JP2000261125A - Mounting structure of hybrid integrated circuit - Google Patents

Mounting structure of hybrid integrated circuit

Info

Publication number
JP2000261125A
JP2000261125A JP5925299A JP5925299A JP2000261125A JP 2000261125 A JP2000261125 A JP 2000261125A JP 5925299 A JP5925299 A JP 5925299A JP 5925299 A JP5925299 A JP 5925299A JP 2000261125 A JP2000261125 A JP 2000261125A
Authority
JP
Japan
Prior art keywords
temperature
heat
component
constrained
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5925299A
Other languages
Japanese (ja)
Other versions
JP3684903B2 (en
Inventor
Koji Numazaki
浩二 沼崎
Mitsuhiro Saito
斎藤  光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP05925299A priority Critical patent/JP3684903B2/en
Publication of JP2000261125A publication Critical patent/JP2000261125A/en
Application granted granted Critical
Publication of JP3684903B2 publication Critical patent/JP3684903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the desired characteristics of a temperature sensitive part to be maintained even if the temperature of a heat generating part rises and a hybrid integrated circuit to be miniaturized, by arranging a temperature sensitive part a heat generating part with a distance therebetween to satisfy a specified formula. SOLUTION: A hybrid integrated circuit is constituted of a temperature sensitive part 2, a heat generating part 3 and an electronic part 4 such as a capacitor and a resistance on a substrate of ceramic, glass epoxy resin, etc. The heat generating part 3 and the temperature sensitive part 2 are arranged so that a distance L1 between the heat generating part 3 and the temperature sensitive part 2 satisfies a formula. In the formula, (k) is heat transmission coefficient of the substrate 1, Th1 is heat generation temperature of the heat generating part 3 and β is an error range of heat transmission ratio of the substrate 1. The temperature of the temperature sensitive part 2 is the sum of the heat generation temperature Tb of itself, an ambient temperature Ta and temperature rise due to transmission heat whose heat generation source is a heat generation part. The temperature rise changes according to the distance L1 between the heat generating part 3 and the temperature sensitive part 2 and an absolute value of heat transmission coefficient increases in reverse proportion to the square of the distance L1 and does not exceed a control temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】使用温度に制約がある部品
と、通電時に発熱が生じる部品(素子)とが混在する混
成集積回路の実装構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure of a hybrid integrated circuit in which a component having a limited use temperature and a component (element) that generates heat when energized are mixed.

【0002】[0002]

【従来の技術】近年の混成集積回路としては、消費電力
が大きいパワー部品を取り込みつつ、小型化が求められ
る傾向にある。使用温度に制約がある部品若しくは素子
(以下、温度制約部品という)と、動作時(通電時)に
発熱が生じる部品もしくは素子(以下、発熱部品とい
う)とが混在する混成集積回路がある。この回路では、
発熱部品の発熱による温度上昇が生じても温度制約部品
が所定温度(所望の部品特性が得られる温度)以下にな
るようにする必要があるため、従来では、混成集積回路
を配置する基板サイズを拡大させたり、基板に放熱フィ
ンを備えることによって、混成集積回路で発生した熱を
効率よく放熱させるようにしている。
2. Description of the Related Art In recent years, there has been a trend for hybrid integrated circuits to be miniaturized while incorporating power components that consume large amounts of power. There is a hybrid integrated circuit in which a part or an element having a restriction on the use temperature (hereinafter, referred to as a temperature-constrained part) and a part or element which generates heat during operation (when energized) (hereinafter, referred to as a heat-generating part) are mixed. In this circuit,
Even if a temperature rise due to heat generation of the heat-generating component occurs, it is necessary to keep the temperature-constrained component at or below a predetermined temperature (a temperature at which desired component characteristics can be obtained). The heat generated in the hybrid integrated circuit is efficiently radiated by enlarging the substrate or by providing a heat radiation fin on the substrate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、基板サ
イズの拡大や放熱フィンの装備は、混成集積回路の大型
化を招き、上記した混成集積回路の小型化とは相反する
という問題がある。また、放熱作用を得るために、部品
点数を増加させたり、加工工数を増加させたりしてコス
トアップを招くという問題も生じさせる。
However, the enlargement of the substrate size and the provision of the heat radiation fins cause a problem that the size of the hybrid integrated circuit is increased, which is inconsistent with the aforementioned miniaturization of the hybrid integrated circuit. Further, in order to obtain the heat radiation effect, there is a problem that the number of parts is increased or the number of processing steps is increased, thereby increasing the cost.

【0004】本発明は上記問題に鑑みてなされ、発熱部
品の発熱による温度上昇が生じても温度制約部品が所望
の特性となり、かつ混成集積回路の小型化を図ることが
できる混成集積回路の実装構造を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has a temperature-limited component having desired characteristics even when a temperature rise occurs due to heat generation of a heat-generating component, and the mounting of a hybrid integrated circuit capable of reducing the size of the hybrid integrated circuit. The purpose is to provide a structure.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に、請求項1に記載の発明においては、温度制約部品
(2)と第1の発熱部品(3、3a)との間の距離をL
1、温度制約部品(2)の周囲の雰囲気温度をTa、温
度制約部品(2)自身の発熱による温度上昇をTb、第
1の発熱部品(3、3a)の発熱温度をTh1、温度制
約部品の制約温度をTc、温度制約部品(2)と第1の
発熱部品(3、3a)との間における基板(1)の熱伝
達係数をk、第1の発熱部品(3、3a)の近傍の熱伝
達率における誤差範囲をα、第1の発熱部品(3、3
a)の遠方の熱伝達率における誤差範囲をβとした場合
に、上記数1を満たすように、温度制約部品(2)と第
1の発熱部品(3、3a)とを配置することを特徴とす
る。
In order to solve the above problem, according to the first aspect of the present invention, the distance between the temperature limiting component (2) and the first heat generating component (3, 3a) is increased. L
1. The ambient temperature around the temperature constrained component (2) is Ta, the temperature rise due to the heat generation of the temperature constrained component (2) is Tb, the heat generation temperature of the first heat generated components (3, 3a) is Th1, and the temperature constrained component is Th1. Is the constrained temperature of Tc, the heat transfer coefficient of the board (1) between the temperature constrained component (2) and the first heat generating component (3, 3a) is k, and the vicinity of the first heat generating component (3, 3a). Is an error range in the heat transfer coefficient of the first heat generating component (3, 3).
When the error range in the heat transfer coefficient in the distance of a) is β, the temperature-constrained component (2) and the first heat-generating components (3, 3a) are arranged so as to satisfy Equation (1). And

【0006】このように、温度制約部品(2)と発熱部
品(3、3a)との間が距離L1を満たすように、温度
制約部品(2)と発熱部品(3、3a)とを配置するこ
とにより、距離L1という短い間隔で温度制約部品
(2)と発熱部品(3、3a)とを配置しても、温度制
約部品(2)が制約温度を超えることがない。従って、
温度制約部品(2)の所望の特性を得ることができると
ともに、混成集積回路の小型化を図ることができる。
As described above, the temperature constraining component (2) and the heat generating components (3, 3a) are arranged so that the distance between the temperature constraining component (2) and the heat generating components (3, 3a) satisfies the distance L1. Thus, even if the temperature constrained component (2) and the heat generating components (3, 3a) are arranged at a short interval of the distance L1, the temperature constrained component (2) does not exceed the constrained temperature. Therefore,
The desired characteristics of the temperature constrained component (2) can be obtained, and the size of the hybrid integrated circuit can be reduced.

【0007】請求項2に記載の発明においては、動作時
に発熱が生じる第2の発熱部品(3b)を有し、第2の
発熱部品(3b)と温度制約部品(2)との間の距離を
L2、第2の発熱部品(3b)の発熱温度をTh2、第
1の発熱部品(3、3a)の発熱による温度制約部品
(2)の温度上昇をTe1とした場合に、上記数2を満
たすように、温度制約部品(2)と第2の発熱部品(3
b)とが配置されていることを特徴としている。
According to the second aspect of the present invention, there is provided a second heat generating component (3b) which generates heat during operation, and a distance between the second heat generating component (3b) and the temperature restricting component (2). Is L2, the heat generation temperature of the second heat-generating component (3b) is Th2, and the temperature rise of the temperature-constrained component (2) due to the heat generation of the first heat-generating component (3, 3a) is Te1. The temperature constraint part (2) and the second heat generation part (3
b) are arranged.

【0008】このように、複数の発電部品が基板(1)
上に配置される場合には、温度制約部品(2)とそれぞ
れの発熱部品(3a、3b)との間が所定の距離となる
ようにすることで、発熱部品(3a、3b)が複数配置
される場合においても、請求項1と同様の効果を得るこ
とができる。なお、基板(1)の熱伝達係数は、請求項
3に示すように、熱が基板(1)を伝わる距離の二乗に
反比例する関係を有している。
[0008] As described above, the plurality of power generation components are connected to the substrate (1).
In the case where the heat-generating components (3a, 3b) are arranged above, a plurality of heat-generating components (3a, 3b) are arranged by setting a predetermined distance between the temperature-constrained component (2) and each of the heat-generating components (3a, 3b). Also in this case, the same effect as in claim 1 can be obtained. The heat transfer coefficient of the substrate (1) has a relationship that is inversely proportional to the square of the distance that heat travels through the substrate (1).

【0009】[0009]

【発明の実施の形態】以下、本発明を図に示す実施形態
に従って説明する。図1に本発明の一実施形態を適用し
た混成集積回路の実装構造を示す。以下、図1に基づい
て混成集積回路の実装構造を説明する。図1に示すよう
に、混成集積回路は、セラミックやガラスエポキシ樹脂
などで構成された基板1上に、複数の部品を備えた構成
となっている。複数の部品は、それぞれ、温度制約部品
2、発熱部品3、コンデンサや抵抗などの電子部品4で
構成されている。ここで、温度制約部品2とは、一般的
にジャンクション温度(Tj)が150℃とされている
半導体素子や、約170℃程度から軟化するはんだで接
続された部品又は、温度特性上から使用温度が制約され
ている抵抗体やコンデンサなどを示す。また、発熱部品
3とは、パワーMOSトランジスタを始めとする大電力
半導体素子や抵抗体及びコイルなどの動作上発熱するも
のすべてを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a mounting structure of a hybrid integrated circuit to which one embodiment of the present invention is applied. Hereinafter, the mounting structure of the hybrid integrated circuit will be described with reference to FIG. As shown in FIG. 1, the hybrid integrated circuit has a configuration in which a plurality of components are provided on a substrate 1 made of ceramic, glass epoxy resin, or the like. Each of the plurality of components includes a temperature constraint component 2, a heating component 3, and electronic components 4 such as a capacitor and a resistor. Here, the temperature-constrained component 2 is generally a semiconductor element having a junction temperature (Tj) of 150 ° C., a component connected by solder that softens from about 170 ° C., or an operating temperature based on temperature characteristics. Indicates a restricted resistor or capacitor. The heat-generating components 3 are all heat-generating components such as power MOS transistors and other high-power semiconductor elements, resistors, and coils.

【0010】そして、発熱部品3と温度制約部品2との
間の距離L1が数3を満たすように、発熱部品3と温度
制約部品2とが配置されている。
The heat-generating component 3 and the temperature-constrained component 2 are arranged so that the distance L1 between the heat-generating component 3 and the temperature-constrained component 2 satisfies Equation 3.

【0011】[0011]

【数3】 (Equation 3)

【0012】ただし、Ta;周囲温度、Tb;温度制約
部品2自体の発熱温度、k;基板1の熱伝達係数、T
c;温度制約部品2の制約温度(所望の特性が得られる
温度)Th1;発熱部品3の発熱温度、α、β;基板1
の熱伝達率における誤差範囲である。この数3について
説明する。
Here, Ta: ambient temperature, Tb: heat generation temperature of the temperature-constrained component 2 itself, k: heat transfer coefficient of the substrate 1, T:
c: limited temperature of temperature-limited component 2 (temperature at which desired characteristics can be obtained) Th1; heat-generating temperature of heat-generating component 3, α, β;
Is the error range for the heat transfer coefficient of Equation 3 will be described.

【0013】まず、温度制約部品2の温度について考え
てみると、温度制約部品2の温度は、温度制約部品2自
体の発熱温度Tbと、温度制約部品2の周囲温度、及び
発熱部品3を発熱源として伝達された熱による温度上昇
との和によって表わされる。これらのうち、発熱部品3
を発熱源として伝達された熱による温度上昇について
は、発熱部品3と温度制約部品2との間の距離L1によ
って変化するため、上記和が温度制約部品2の制約温度
を超えないように距離L1を設定する必要がある。
First, considering the temperature of the temperature constrained component 2, the temperature of the temperature constrained component 2 is determined by the heat generation temperature Tb of the temperature constrained component 2, the ambient temperature of the temperature constrained component 2, and the heat generation of the heat generated component 3. Expressed as the sum of the temperature rise due to the heat transferred as the source. Of these, the heating component 3
Rises due to the heat transmitted using the heat source as a heat source, the temperature rise depends on the distance L1 between the heat-generating component 3 and the temperature-constrained component 2, so that the sum does not exceed the constrained temperature of the temperature-constrained component 2. Need to be set.

【0014】そこで、発熱部品3と温度制約部品2との
間の距離と、これらの間における基板1の熱伝達係数と
の関係を調べたところ、図2に示す特性が得られた。こ
の図に示されるように、熱伝達係数の絶対値は、距離L
1の二乗に反比例(1/L1 2 )して大きくなるように
変化する。このため、発熱部品3から伝達された熱によ
る温度上昇は、(k/L12 +β)×Thで示される。
そして、温度制約部品2の温度が制約温度Tc以下であ
ることが必要とされるため、温度制約部品2の温度とし
て許容される温度、すなわち制約温度Tcは数4のよう
に表わすことができる。
Therefore, the heat-generating component 3 and the temperature-constrained component 2
And the heat transfer coefficient of the substrate 1 between them.
When the relationship was examined, the characteristics shown in FIG. 2 were obtained. This
As shown in the figure, the absolute value of the heat transfer coefficient is the distance L
Inversely proportional to the square of 1 (1 / L1 Two) To make it bigger
Change. Therefore, the heat transmitted from the heat-generating component 3
Temperature rise is (k / L1Two+ Β) × Th.
Then, the temperature of the temperature constrained part 2 is equal to or lower than the constrained temperature Tc.
It is necessary that the temperature
Temperature, ie, the constraint temperature Tc is as shown in Equation 4.
Can be represented by

【0015】[0015]

【数4】 (Equation 4)

【0016】この数4を距離L1の式に変換すると、数
1が導き出される。これにより、発熱部品と温度制約部
品2との間の距離L1は、想定される各種温度に対し
て、温度制約部品2の温度が制約温度を超えない程度に
設定される。この距離L1は、基板1として用いられて
いるセラミックや樹脂などが金属などと比べて熱伝導性
が劣っており比較的大きな温度勾配を生じる材料である
ことから、比較的小さな値となる。このため、距離L1
を上記数1を満たす値とすることにより、発熱部品3と
温度制約部品2との間の距離L1が、温度制約部品2の
温度を制約温度以下にできる最短距離とすることができ
るため、各部品間を最短距離で結線することができる。
このため、温度制約部品2の温度が制約温度を超えない
ようにできるだけでなく、混成集積回路の小型化を図る
こともできる。
When this equation (4) is converted into an equation for the distance L1, equation (1) is derived. Thereby, the distance L1 between the heat generating component and the temperature constrained component 2 is set to such an extent that the temperature of the temperature constrained component 2 does not exceed the constrained temperature with respect to various assumed temperatures. This distance L1 is a relatively small value because ceramic or resin used as the substrate 1 is a material that is inferior in heat conductivity to a metal or the like and generates a relatively large temperature gradient. Therefore, the distance L1
Is a value that satisfies Equation 1 above, the distance L1 between the heat generating component 3 and the temperature constrained component 2 can be the shortest distance that allows the temperature of the temperature constrained component 2 to be equal to or less than the constrained temperature. Components can be connected with the shortest distance.
Therefore, not only can the temperature of the temperature constrained component 2 not exceed the constrained temperature, but also the size of the hybrid integrated circuit can be reduced.

【0017】さらに、最短距離での結線が可能となるた
め、配線抵抗の低減を図れるという効果も得られる。ま
た、これにより、配線に大電流を流すことによる発熱を
抑制することができ、温度制約部品2の温度上昇の抑制
が行えるという相乗効果も得られる。なお、図示されて
いないが、温度制約部品2と発熱部品3との間の導体パ
ターン密度をできるだけ小さくしている。これにより、
基板1の熱伝導係数の絶対値を大きくすることができ、
距離L1をさらに小さくすることができるという効果が
得られ、さらなる高集積化を図ることができる。
Furthermore, since the connection can be made at the shortest distance, the effect of reducing the wiring resistance can be obtained. Further, thereby, heat generation due to a large current flowing through the wiring can be suppressed, and a synergistic effect that a temperature rise of the temperature constrained component 2 can be suppressed can be obtained. Although not shown, the conductor pattern density between the temperature restricting component 2 and the heat generating component 3 is made as small as possible. This allows
The absolute value of the thermal conductivity coefficient of the substrate 1 can be increased,
The effect that the distance L1 can be further reduced is obtained, and higher integration can be achieved.

【0018】また、混成集積回路に電気的又は構造的に
接続される物、例えばクリップやコネクタなどの近傍に
発熱部品3を配置することにより、発熱部品3が発生し
た熱をこれらの物を通じて放熱することも可能である。
さらに、本実施形態では、基板寸法について特に説明し
ていないが、熱伝達係数は基板寸法に大きく依存し、基
板寸法を大きくすれば熱伝達係数の絶対値が大きくな
り、発熱部品3の発熱が温度制約部品2に伝達され難く
なるということが判った。このため、基板寸法を大きく
することにより、基板1内において発熱部品3と温度制
約部品2との間を狭くすることができ、基板1内の他の
構成要素の配置スペースを増加させ、他の構成要素の配
置自由度を向上させることも可能である。
Further, by disposing the heat generating component 3 in the vicinity of an object electrically or structurally connected to the hybrid integrated circuit, for example, a clip or a connector, the heat generated by the heat generating component 3 is radiated through these objects. It is also possible.
Further, in the present embodiment, although the board dimensions are not particularly described, the heat transfer coefficient greatly depends on the board dimensions, and the larger the board size, the larger the absolute value of the heat transfer coefficient becomes. It has been found that transmission to the temperature-constrained component 2 becomes difficult. For this reason, by increasing the board size, the space between the heat-generating component 3 and the temperature-constraining component 2 can be reduced in the board 1, increasing the space for arranging other components in the board 1, It is also possible to improve the degree of freedom in arranging the components.

【0019】(第2実施形態)図3に本発明の第2実施
形態における混成集積回路の実装構造を示す。以下、図
3に基づいて、本実施形態における混成集積回路の構成
を説明する。ただし、図3において、図1と同じ構成で
ある部分については、説明を省略する。本実施形態で
は、温度制約部品2や発熱部品3が基板1上に複数個配
置されている場合について説明する。ただし、本実施形
態では、便宜上温度制約部品2が1つに対して2個の発
熱部品3a、3bを配置する場合を例に挙げて説明す
る。
(Second Embodiment) FIG. 3 shows a mounting structure of a hybrid integrated circuit according to a second embodiment of the present invention. Hereinafter, the configuration of the hybrid integrated circuit according to the present embodiment will be described with reference to FIG. However, in FIG. 3, the description of the same configuration as in FIG. 1 is omitted. In the present embodiment, a case where a plurality of temperature-constrained components 2 and heat-generating components 3 are arranged on the substrate 1 will be described. However, in the present embodiment, a case where two heat-generating components 3a and 3b are arranged for one temperature-constrained component 2 will be described for convenience.

【0020】図3に示すように、温度制約部品2に対し
て距離L1の位置に発熱部品3aが配置されており、距
離L2の位置に発熱部品3bが配置されている。このよ
うな場合、温度制約部品2の温度が発熱部品3aと発熱
部品3bの双方に発熱によって上昇するため、これら双
方による発熱を考慮して距離温度L1、L2を設定する
ようにしている。
As shown in FIG. 3, a heat-generating component 3a is disposed at a distance L1 from the temperature-constrained component 2, and a heat-generating component 3b is disposed at a position at a distance L2. In such a case, since the temperature of the temperature constrained component 2 rises due to heat generation in both the heat generating component 3a and the heat generating component 3b, the distance temperatures L1 and L2 are set in consideration of the heat generated by both.

【0021】具体的には、まず、温度制約部品2が発熱
部品3aの発熱によって受ける温度上昇Te1は、数5
のように求められる。
More specifically, first, the temperature rise Te1 which the temperature constrained component 2 receives due to the heat generated by the heat generating component 3a is expressed by the following equation (5).
Is required.

【0022】[0022]

【数5】Te1=(k/L12 +β)Th1 但し、Th1;発熱部品3aの発熱温度である。そし
て、温度制約部品2の温度は、温度制約部品2自体のも
ともとの温度Tbと、温度制約部品2の周囲温度、及び
発熱部品3aと発熱部品3bを発熱源として伝達された
熱による温度上昇との和に相当するため、温度制約部品
2と発熱部品3bとの間の距離L2は、数6のように表
わされる。
## EQU5 ## Te1 = (k / L1 2 + β) Th1 where Th1 is the heat generation temperature of the heat generating component 3a. The temperature of the temperature-constrained component 2 includes the original temperature Tb of the temperature-constrained component 2, the ambient temperature of the temperature-constrained component 2, and a temperature rise due to heat transmitted using the heat-generating components 3 a and 3 b as a heat source. , The distance L2 between the temperature constraining component 2 and the heat generating component 3b is expressed as in Equation 6.

【0023】[0023]

【数6】 (Equation 6)

【0024】但し、Th2;発熱部品3aの発熱温度で
ある。このため、数5、数6に基づいて、温度制約部品
2の温度が制約温度以下となるように距離L1、L2を
任意に設定することにより、温度制約部品2に対して複
数の発熱部品3a、3bが存在するような場合でも、温
度制約部品2の温度が制約温度以上になることを防止す
ることができる。
Here, Th2 is a heat generation temperature of the heat generation component 3a. For this reason, the distances L1 and L2 are arbitrarily set based on Equations 5 and 6 so that the temperature of the temperature-constrained component 2 is equal to or lower than the constrained temperature. 3b, it is possible to prevent the temperature of the temperature constrained component 2 from becoming equal to or higher than the constrained temperature.

【0025】なお、温度制約部品2が複数個あり、発熱
部品が複数個あるような場合についても、本実施形態と
同様に、各温度制約部品2について各発熱部品の発熱に
よって生じる温度上昇をそれぞれ検討することによっ
て、各温度制約部品2の温度がそれぞれの制約温度を超
えないようにすることができる。
In the case where there are a plurality of temperature-constrained components 2 and a plurality of heat-generating components, similarly to this embodiment, the temperature rise caused by the heat generation of each heat-conducting component for each of the temperature-constrained components 2 is also determined. By studying, it is possible to prevent the temperature of each temperature constrained component 2 from exceeding the respective constrained temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における混成集積回路の
実装構造を示す図である。
FIG. 1 is a diagram illustrating a mounting structure of a hybrid integrated circuit according to a first embodiment of the present invention.

【図2】1/(距離の二乗)と熱伝達係数との関係を示
す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between 1 / (square of distance) and a heat transfer coefficient.

【図3】本発明の第2実施形態における混成集積回路の
実装構造を示す図である。
FIG. 3 is a diagram illustrating a mounting structure of a hybrid integrated circuit according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…温度制約部品、3、3a、3b…発熱部
品、4…電子部品。
DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2 ... temperature constraint parts, 3, 3a, 3b ... heat generation parts, 4 ... electronic parts.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板(1)上に、使用温度に制約を有す
る部品若しくは素子からなる温度制約部品(2)と、動
作時に発熱が生じる部品若しくは素子からなる第1の発
熱部品(3、3a)とを配置してなる混成集積回路の実
装構造において、 前記温度制約部品(2)と前記第1の発熱部品との間の
距離をL1、前記温度制約部品(2)の周囲の雰囲気温
度をTa、前記温度制約部品(2)自身の発熱による温
度上昇をTb、前記第1の発熱部品(3、3a)の発熱
温度をTh1、前記温度制約部品(2)の制約温度をT
c、前記温度制約部品(2)と前記第1の発熱部品
(3、3a)との間における前記基板(1)の熱伝達係
数をk、前記第1の発熱部品(3、3a)の近傍の熱伝
達率における誤差範囲をα、前記第1の発熱部品(3、
3a)の遠方の熱伝達率における誤差範囲をβとした場
合に、 【数1】 を満たすように、前記温度制約部品(2)と前記第1の
発熱部品(3、3a)とが配置されていることを特徴と
する混成集積回路の実装構造。
1. A temperature constrained component (2) composed of a component or an element having a restriction on a use temperature and a first heat generating component (3, 3a) composed of a component or an element generating heat during operation on a substrate (1). ), The distance between the temperature constrained component (2) and the first heat generating component is L1, and the ambient temperature around the temperature constrained component (2) is Ta, Tb indicates a temperature rise due to heat generation of the temperature constrained component (2) itself, Th1 indicates a heat generation temperature of the first heat generating components (3, 3a), and T1 indicates a constrained temperature of the temperature constrained component (2).
c, the heat transfer coefficient of the substrate (1) between the temperature constraining component (2) and the first heat generating component (3, 3a) is k, in the vicinity of the first heat generating component (3, 3a). Α is the error range in the heat transfer coefficient of the first heat generating component (3,
Assuming that the error range in the distant heat transfer coefficient in 3a) is β, Wherein the temperature constraining component (2) and the first heat generating component (3, 3a) are arranged so as to satisfy the following.
【請求項2】 動作時に発熱が生じる第2の発熱部品
(3b)を有し、 該第2の発熱部品(3b)と前記温度制約部品(2)と
の間の距離をL2、該第2の発熱部品(3b)の発熱温
度をTh2、前記第1の発熱部品(3、3a)の発熱に
よる前記温度制約部品(2)の温度上昇をTe1とした
場合に、 【数2】 を満たすように、前記温度制約部品(2)と前記第2の
発熱部品(3b)とが配置されていることを特徴とする
請求項1に記載の混成集積回路の実装構造。
And a second heat generating component (3b) that generates heat during operation, wherein a distance between the second heat generating component (3b) and the temperature constraining component (2) is L2, When the heat generation temperature of the heat-generating component (3b) is Th2 and the temperature rise of the temperature-constrained component (2) due to the heat generation of the first heat-generating component (3, 3a) is Te1, The mounting structure of the hybrid integrated circuit according to claim 1, wherein the temperature constraining component (2) and the second heat generating component (3b) are arranged so as to satisfy the following.
【請求項3】 前記基板(1)の熱伝達係数は、前記基
板(1)の平面方向の距離の二乗に反比例する関係を有
していることを特徴とする請求項1又は2に記載の混成
集積回路の実装構造。
3. The substrate according to claim 1, wherein a heat transfer coefficient of the substrate has a relationship inversely proportional to a square of a distance of the substrate in a planar direction. Mounting structure of hybrid integrated circuit.
JP05925299A 1999-03-05 1999-03-05 Mounting structure of hybrid integrated circuit Expired - Fee Related JP3684903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05925299A JP3684903B2 (en) 1999-03-05 1999-03-05 Mounting structure of hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05925299A JP3684903B2 (en) 1999-03-05 1999-03-05 Mounting structure of hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JP2000261125A true JP2000261125A (en) 2000-09-22
JP3684903B2 JP3684903B2 (en) 2005-08-17

Family

ID=13108015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05925299A Expired - Fee Related JP3684903B2 (en) 1999-03-05 1999-03-05 Mounting structure of hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JP3684903B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621405B1 (en) 2004-06-03 2006-09-08 삼성전자주식회사 Mounting structure for integration circuit
JP2008235369A (en) * 2007-03-16 2008-10-02 Fujitsu Ltd Semiconductor device
EP2182498A1 (en) 2008-10-31 2010-05-05 Hager Security Module of a surveillance and/or alarm system, with temperature measurement and method for measuring room temperature
JP2014184698A (en) * 2013-03-25 2014-10-02 Seiko Epson Corp Liquid jetting device and printing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621405B1 (en) 2004-06-03 2006-09-08 삼성전자주식회사 Mounting structure for integration circuit
US7154759B2 (en) 2004-06-03 2006-12-26 Samsung Electronics Co., Ltd. Mounting structure for integrated circuit
JP2008235369A (en) * 2007-03-16 2008-10-02 Fujitsu Ltd Semiconductor device
EP2182498A1 (en) 2008-10-31 2010-05-05 Hager Security Module of a surveillance and/or alarm system, with temperature measurement and method for measuring room temperature
FR2938102A1 (en) * 2008-10-31 2010-05-07 Hager Security MODULE OF A MONITORING AND / OR ALARM SYSTEM WITH TEMPERATURE MEASUREMENT AND AMBIENT TEMPERATURE MEASUREMENT METHOD
JP2014184698A (en) * 2013-03-25 2014-10-02 Seiko Epson Corp Liquid jetting device and printing device

Also Published As

Publication number Publication date
JP3684903B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP3977378B2 (en) Module for cooling semiconductor elements
US6953987B2 (en) Composite integrated circuit device having restricted heat conduction
JPS6322623B2 (en)
JPH06162827A (en) Bus bar structure
JP3684903B2 (en) Mounting structure of hybrid integrated circuit
JP2000058746A (en) Device for cooling inside of module
JP2009283840A (en) Electronic circuit module
JP2005191378A (en) Heat radiation structure in printed board
JP3008942B1 (en) Heat dissipation structure of electronic device
JPH0515036A (en) Electric connection box
JP2001244669A (en) Heat dissipating structure of electronic component
JP2019161063A (en) Heat dissipation structure of electronic component
JP3033045B2 (en) Module heat dissipation structure
JPH0715140Y2 (en) Electronic component cooling system
JPH05275822A (en) Electronic circuit mounting unit
JPH07321423A (en) Circuit board
JP2553083Y2 (en) Hybrid integrated circuit device
US20230011922A1 (en) Circuit board module
JP3888031B2 (en) Radiator
JPH033262A (en) Semiconductor device
JPH0346387A (en) Electronic circuit device
JPH0627956Y2 (en) Electronic circuit module
JPH0831992A (en) Semiconductor device using peltier element as its heat dissipating device
JP2011100916A (en) Mounting structure for heat dissipation of electronic component
JPH11289036A (en) Electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees