the influence of the leakage current at all times. When the low voltage side winding and the high voltage side winding of each of the transformers Tr1 and Tr2 contact each other due to dielectric breakdown or the like and a high voltage is applied to the low voltage side, the low voltage side ground terminal N or TE is grounded. Since it is connected to the pole Eb, it is possible to prevent the ground potential of the low-voltage side electric circuit from abnormally rising.

【0020】ところで、対地電位抑制装置1A、1Bを
設けた場合、正常動作時は、接地端子N、TEが非接地
状態となる。この場合には、例えば漏電遮断器ELCB
2の負荷側電路41の1線が地絡した時に漏電遮断器E
LCB2を動作させる電流を流すことができない。この
ため、例えば、図8に示すように、漏電遮断器ELCB
2より電源側の電源側電路40を、漏電遮断器ELCB
2の動作電流を補償するための接地用コンデンサC1〜
C3を介して接地極Edに接続する必要がある。この場
合には、以下のような問題が生ずる。例えば、漏電遮断
器ELCB2より負荷側の負荷側電路41に、インバー
タ等の負荷5が接続された場合、その高周波漏れ電流1
7が、接地線30、接地用コンデンサC1〜C3、漏電
遮断器ELCB2を介して、電源側電路40へ流れる。
このため、負荷5と並列に接続された電子機器6や周辺
に設置された機器が、ノイズ障害を起こす可能性があ
る。
When the ground potential suppressing devices 1A and 1B are provided, the ground terminals N and TE are in a non-ground state during normal operation. In this case, for example, the earth leakage breaker ELCB
When one line of the load-side circuit 41 of the second circuit is grounded, the earth leakage breaker E
The current for operating the LCB2 cannot flow. For this reason, for example, as shown in FIG.
2 is connected to the power supply side electric circuit 40 on the power supply side by the earth leakage breaker ELCB.
2 for grounding capacitors C1-
It is necessary to connect to ground electrode Ed via C3. In this case, the following problem occurs. For example, when a load 5 such as an inverter is connected to the load side electric circuit 41 on the load side of the earth leakage breaker ELCB2, the high frequency leakage current 1
7 flows to the power supply side electric circuit 40 via the ground line 30, the ground capacitors C1 to C3, and the earth leakage breaker ELCB2.
Therefore, there is a possibility that the electronic device 6 connected in parallel with the load 5 or a device installed in the vicinity may cause noise interference.

【0021】そこで、本実施の形態においては、図1に
示すように接地用コンデンサC1〜C3と接地極Edと
の間に電路開閉手段であるスイッチ3を設け、また、ス
イッチ3のオンオフを制御する漏電遮断器制御装置4を
設けている。すなわち、電源側電路40の各相電線R,
S,Tには、接地用コンデンサC1,C2,C3の一方
の端子が接続されている。接地用コンデンサC1,C
2,C3の他方の端子は、共通に接続されていて、共通
接続部はスイッチ3の一方の端子(ウ)に接続されてい
る。また、スイッチ3の他方の端子(エ)は、接地線5
0を介して接地極Edに接続されている。漏電遮断器制
御装置4は、負荷側電路41の1線が地絡した時、スイ
ッチ3をオンさせて、接地用コンデンサC1〜C3と接
地極Edとを接続する。
Therefore, in the present embodiment, as shown in FIG. 1, a switch 3 serving as an electric circuit opening / closing means is provided between the grounding capacitors C1 to C3 and the ground electrode Ed, and the on / off of the switch 3 is controlled. An earth leakage breaker control device 4 is provided. That is, each phase electric wire R of the power supply side electric circuit 40,
S and T are connected to one terminals of ground capacitors C1, C2 and C3. Grounding capacitors C1, C
The other terminals of C2 and C3 are commonly connected, and the common connection portion is connected to one terminal (C) of the switch 3. The other terminal (d) of the switch 3 is connected to the ground line 5.
0 is connected to the ground pole Ed. When one line of the load side electric circuit 41 is grounded, the earth leakage breaker control device 4 turns on the switch 3 to connect the grounding capacitors C1 to C3 to the grounding pole Ed.

【0022】漏電遮断器制御装置4は、スイッチ制御回
路7と零相電圧検出回路8とにより構成されている。零
相電圧検出回路8は、スイッチ3のオフ時に、同スイッ
チ3の端子間に発生する零相電圧を検出した場合、スイ
ッチ制御回路7に対してスイッチ3をオンさせる制御信
号を出力する。零相電圧は、1線が絶縁破壊したことに
より3相電圧の平衡がくずれることによって発生する電
圧である。零相電圧検出回路8は、スイッチ3の端子間
に零相電圧が発生したことを検出すると、スイッチ制御
回路7に対してスイッチ3をオンさせる制御信号を出力
する。
The earth leakage breaker control device 4 includes a switch control circuit 7 and a zero-phase voltage detection circuit 8. When detecting the zero-phase voltage generated between the terminals of the switch 3 when the switch 3 is turned off, the zero-phase voltage detection circuit 8 outputs a control signal for turning on the switch 3 to the switch control circuit 7. The zero-phase voltage is a voltage generated when the three-phase voltage is out of balance due to insulation breakdown of one wire. When detecting that a zero-phase voltage is generated between the terminals of the switch 3, the zero-phase voltage detection circuit 8 outputs a control signal for turning on the switch 3 to the switch control circuit 7.

【0023】次に、漏電遮断器制御装置4の作用につい
て説明する。非接地の負荷側電路41の電線R,S,T
に地絡事故が発生していない場合には、スイッチ3の端
子間に零相電圧が発生しないため、スイッチ3はオフで
ある。スイッチ3がオフである場合、接地用コンデンサ
C1〜C3は接地極Edと遮断されている。接地用コン
デンサC1〜C3と接地極Edとが遮断されている場合
には、負荷側電路41に接続されたインバータ等の負荷
5から発生する高周波漏れ電流17(図8)は、電源側
電路40に流れることはない。このように、非接地の負
荷側電路41の各相電線R,S,Tに地絡事故が発生し
ていない場合には、高周波漏れ電流17が電源側電路4
0に流れないため、例えば、負荷5と並列に接続された
電子機器6等がノイズ障害を起こすことは少ない。一
方、非接地の負荷側電路41の1線が絶縁破壊し、接地
極Edに接地された電線管に地絡した場合には、3相電
圧の平衡がくずれ、スイッチ3の端子間に零相電圧が発
生する。零相電圧検出回路8は、スイッチ3の端子間に
発生した零相電圧を検出すると、スイッチ制御回路7に
対して制御信号を出力する。スイッチ制御回路7は、制
御信号が入力されると、スイッチ3をオンさせて、接地
用コンデンサC1〜C3の共通接続部を接地極Edに接
続する。すなわち、非接地の電源側電路40の各相の電
線R,S,Tと接地極Edとの間に接地用コンデンサC
1〜C3が投入される。これにより、漏電遮断器ELC
B2を動作させるのに必要な電流が流れ、漏電遮断器E
LCB2は遮断動作する。
Next, the operation of the earth leakage breaker control device 4 will be described. Wires R, S, T of ungrounded load-side circuit 41
When no ground fault has occurred, the switch 3 is off because no zero-phase voltage is generated between the terminals of the switch 3. When the switch 3 is off, the ground capacitors C1 to C3 are cut off from the ground electrode Ed. When the grounding capacitors C1 to C3 and the ground electrode Ed are cut off, the high-frequency leakage current 17 (FIG. 8) generated from the load 5 such as an inverter connected to the load-side electric circuit 41 Does not flow to As described above, when no ground fault has occurred in each of the phase wires R, S, and T of the ungrounded load-side circuit 41, the high-frequency leakage current 17 is
Since the current does not flow to 0, for example, the electronic device 6 and the like connected in parallel with the load 5 rarely cause noise disturbance. On the other hand, if one wire of the ungrounded load-side electric circuit 41 is broken down and grounded in a conduit grounded to the ground electrode Ed, the three-phase voltage is out of balance and a zero-phase voltage is applied between the terminals of the switch 3. Voltage is generated. When detecting the zero-phase voltage generated between the terminals of the switch 3, the zero-phase voltage detection circuit 8 outputs a control signal to the switch control circuit 7. When the control signal is input, the switch control circuit 7 turns on the switch 3 and connects the common connection part of the ground capacitors C1 to C3 to the ground electrode Ed. That is, the grounding capacitor C is connected between the electric wires R, S, T of each phase of the ungrounded power supply side electric circuit 40 and the grounding pole Ed.
1 to C3 are input. Thereby, the earth leakage breaker ELC
The current required to operate B2 flows, and the earth leakage breaker E
LCB2 performs a shutoff operation.

【0024】スイッチ制御回路7は、スイッチ3を所定
の時間Tの間オンさせた後、オフする。この時間Tは、
例えば漏電遮断器ELCB2が高速形漏電遮断器の場合
は0.2秒、時延形漏電遮断器の場合は3秒、反時限形
漏電遮断器の場合は0.5秒に設定される。尚、この時
間Tは、適宜、変更可能になっている。
The switch control circuit 7 turns on the switch 3 for a predetermined time T and then turns off. This time T is
For example, it is set to 0.2 seconds when the earth leakage breaker ELCB2 is a high-speed earth leakage breaker, 3 seconds when it is a time-delayed earth leakage breaker, and 0.5 seconds when it is an anti-timed earth leakage breaker. This time T can be changed as appropriate.

【0025】以上説明した第1の実施の形態では、漏電
遮断器ELCB2の動作電流補償回路として、接地用コ
ンデンサC1〜C3により構成されるインピーダンス回
路を用いたが、抵抗やリアクトル等により構成されるイ
ンピーダンス回路を用いることもできる。
In the first embodiment described above, the impedance circuit constituted by the grounding capacitors C1 to C3 is used as the operating current compensating circuit of the earth leakage breaker ELCB2, but is constituted by a resistor, a reactor and the like. An impedance circuit can also be used.

【0026】次に、本発明の第2の実施の形態を図2に
示す。第2の実施の形態は、第1の実施の形態における
インピーダンス回路を変圧器GPT及び抵抗R2により
構成したものである。図2に示すように、非接地の電源
側電路40の各相の電線R,S,Tには、接地用変圧器
GPTの1次側巻線W1r,W1s,W1tの一方の端
子が接続されている。接地用変圧器GPTの1次側巻線
W1r,W1s,W1tの他方の端子は共通接続されて
はスター結線されており、中性点N1は接地極Edに接
地されている。また、接地用変圧器GPTの2次側巻線
W2r,W2s,W2tは、直列に接続されており、2
次側巻線W2rの開放端子とW2tの開放端子との間に
は抵抗R2とスイッチ9とが直列に接続されている。
Next, a second embodiment of the present invention is shown in FIG. In the second embodiment, the impedance circuit in the first embodiment is configured by a transformer GPT and a resistor R2. As shown in FIG. 2, one terminal of the primary windings W1r, W1s, W1t of the grounding transformer GPT is connected to the electric wires R, S, T of each phase of the ungrounded power supply side electric circuit 40. ing. The other terminals of the primary windings W1r, W1s, W1t of the grounding transformer GPT are commonly connected and star-connected, and the neutral point N1 is grounded to the ground pole Ed. The secondary windings W2r, W2s, W2t of the grounding transformer GPT are connected in series, and
A resistor R2 and a switch 9 are connected in series between the open terminal of the secondary winding W2r and the open terminal of W2t.

【0027】上記スイッチ9は、前記第1の実施の形態
と同様の構成の漏電遮断器制御装置4により、オンオフ
制御される。漏電遮断器制御装置4内の零相電圧検出回
路は、スイッチ9のオフ時に、スイッチ9の両端子間に
発生する電圧、即ち、非接地の負荷側電路41の電線
R,S,Tのいずれかに地絡事故が発生したときにスイ
ッチ9の両端子間に発生する零相電圧を検出した場合、
スイッチ制御回路7に対してスイッチ9をオンさせる制
御信号を出力する。
The switch 9 is turned on and off by the earth leakage breaker control device 4 having the same configuration as that of the first embodiment. The zero-phase voltage detection circuit in the earth leakage breaker control device 4 is configured to detect a voltage generated between both terminals of the switch 9 when the switch 9 is turned off, that is, any one of the wires R, S, and T of the ungrounded load-side electric circuit 41. When a zero-phase voltage generated between both terminals of the switch 9 is detected when a crab ground fault occurs,
A control signal for turning on the switch 9 is output to the switch control circuit 7.

【0028】次に、第2の実施の形態における漏電遮断
器制御装置4の動作について説明する。負荷側電路41
の電線R,S,Tに地絡事故が発生していない場合は、
スイッチ9はオフである。スイッチ9がオフであると、
接地用変圧器GPTの1次側巻線W1r,W1s,W1
tのインピーダンスがスイッチ9のオン時に比較して高
い。そのため、負荷側電路41に接続されたインバータ
等の負荷5から発生する高周波漏れ電流は、電源側電路
40には流れ難い。そのため、負荷5と並列に接続され
た電子機器等がノイズ障害を起こすことはない。一方、
負荷側電路41の電線Tが絶縁破壊し、接地極Edに接
地されている電線管に地絡した場合、電線T、電線管、
電線管に接続された接地線、接地極Edを介して接地用
変圧器GPTの1次側巻線W1r,W1s,W1tの中
性点N1に地絡電流が流れる。この時は、スイッチ9が
オフであるため、接地変圧器GPTの1次側巻線W1
r,W1s,W1tのインピーダンスが高い状態になっ
ている。したがって、接地変圧器GPTの1次側巻線W
1r,W1s,W1tから電源側電路40に、漏電遮断
器ELCB2を動作させるような電流は流れない。ま
た、電線Tが絶縁破壊したことにより3相電圧の平衡が
くずれることによって、接地変圧器GPTの2次側巻線
に接続されているスイッチ9の両端に、零相電圧が発生
する。
Next, the operation of the earth leakage breaker control device 4 according to the second embodiment will be described. Load side electric circuit 41
If no ground fault has occurred on the electric wires R, S, T
Switch 9 is off. When switch 9 is off,
Primary windings W1r, W1s, W1 of grounding transformer GPT
The impedance of t is higher than when switch 9 is on. Therefore, the high-frequency leakage current generated from the load 5 such as an inverter connected to the load-side electric circuit 41 does not easily flow through the power-supply-side electric circuit 40. Therefore, an electronic device or the like connected in parallel with the load 5 does not cause noise interference. on the other hand,
When the electric wire T of the load-side electric circuit 41 is broken down and grounded to the electric wire tube grounded to the ground electrode Ed, the electric wire T, the electric wire tube,
A ground fault current flows to the neutral point N1 of the primary windings W1r, W1s, W1t of the grounding transformer GPT via a ground wire and a ground pole Ed connected to the conduit tube. At this time, since the switch 9 is off, the primary winding W1 of the ground transformer GPT is turned off.
The impedances of r, W1s, and W1t are high. Therefore, the primary winding W of the ground transformer GPT
No current that operates the earth leakage breaker ELCB2 flows from 1r, W1s, W1t to the power supply side electric circuit 40. Further, when the three-phase voltage is out of balance due to the insulation breakdown of the wire T, a zero-phase voltage is generated at both ends of the switch 9 connected to the secondary winding of the ground transformer GPT.

【0029】零相電圧検出回路8は、スイッチ9の両端
子間に発生した零相電圧を検出すると、スイッチ制御回
路7に対して制御信号を出力し、スイッチ9をオンさせ
る。スイッチ9がオンすると、接地用変圧器GPTの1
次側巻線W1r,W1s,W1tのインピーダンスが低
下し、接地用変圧器GPTの1次側巻線W1r,W1
s,W1tを介して漏電遮断器ELCB2を動作させる
電流が流れる。これにより、漏電遮断器ELCB2が遮
断動作する。尚、接地用抵抗R2の抵抗値は、接地用変
圧器GPTの1次側巻線W1r,W1s,W1tを介し
て漏電遮断器ELCB1を確実に動作させることができ
る電流が流れる値に設定される。また、接地用抵抗R2
の代りにコンデンサやリアクトル等を用いてもよい。
When detecting the zero-phase voltage generated between both terminals of the switch 9, the zero-phase voltage detection circuit 8 outputs a control signal to the switch control circuit 7 to turn on the switch 9. When the switch 9 is turned on, the grounding transformer GPT 1
The impedance of the secondary windings W1r, W1s, W1t decreases, and the primary windings W1r, W1 of the grounding transformer GPT are reduced.
A current for operating the earth leakage breaker ELCB2 flows through s and W1t. Thereby, the earth leakage breaker ELCB2 performs a breaking operation. The resistance value of the grounding resistor R2 is set to a value at which a current that can reliably operate the earth leakage breaker ELCB1 via the primary windings W1r, W1s, W1t of the grounding transformer GPT flows. . Also, a grounding resistor R2
Instead, a capacitor, a reactor, or the like may be used.

【0030】次に、本発明の第3の実施の形態を図3に
示す。3相3線式高低圧変圧器Tr2の低圧側巻線Tr
2Sと高圧側巻線Tr2Mとが絶縁破壊等により混触し
て、高電圧が低圧側に印加されるのを防止するために、
第3の実施の形態では、低圧側巻線Tr2Sと高圧側巻
線Tr2Mとの間に混触防止板21を設けている。本実
施の形態では、混触防止板21は接地極Ebに接続され
ている。負荷5の接地端子は接地極Edに接続されてい
る。また、単相3線式高低圧変圧器Tr1の低圧側巻線
Tr1Sと高圧側巻線Tr1Mとが絶縁破壊等により混
触して、高電圧が低圧側に印加されるのを防止するため
に、第3の実施の形態では、低圧側巻線Tr1Sと高圧
側巻線Tr1Mとの間に混触防止板22を設けている。
本実施の形態では、混触防止板22は接地極Ebに接続
されている。
Next, a third embodiment of the present invention is shown in FIG. Low-voltage side winding Tr of three-phase three-wire high-low voltage transformer Tr2
In order to prevent the 2S and the high-voltage side winding Tr2M from touching each other due to dielectric breakdown or the like and applying a high voltage to the low-voltage side,
In the third embodiment, the contact prevention plate 21 is provided between the low-voltage side winding Tr2S and the high-voltage side winding Tr2M. In the present embodiment, the contact prevention plate 21 is connected to the ground electrode Eb. The ground terminal of the load 5 is connected to the ground pole Ed. Also, in order to prevent the low-voltage side winding Tr1S and the high-voltage side winding Tr1M of the single-phase three-wire high-low voltage transformer Tr1 from touching each other due to dielectric breakdown or the like and applying a high voltage to the low-voltage side, In the third embodiment, the contact prevention plate 22 is provided between the low-voltage side winding Tr1S and the high-voltage side winding Tr1M.
In the present embodiment, the contact prevention plate 22 is connected to the ground electrode Eb.

【0031】このように、混触防止板21を3相3線式
高低圧変圧器Tr2に設けた場合には、第1の実施の形
態と同様に、低圧側電路は非接地状態となる。そこで、
漏電遮断器ELCB2の動作電流を補償するために、漏
電遮断器ELCB2の電源側電路40を接地用コンデン
サC1〜C3を介して接地極Edに接続する必要があ
る。この場合も、第1の実施の形態と同様に高周波漏れ
電流17の回り込みによる問題が発生する可能性があ
る。したがって、本実施の形態においても、図3に示す
ように接地用コンデンサC1〜C3と接地極Edとの間
に電路開閉手段であるスイッチ3を設け、また、スイッ
チ3のオンオフを制御する漏電遮断器制御装置4を設け
ている。漏電遮断器制御装置4の構成及び動作は、第1
の実施の形態と同様なので省略する。また、接地用イン
ピーダンス回路は、図2に示す接地用変圧器GPTでも
よい。
As described above, when the touch prevention plate 21 is provided in the three-phase three-wire high-low voltage transformer Tr2, the low-voltage side electric circuit is in the non-ground state as in the first embodiment. Therefore,
In order to compensate the operating current of the earth leakage breaker ELCB2, it is necessary to connect the power supply side electric circuit 40 of the earth leakage breaker ELCB2 to the ground pole Ed via the grounding capacitors C1 to C3. Also in this case, there is a possibility that a problem may occur due to the sneak of the high-frequency leakage current 17 as in the first embodiment. Therefore, also in the present embodiment, as shown in FIG. 3, the switch 3 which is an electric circuit opening / closing means is provided between the grounding capacitors C1 to C3 and the grounding electrode Ed, and the earth leakage cutoff for controlling ON / OFF of the switch 3 is provided. The device controller 4 is provided. The configuration and operation of the earth leakage breaker control device 4 are as follows.
Since it is the same as the embodiment, the description is omitted. Further, the grounding impedance circuit may be the grounding transformer GPT shown in FIG.

【0032】次に、本発明の第4の実施の形態を図4に
示す。第4の実施の形態では、単相3線式高低圧変圧器
Tr1の低圧側の接地端子N及び3相3線式高低圧変圧
器Tr2の低圧側の接地端子TEは、接地極Eb(例え
ばB種接地)と接続されている。3相3線式高低圧変圧
器Tr2の低圧側電路には、変圧器Tr3が設けられて
いる。
Next, a fourth embodiment of the present invention is shown in FIG. In the fourth embodiment, the low-voltage-side ground terminal N of the single-phase three-wire high-low voltage transformer Tr1 and the low-voltage ground terminal TE of the three-phase three-wire high-low voltage transformer Tr2 are connected to the ground electrode Eb (for example, (Class B ground). A transformer Tr3 is provided on the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2.

【0033】単相3線式高低圧変圧器Tr1の低圧側の
接地端子N及び3相3線式高低圧変圧器Tr2の低圧側
の接地端子TEを常時接地していると、前述の高周波漏
れ電流12(図5)、地絡電流14(図6)、常時漏れ
電流16(図7)の回り込みによる問題が発生する可能
性がある。そこで、これらの問題を防止するために、第
4の実施の形態では、3相3線式高低圧変圧器Tr2の
低圧側電路に、変圧器Tr3が設けられている。変圧器
Tr3によって、当該電路は絶縁されているので、前記
問題を防止できる。変圧器Tr3を設けた場合には、第
1の実施の形態と同様に、低圧側電路は非接地状態とな
る。そこで、漏電遮断器ELCB2の動作電流を補償す
るために、漏電遮断器ELCB2の電源側電路40を接
地用コンデンサC1〜C3を介して接地極Edに接続す
る必要がある。この場合も、第1の実施の形態と同様に
高周波漏れ電流17の回り込みによる問題が発生する可
能性がある。したがって、本実施の形態においても、図
3に示すように接地用コンデンサC1〜C3と接地極E
dとの間に電路開閉手段であるスイッチ3を設け、ま
た、スイッチ3のオンオフを制御する漏電遮断器制御装
置4を設けている。漏電遮断器制御装置4の構成及び動
作は、第1の実施の形態と同様なので省略する。また、
接地用インピーダンス回路は、図2に示す接地用変圧器
GPTでもよい。
If the low-voltage ground terminal N of the single-phase three-wire high-low voltage transformer Tr1 and the low-voltage ground terminal TE of the three-phase three-wire high-low voltage transformer Tr2 are always grounded, the above-described high-frequency leakage will occur. There is a possibility that a problem may occur due to the current 12 (FIG. 5), the ground fault current 14 (FIG. 6), and the constant leakage current 16 (FIG. 7). Therefore, in order to prevent these problems, in the fourth embodiment, a transformer Tr3 is provided on the low-voltage side electric circuit of the three-phase three-wire high-low voltage transformer Tr2. Since the electric circuit is insulated by the transformer Tr3, the above problem can be prevented. When the transformer Tr3 is provided, as in the first embodiment, the low-voltage side electric circuit is in a non-ground state. Therefore, in order to compensate for the operating current of the earth leakage breaker ELCB2, it is necessary to connect the power supply side electric circuit 40 of the earth leakage breaker ELCB2 to the ground pole Ed via the grounding capacitors C1 to C3. Also in this case, there is a possibility that a problem may occur due to the sneak of the high-frequency leakage current 17 as in the first embodiment. Therefore, also in the present embodiment, as shown in FIG.
A switch 3 which is an electric circuit opening / closing means is provided between the switch 3 and the switch d, and an earth leakage breaker control device 4 for controlling ON / OFF of the switch 3 is provided. The configuration and operation of the earth leakage breaker control device 4 are the same as those of the first embodiment, and therefore the description is omitted. Also,
The grounding impedance circuit may be the grounding transformer GPT shown in FIG.

【0034】なお、第1〜第4の実施の形態では、接地
極Ebと接地極Edを別々に設ける単独接地方式を用い
たが、共通の接地極を設ける共用接地方式を用いてもよ
い。共用接地方式を用いれば、仮に建物に落雷があって
も、この雷電流による接地極間の電位差が生じないた
め、雷電流による電子機器の絶縁破壊を防止することも
できる。また、接地極が1つなので接地工事の作業も容
易である。
In the first to fourth embodiments, the single grounding method in which the ground electrode Eb and the ground electrode Ed are separately provided is used. However, a common grounding method in which a common ground electrode is provided may be used. If a common grounding method is used, even if there is a lightning strike in the building, a potential difference between the grounding poles does not occur due to the lightning current, so that it is possible to prevent dielectric breakdown of the electronic device due to the lightning current. Also, since there is one grounding pole, the work of grounding work is also easy.

【0035】また、接地方式として、第1及び第2の実
施の形態では、高低圧変圧器の低圧側電路の接地端子N
及びTEを対地電位抑制装置1A,1Bを介して接地極
Ebに接地する方式、第4の実施の形態では、接地端子
N及びTEを接地極Ebに直接接地する方式、第3の実
施の形態では、混触防止板21、22を接地極Ebに接
地する方式を用いたが、接地方式は種々の接地方式を用
いることができる。また、種々の接地方式を組み合わせ
ることができる。また、本発明は、接地が必要な少なく
とも一つの送配電電路に用いることができる。
In the first and second embodiments, the ground terminal N of the low-voltage side electric circuit of the high-low voltage transformer is used as the grounding method.
And TE are grounded to the ground electrode Eb via the ground potential suppression devices 1A and 1B. In the fourth embodiment, the ground terminals N and TE are directly grounded to the ground electrode Eb. Third Embodiment In the above, a method in which the contact prevention plates 21 and 22 are grounded to the ground electrode Eb is used, but various grounding methods can be used. Further, various grounding methods can be combined. Further, the present invention can be used for at least one power transmission and distribution circuit requiring grounding.

【0036】また、第1及び第2の実施の形態では、対
地電位抑制装置1A、1Bを、アレスタZnと、トライ
アックTと、バリスタZntと、コンデンサCoとで構
成したが、これらの構成素子に限定されず種々の構成素
子により構成することができる。また、第1〜第4の実
施の形態では、インピーダンス回路と電路開閉手段を3
相3線式高低圧変圧器Tr2側の電路に設けたが、単相
3線式高低圧変圧器Tr1側の電路に設けてもよく、ま
た、双方に設けてもよい。また、電源側に接続されてい
る高低圧変圧器の高圧側は、7000V以上の特高圧で
もよい。また、低圧配電接地装置について説明したが、
本発明は種々の接地方式の送配電装置に適用することが
できる。
In the first and second embodiments, the ground potential suppressing devices 1A and 1B are composed of the arrester Zn, the triac T, the varistor Znt, and the capacitor Co. It is not limited, and can be configured by various constituent elements. Further, in the first to fourth embodiments, the impedance circuit and the circuit
Although provided on the electric circuit on the side of the phase three-wire high-low voltage transformer Tr2, it may be provided on the electric circuit on the side of the single-phase three-wire high-low voltage transformer Tr1 or on both sides. Further, the high voltage side of the high / low voltage transformer connected to the power supply side may be an extra high voltage of 7000V or more. Also, the low voltage distribution grounding device has been described,
The present invention can be applied to various grounding type power transmission and distribution devices.

【0037】[0037]

【発明の効果】以上説明したように、請求項1〜7に記
載の送配電装置を用いれば、高周波漏れ電流の回り込み
等による影響を低減することができるとともに、漏電遮
断器を確実に動作させることができるようになった。こ
れにより、安全性が向上した。
As described above, the use of the power transmission / distribution device according to any one of claims 1 to 7 can reduce the influence of the sneak path of the high-frequency leakage current and ensure that the leakage breaker operates. Now you can do it. Thereby, safety was improved.

【0038】[0038]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の送配電装置の一実施の形態の概略図で
ある。
FIG. 1 is a schematic diagram of an embodiment of a power transmission and distribution device of the present invention.

【図2】本発明の送配電装置の一実施の形態の概略図で
ある。
FIG. 2 is a schematic diagram of an embodiment of the power transmission and distribution device of the present invention.

【図3】本発明の送配電装置の一実施の形態の概略図で
ある。
FIG. 3 is a schematic diagram of an embodiment of the power transmission and distribution device of the present invention.

【図4】本発明の送配電装置の一実施の形態の概略図で
ある。
FIG. 4 is a schematic diagram of an embodiment of a power transmission and distribution device of the present invention.

【図5】問題点を示す説明図である。FIG. 5 is an explanatory diagram showing a problem.

【図6】問題点を示す説明図である。FIG. 6 is an explanatory diagram showing a problem.

【図7】問題点を示す説明図である。FIG. 7 is an explanatory diagram showing a problem.

【図8】問題点に対する対策例を示す説明図である。FIG. 8 is an explanatory diagram showing an example of a countermeasure for a problem.

【図9】従来の配線図を示す説明図である。FIG. 9 is an explanatory diagram showing a conventional wiring diagram.

【符号の説明】[Explanation of symbols]

1A、1B 対地電位抑制装置 3 スイッチ 4 漏電遮断器制御装置 5 負荷 6 電子機器 Tr1 単相3線式高低圧変圧器 Tr2 3相3線式高低圧変圧器 Tr3 変圧器 ELCB1、2 漏電遮断器 C1〜C3 接地用コンデンサ Eb 接地極 Ed 接地極 GPT 接地用変圧器 21、22 混触防止板 40 漏電遮断器の電源側電路 41 漏電遮断器の負荷側電路 Reference Signs List 1A, 1B Ground potential suppression device 3 Switch 4 Earth leakage breaker control device 5 Load 6 Electronic device Tr1 Single-phase three-wire high-low voltage transformer Tr2 Three-phase three-wire high-low voltage transformer Tr3 Transformer ELCB1,2 Earth leakage breaker C1 To C3 Grounding capacitor Eb Grounding pole Ed Grounding pole GPT Grounding transformer 21, 22 Contact prevention plate 40 Power supply circuit of earth leakage breaker 41 Load circuit of earth leakage breaker

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 漏電遮断器が設けられた少なくとも一
つの送配電電路と、少なくとも一つの送配電電路の、漏
電遮断器より電源側の電源側電路の接地端子と第1の接
地極との間に設けられた対地電位抑制装置と、少なくと
も一つの送配電電路の、漏電遮断器より電源側の電源側
電路と第2の接地極との間に設けられたインピーダンス
回路及び開閉手段と、開閉手段を制御する制御手段とを
備え、 対地電位抑制装置は、少なくとも一つの送配電電路の電
圧が設定値以上の時に当該送配電電路の接地端子を第1
の接地極と接続し、 制御手段は、少なくとも一つの送配電電路が地絡したこ
とを検出した時に開閉手段を制御してインピーダンス回
路を当該送配電電路と第2の接地極との間に接続するこ
とを特徴とする送配電装置。
At least one power transmission / distribution circuit provided with an earth leakage breaker, and at least one power transmission / distribution circuit between a ground terminal and a first ground electrode of a power supply side electric circuit on a power supply side of the earth leakage breaker. A ground potential suppressing device, an impedance circuit and switching means provided between a power supply side of the at least one power transmission / distribution circuit and a power supply side of the leakage breaker and a second grounding pole, and switching means And control means for controlling the ground potential of the power transmission and distribution line when the voltage of at least one of the power transmission and distribution lines is equal to or higher than a set value.
The control means controls the switching means when detecting that at least one power transmission / distribution circuit is grounded, and connects the impedance circuit between the power transmission / distribution path and the second ground electrode. Power transmission and distribution equipment.
【請求項2】 請求項1に記載の送配電装置であっ
て、少なくとも一つの送配電電路は、電源側に高低圧変
圧器が設けられていることを特徴とする送配電装置。
2. The power transmission and distribution device according to claim 1, wherein the at least one power transmission and distribution line includes a high / low voltage transformer on a power supply side.
【請求項3】 漏電遮断器が設けられた少なくとも一
つの送配電電路と、少なくとも一つの送配電電路の電源
側に設けられた高低圧変圧器と、第1の接地極に接地さ
れた高低圧変圧器の混触防止板と、少なくとも一つの送
配電電路の、漏電遮断器より電源側の電源側電路と第2
の接地極との間に設けられたインピーダンス回路及び開
閉手段と、開閉手段を制御する制御手段とを備え、 制御手段は、少なくとも一つの送配電電路が地絡したこ
とを検出した時に開閉手段を制御してインピーダンス回
路を当該送配電電路と第2の接地極との間に接続するこ
とを特徴とする送配電装置。
3. At least one transmission / distribution circuit provided with an earth leakage breaker, a high / low voltage transformer provided on a power supply side of at least one transmission / distribution circuit, and a high / low voltage grounded to a first ground electrode. A contact prevention plate of a transformer, a power supply side power supply side of at least one power transmission and distribution line, a power supply side of the power supply side from the earth leakage breaker,
An impedance circuit and an opening / closing means provided between the grounding electrode and a control means for controlling the opening / closing means, wherein the control means switches the opening / closing means when detecting that at least one power transmission / distribution circuit has a ground fault. A power transmission / distribution device, wherein the impedance circuit is controlled to be connected between the power transmission / distribution circuit and the second ground electrode.
【請求項4】 漏電遮断器が設けられた少なくとも一
つの送配電電路と、少なくとも一つの送配電電路の電源
側に設けられた高低圧変圧器と、高低圧変圧器の低圧側
電路で漏電遮断器との間に設けられた変圧器と、変圧器
の2次側電路と第2の接地極との間に設けられたインピ
ーダンス回路及び開閉手段と、開閉手段を制御する制御
手段とを備え、 高低圧変圧器の低圧側と変圧器の間の電路の接地端子
は、第1の接地極と接続され、 制御手段は、少なくとも一つの送配電電路が地絡したこ
とを検出した時に開閉手段を制御してインピーダンス回
路を変圧器の2次側電路と第2の接地極との間に接続す
ることを特徴とする送配電装置。
4. An earth leakage breaker for at least one transmission / distribution circuit provided with an earth leakage breaker, a high / low voltage transformer provided on a power supply side of the at least one transmission / distribution circuit, and a low voltage side electric circuit of the high / low voltage transformer. A transformer provided between the transformer, an impedance circuit and switching means provided between the secondary side electric circuit of the transformer and the second ground electrode, and control means for controlling the switching means, The ground terminal of the circuit between the low-voltage side of the high-low voltage transformer and the transformer is connected to the first ground electrode, and the control means switches the switching means when detecting that at least one power transmission and distribution circuit has a ground fault. A power transmission and distribution device, wherein the impedance circuit is controlled to be connected between a secondary circuit of a transformer and a second ground electrode.
【請求項5】 請求項1〜4のいずれかに記載の送配
電装置であって、インピーダンス回路は、コンデンサ、
抵抗又はリアクトルの少なくとも1つにより構成され、
開閉手段は、インピーダンス回路と第2の接地極との間
に接続されていることを特徴とする送配電装置。
5. The power transmission and distribution device according to claim 1, wherein the impedance circuit includes a capacitor,
Constituted by at least one of a resistor or a reactor,
The power transmission and distribution device, wherein the switching means is connected between the impedance circuit and the second ground electrode.
【請求項6】 請求項1〜4のいずれかに記載の送配
電装置であって、インピーダンス回路は、変圧器を有
し、開閉手段は、変圧器の2次側巻線と第2の接地極と
の間に設けられていることを特徴とする送配電装置。
6. The power transmission and distribution device according to claim 1, wherein the impedance circuit has a transformer, and the switching means includes a secondary winding of the transformer and a second ground. A power transmission / distribution device provided between the poles.
【請求項7】 請求項1〜6のいずれかに記載の送配
電装置であって、第1の接地極と第2の接地極が同一の
接地極であることを特徴とする送配電装置。
7. The power transmission and distribution device according to claim 1, wherein the first ground electrode and the second ground electrode are the same ground electrode.
JP2000069034A 2000-03-13 2000-03-13 Power transmission and distribution equipment Expired - Lifetime JP3338688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069034A JP3338688B2 (en) 2000-03-13 2000-03-13 Power transmission and distribution equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069034A JP3338688B2 (en) 2000-03-13 2000-03-13 Power transmission and distribution equipment

Publications (2)

Publication Number Publication Date
JP2001258149A true JP2001258149A (en) 2001-09-21
JP3338688B2 JP3338688B2 (en) 2002-10-28

Family

ID=18587995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069034A Expired - Lifetime JP3338688B2 (en) 2000-03-13 2000-03-13 Power transmission and distribution equipment

Country Status (1)

Country Link
JP (1) JP3338688B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148749A1 (en) * 2010-05-24 2011-12-01 有限会社ライフテクノス Electrical leakage detection apparatus with unexpected motion blocking function
JP2014083395A (en) * 2012-10-26 2014-05-12 Dna:Kk Game-providing device
JP2015163218A (en) * 2015-04-16 2015-09-10 株式会社 ディー・エヌ・エー Game providing device
KR20210071645A (en) * 2019-12-06 2021-06-16 한전케이디엔주식회사 Control system for distributed power supply device using non-contact type coupler

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148749A1 (en) * 2010-05-24 2011-12-01 有限会社ライフテクノス Electrical leakage detection apparatus with unexpected motion blocking function
JP2011249042A (en) * 2010-05-24 2011-12-08 Lifetechnos Co Ltd Leakage detection device with adoption lock
KR101421564B1 (en) 2010-05-24 2014-07-22 유겐가이샤 라이프테크노스 Electrical leakage detection apparatus with unexpected motion blocking function
US9400302B2 (en) 2010-05-24 2016-07-26 Lifetechnos Co., Ltd. Earth leakage detector with suffered current-blocking function
JP2014083395A (en) * 2012-10-26 2014-05-12 Dna:Kk Game-providing device
JP2015163218A (en) * 2015-04-16 2015-09-10 株式会社 ディー・エヌ・エー Game providing device
KR20210071645A (en) * 2019-12-06 2021-06-16 한전케이디엔주식회사 Control system for distributed power supply device using non-contact type coupler
KR102318444B1 (en) 2019-12-06 2021-11-01 한전케이디엔 주식회사 Control system for distributed power supply device using non-contact type coupler

Also Published As

Publication number Publication date
JP3338688B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US4228475A (en) Ground monitoring system
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
WO2015035913A1 (en) Single-phase grounding fault handling apparatus and method for power distribution network with non-effectively grounding neutral point
US20060274462A1 (en) Circuit interrupting device having integrated enhanced rfi suppression
JPH03156820A (en) Electric power switch controller
EA006836B1 (en) Protecting medium voltage inductive coupler device from electric transients
JP2002320325A (en) Power transmission and distribution equipment
JP3338688B2 (en) Power transmission and distribution equipment
EP2733808B1 (en) Method and system for suppressing very fast transients
CN112117747B (en) Ground fault current hybrid compensation system and matching method
CN211744020U (en) Arc tube management intelligent line selection device
JP3333753B2 (en) Ground potential suppression device
CN203850813U (en) Overvoltage-inhibiting integrated protection device suitable for 12-45kV electrical networks
KR20020041973A (en) Breaker for a leakage of electrocity
JP2012065461A (en) Surge protection device protective system and surge protection system
JP3227653B2 (en) Power system protection controller
CN201022148Y (en) Over-voltage virtual grounding protection device for power grid parts
CN219498953U (en) Single-phase earth fault processing system of power distribution network
RU2321129C2 (en) Distributing power network
JP2597694B2 (en) Power switchgear
RU2016458C1 (en) Gear for termination of ferro-resonance processes in networks with insulated neutral
Liu et al. Application of auto-reclosing residual current device in lightning protection for communications power supply
JP2001110296A (en) Operating current carrying device for earth leakage breaker
RU2284082C2 (en) Protective device for electrical equipment of high-voltage substations and power transmission lines
JP2002051468A (en) Controller/protector for power apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3338688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140809

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term