JP2000260442A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2000260442A
JP2000260442A JP11057864A JP5786499A JP2000260442A JP 2000260442 A JP2000260442 A JP 2000260442A JP 11057864 A JP11057864 A JP 11057864A JP 5786499 A JP5786499 A JP 5786499A JP 2000260442 A JP2000260442 A JP 2000260442A
Authority
JP
Japan
Prior art keywords
glass
solid electrolyte
fuel cell
electrolyte
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11057864A
Other languages
Japanese (ja)
Other versions
JP3965820B2 (en
Inventor
Satoshi Seike
聡 清家
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP05786499A priority Critical patent/JP3965820B2/en
Publication of JP2000260442A publication Critical patent/JP2000260442A/en
Application granted granted Critical
Publication of JP3965820B2 publication Critical patent/JP3965820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing cost of a fuel cell and to enhance its manufacturing efficiency. SOLUTION: An electrolyte material is obtained by adding H3PO4 (85%) to plural metal oxide compounds, mixing and stirring them (S11), and the electrolyte is preheated for three hours at a temperature of 500 deg.C (S12). After the electrolyte preheated is fused at a temperature of 1450 deg.C for one hour (S13), it is, cooled (S14) and vitrified to obtain glass, and a solid electrolyte is completed by forming the glass into a desired shape. Glass ceramic produced through a crystallizing process, a grinding process, a forming process and a baking process by using the above glass may be used for the solid electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コージェネレーシ
ョン等に用いられる固体電解質型燃料電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell used for cogeneration and the like.

【0002】[0002]

【従来の技術】従来周知の固体電解質型燃料電池(以
下、燃料電池と称する)の動作原理を図4の概略構成図
に基づいて説明する。図4において、酸素イオン導電性
のある固体電解質41の両側に多孔質の酸素極(カソー
ド)42と多孔質の水素極(アノード)43を装着する。
酸素極42側において、酸素ガスO2もしくは空気を空
間45に流し込むと、次式に示す反応が起こる。
2. Description of the Related Art The principle of operation of a conventionally known solid oxide fuel cell (hereinafter referred to as a fuel cell) will be described with reference to the schematic configuration diagram of FIG. In FIG. 4, a porous oxygen electrode (cathode) 42 and a porous hydrogen electrode (anode) 43 are mounted on both sides of a solid electrolyte 41 having oxygen ion conductivity.
When oxygen gas O 2 or air flows into the space 45 on the oxygen electrode 42 side, a reaction expressed by the following equation occurs.

【0003】 1/2O2 + 2e- → O2- …… (1) 還元された酸素イオンO2-は、酸素イオン導電性のある
固体電解質41を通過して水素極43に達する。水素極
43側においては、水素ガスH2もしくは天然ガス等の
燃料ガスを空間46に流し込み、固体電解質41を通過
してきた酸素イオンO2-と次式に示す反応が起こる。
1/2 O 2 + 2e → O 2- (1) Reduced oxygen ions O 2− pass through a solid electrolyte 41 having oxygen ion conductivity to reach a hydrogen electrode 43. On the hydrogen electrode 43 side, a fuel gas such as hydrogen gas H 2 or natural gas flows into the space 46, and the oxygen ion O 2 − passing through the solid electrolyte 41 reacts with the following equation.

【0004】 H2 + O2- → H2O + 2e- …… (2) 図4に示すように、負荷44を酸素極42と水素極43
に接続すると、酸素極42側が陽極、そして水素極43
側が陰極となった電圧が(2)式の右辺の2e-によって
負荷44の両端に発生する。
H 2 + O 2− → H 2 O + 2e (2) As shown in FIG. 4, a load 44 is connected to an oxygen electrode 42 and a hydrogen electrode 43.
When connected to the anode, the oxygen electrode 42 side is the anode, and the hydrogen electrode 43
Voltage side becomes the cathode (2) right side of equation 2e - by developed across the load 44.

【0005】以上示したように構成する燃料電池で使用
される固体電解質41の電解質材料には、イットリウム
等の酸化物をジルコニアに固溶させて生成された安定化
ジルコニアを使用したものが多い。電解質材料に安定化
ジルコニアを使用した燃料電池の動作温度は約1000
℃の高温となるため、燃料電池の構成材料には、材料コ
ストおよび加工費の高いセラミックスや耐熱合金等の特
殊な材料を使用しなければならない不都合があった。ま
た、スタック型の燃料電池の場合には、構成部材が多い
ため前記材料コストおよび加工費が極めて増加してしま
う問題があった。そこで、燃料電池の動作温度を下げる
試みがなされている。
As the electrolyte material of the solid electrolyte 41 used in the fuel cell configured as described above, there are many materials using stabilized zirconia produced by dissolving an oxide such as yttrium in zirconia. The operating temperature of a fuel cell using stabilized zirconia as the electrolyte material is about 1000
Because of the high temperature of ℃, there has been an inconvenience that special materials such as ceramics and heat-resistant alloys, which are expensive in material cost and processing cost, must be used as constituent materials of the fuel cell. Further, in the case of a stack type fuel cell, there is a problem that the material cost and the processing cost are extremely increased due to the large number of constituent members. Therefore, attempts have been made to lower the operating temperature of the fuel cell.

【0006】[0006]

【発明が解決しようとする課題】一般的に、例えば(C
eO20.8(SmO1.50.2(SDC)や(CeO20.8
(GdO1.50.2(GDC)から成る電解質材料を用いて
固体電解質(以下、セリア系の固体電解質と称する)を形
成し、燃料電池の動作温度を700〜800℃にする手
段が知られている。
Generally, for example, (C
eO 2 ) 0.8 (SmO 1.5 ) 0.2 (SDC) or (CeO 2 ) 0.8
There is known a means for forming a solid electrolyte (hereinafter, referred to as a ceria-based solid electrolyte) using an electrolyte material composed of (GdO 1.5 ) 0.2 (GDC) to raise the operating temperature of a fuel cell to 700 to 800 ° C. .

【0007】しかし、前記セリア系の固体電解質は、水
素雰囲気等において還元されてしまう問題がある。ま
た、セリア系の固体電解質を用いた燃料電池において、
構成部材としてステンレスを用いることが可能な温度領
域で動作させた場合、安定化ジルコニアから成る固体電
解質(ジルコニア系の固体電解質)を用いた燃料電池を1
000°Cの温度で動作させた場合に匹敵する電池特性
は得られない。
However, there is a problem that the ceria-based solid electrolyte is reduced in a hydrogen atmosphere or the like. In a fuel cell using a ceria-based solid electrolyte,
When operating in a temperature range in which stainless steel can be used as a constituent member, one fuel cell using a solid electrolyte made of stabilized zirconia (zirconia-based solid electrolyte) is used.
Battery characteristics comparable to operating at a temperature of 000 ° C. cannot be obtained.

【0008】前記のように、セリア系の固体電解質を用
いて燃料電池の動作温度を700〜800℃にする開発
は行われているが、燃料電池の構成部材(インターコネ
クタ,押さえ板,バネ等)としてステンレスを確実に使
用することができ、且つコージェネレーションにおいて
最適な400〜600°C付近の温度で燃料電池を動作
させることが可能な固体電解質の開発は行われていな
い。
[0008] As described above, the development of operating temperature of a fuel cell at 700 to 800 ° C using a ceria-based solid electrolyte has been performed. However, components of the fuel cell (interconnector, holding plate, spring, etc.) have been developed. )), There has not been developed a solid electrolyte capable of reliably using stainless steel and operating a fuel cell at an optimum temperature of about 400 to 600 ° C. in cogeneration.

【0009】本発明は、前記課題に基づいて成されたも
のであり、固体電解質に用いられる電解質材料を改良し
て、燃料電池の動作温度を低減すると共に、前記電解質
材料の加工性を良好にして製造コストを低減した固体電
解質型燃料電池を提供することにある。
The present invention has been made on the basis of the above-mentioned problems, and has been made to improve an electrolyte material used for a solid electrolyte to reduce the operating temperature of a fuel cell and to improve the processability of the electrolyte material. To provide a solid oxide fuel cell with reduced manufacturing cost.

【0010】[0010]

【課題を解決するための手段】本発明は、前記課題の解
決を図るために、第1発明はイオン導電性を有する固体
電解質に酸素極および水素極を設けて構成された固体電
解質型燃料電池において、前記固体電解質は、Ti族元
素(Ti,Zr,またはHf元素)またはAl元素を含ん
だガラスを所望の形状に成形して成ることを特徴とす
る。
According to the present invention, there is provided a solid electrolyte fuel cell comprising a solid electrolyte having ionic conductivity provided with an oxygen electrode and a hydrogen electrode. Wherein the solid electrolyte is formed by shaping glass containing a Ti group element (Ti, Zr, or Hf element) or an Al element into a desired shape.

【0011】第2発明は、前記第1発明において、前記
固体電解質にはTiO2・P25系のガラスを用い、そ
のガラスのTiO2とP25とのモル比が64:36〜
76:24であることを特徴とする。
[0011] The second invention is the first invention, wherein a glass of TiO 2 · P 2 O 5 based on the solid electrolyte, the molar ratio of TiO 2 and P 2 O 5 in the glass is 64:36 ~
76:24.

【0012】第3発明は、前記第1発明において、前記
固体電解質にはAl23・P25系のガラスを用い、そ
のガラスのAl23とP25とのモル比が60:40〜
74:26であることを特徴とする。
According to a third aspect of the present invention, in the first aspect, Al 2 O 3 .P 2 O 5 glass is used as the solid electrolyte, and a molar ratio of Al 2 O 3 to P 2 O 5 of the glass is used. Is 60: 40 ~
74:26.

【0013】第4発明は、前記第1発明において、前記
固体電解質にはZrO2・P25系のガラスを用い、そ
のガラスのZrO2とP25とのモル比が64:36〜
76:24であることを特徴とする。
According to a fourth aspect, in the first aspect, a ZrO 2 · P 2 O 5 -based glass is used as the solid electrolyte, and the glass has a molar ratio of ZrO 2 and P 2 O 5 of 64:36. ~
76:24.

【0014】第5発明は、前記第1発明において、前記
固体電解質にはHfO2・P25系のガラスを用い、そ
のガラスのHfO2とP25とのモル比が64:36〜
76:24であることを特徴とする。
According to a fifth aspect of the present invention, in the first aspect, an HfO 2 · P 2 O 5 glass is used as the solid electrolyte, and the molar ratio of HfO 2 to P 2 O 5 in the glass is 64:36. ~
76:24.

【0015】第6発明は、前記第2または第3発明にお
いて、前記ガラスを結晶化させて成るガラスセラミック
スを固体電解質として用いたことを特徴とする。
A sixth invention is characterized in that, in the second or third invention, a glass ceramic obtained by crystallizing the glass is used as a solid electrolyte.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の第1,2形
態を図面に基づいて説明する。まず、本実施の第1形態
は、ガラス化が可能な電解質材料(第1〜4実施例)の成
分を調整して固体電解質(ガラス)を形成し、燃料電池の
動作温度を低減させると共に製造効率の向上を図ったも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, first and second embodiments of the present invention will be described with reference to the drawings. First, in the first embodiment, the solid electrolyte (glass) is formed by adjusting the components of the vitrified electrolyte material (the first to fourth embodiments) to reduce the operating temperature of the fuel cell and to manufacture the solid electrolyte. This is to improve efficiency.

【0017】図1は、本実施の第1形態におけるガラス
を用いた固体電解質の製造工程図を示すものである。図
1において、ステップS11は混合・撹拌工程を示すも
のであり、この工程では複数個の金属酸化物にH3PO4
(85%)を加え、混合および撹拌して電解質材料を得
る。その電解質材料は、ステップS12に示す予備加熱
工程にて、500°Cの温度で3時間予備加熱する。前
記のように予備加熱された電解質材料は、ステップS1
3に示す溶融工程により1450°Cの温度で1時間か
けて溶融した後、ステップS14に示す冷却工程で冷却
しガラス化してガラスを得、そのガラスを所望の形状に
成形して固体電解質を完成させる。
FIG. 1 shows a manufacturing process of a solid electrolyte using glass according to the first embodiment. In FIG. 1, step S11 shows a mixing / stirring process, in which a plurality of metal oxides are mixed with H 3 PO 4.
(85%), mix and stir to obtain the electrolyte material. The electrolyte material is preheated at a temperature of 500 ° C. for 3 hours in a preheating step shown in step S12. The electrolyte material preheated as described above is used in step S1.
After melting at a temperature of 1450 ° C. for 1 hour in a melting step shown in Step 3, the glass is cooled and vitrified in a cooling step shown in Step S14 to obtain glass, and the glass is formed into a desired shape to complete a solid electrolyte. Let it.

【0018】ここで、ガラス化が可能な電解質材料につ
いて、第1〜4実施例により説明する。
Here, the vitrified electrolyte material will be described with reference to first to fourth embodiments.

【0019】(第1実施例)一般的に、Na2O・TiO2
・30P25系のガラスは、Naイオン導電体であるこ
とが知られ、そのNa2O・TiO2・30P25系のガ
ラス中にアルカリ成分(ここでは、Na2O)が含有して
いないと、ガラス化が困難とされてきた。そこで、第1
実施例では、Na+を含有しないTiO2・P25系のガ
ラス(xTiO2・yP25系(x,y;自然数)のガラ
ス)の作製を試み、そのTiO2・P25系のガラスを固
体電解質(プロトン伝導体)として用いることが可能であ
るか否かを検討した。
(First Embodiment) In general, Na 2 O.TiO 2
30P 2 O 5 -based glass is known to be a Na ion conductor, and an alkali component (here, Na 2 O) is contained in the Na 2 O · TiO 2 · 30P 2 O 5 -based glass. Otherwise, vitrification has been considered difficult. Therefore, the first
In this embodiment, an attempt was made to produce a TiO 2 .P 2 O 5 -based glass (xTiO 2 .yP 2 O 5 -based (x, y; natural number) glass) containing no Na + , and the TiO 2 .P 2 O It was investigated whether it is possible to use the 5 series glass as a solid electrolyte (proton conductor).

【0020】まず、TiO2とP25とのモル比(TiO
2:P25)を種々変化させて電解質材料A1〜A18を
形成し、それら電解質材料A1〜A18をガラス化して
固体電解質の作製を試み、その結果を下記表1に示し
た。なお、下記表1中の○印はガラス化ができた場合、
×印はガラス化ができなかった場合を示すものである。
First, the molar ratio of TiO 2 to P 2 O 5 (TiO 2
2 : P 2 O 5 ) was varied to form electrolyte materials A1 to A18, and the electrolyte materials A1 to A18 were vitrified to produce a solid electrolyte. The results are shown in Table 1 below. In Table 1, the circles in Table 1 indicate that vitrification was achieved.
The crosses indicate the case where vitrification could not be performed.

【0021】[0021]

【表1】 [Table 1]

【0022】前記表1に示す結果から、TiO2:P2
5が64:36〜76:24の範囲内にある電解質材料
A7〜A13は、ガラス化が可能であることを読み取れ
る。TiO2:P25が64:36〜76:24の範囲
内にある電解質材料A7〜A13を用いた各固体電解質
において導電率(イオン導電率)を測定した結果、それぞ
れ略同程度の導電率が得られ、600°Cの温度での導
電率は10-1S/cmであった。この600°Cの温度
での導電率(10-1S/cm)と、ジルコニア系の固体電
解質における温度1000°Cの温度での導電率と比較
したところ、殆ど同等であることを確認できた。
From the results shown in Table 1 above, TiO 2 : P 2 O
It can be seen that the electrolyte materials A7 to A13 having 5 in the range of 64:36 to 76:24 can be vitrified. As a result of measuring the electric conductivity (ion electric conductivity) of each solid electrolyte using the electrolyte materials A7 to A13 in which TiO 2 : P 2 O 5 is in the range of 64:36 to 76:24, the electric conductivity of each solid electrolyte is substantially the same. The conductivity at a temperature of 600 ° C. was 10 −1 S / cm. When the conductivity at a temperature of 600 ° C. (10 −1 S / cm) was compared with the conductivity of a zirconia-based solid electrolyte at a temperature of 1000 ° C., it was confirmed that they were almost equivalent. .

【0023】なお、図2は、前記電解質材料A7〜A1
3のうちTiO2:P25が70:30の電解質材料A
10を用いて成る固体電解質において、温度に対する導
電率(σ)特性を示すアレーニウスプロット図である。図
2に示すように、電解質材料A10をガラス化して成る
固体電解質(図2中の曲線A)は、低い温度にてジルコニ
ア系の固体電解質(図2中の曲線B)と略同等の導電率が
得られることを読み取れる。
FIG. 2 shows the electrolyte materials A7 to A1.
Electrolyte material A containing 70:30 of TiO 2 : P 2 O 5
FIG. 11 is an Arrhenius plot showing the electrical conductivity (σ) characteristic with respect to temperature in the solid electrolyte using No. 10; As shown in FIG. 2, the solid electrolyte obtained by vitrifying the electrolyte material A10 (curve A in FIG. 2) has substantially the same conductivity as the zirconia-based solid electrolyte (curve B in FIG. 2) at a low temperature. Can be read.

【0024】ゆえに、TiO2:P25が64:36〜
76:24の範囲内にあるTiO2・P25系のガラス
を用いた固体電解質により、ジルコニア系の固体電解質
(図2中の曲線B)と略同等の導電率を得ることができ、
低温(600°C以下)で動作する燃料電池を構成するこ
とが可能であることを確認できた。
Therefore, when TiO 2 : P 2 O 5 is 64: 36-
A zirconia-based solid electrolyte is formed by using a TiO 2 · P 2 O 5 -based glass within a range of 76:24.
(Curve B in FIG. 2), it is possible to obtain substantially the same conductivity,
It was confirmed that it is possible to configure a fuel cell that operates at a low temperature (600 ° C. or lower).

【0025】(第2実施例)次に、前記第1実施例に示す
TiO2・P25系のガラスの「Ti」を「Al」に置
換したAl23・P25系のガラスにおいて、Al23
とP25とのモル比(Al23:P25)を種々変化させ
て電解質材料B1〜B18を形成し、それら電解質材料
B1〜B18をガラス化して固体電解質の作製を試み、
その結果を下記表2に示した。
Second Embodiment Next, an Al 2 O 3 .P 2 O 5 system in which “Ti” is replaced with “Al” in the TiO 2 .P 2 O 5 system glass shown in the first embodiment. Al 2 O 3
Molar ratio of P 2 O 5 and (Al 2 O 3: P 2 O 5) is formed an electrolyte material B1~B18 while varying, their electrolyte material B1~B18 tried to prepare a vitrified solid electrolyte ,
The results are shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】前記表2に示す結果から、Al23:P2
5が60:40〜74:26の範囲内にある電解質材
料B5〜B12は、ガラス化が可能であることを読み取
れる。Al23:P25が60:40〜74:26の範
囲内にある電解質材料B5〜B12を用いた各固体電解
質において導電率を測定した結果、それぞれ略同程度の
導電率が得られ、600°Cの温度での導電率は10-1
S/cmであった。
From the results shown in Table 2 above, Al 2 O 3 : P 2
O 5 is 60: 40-74: 26 electrolyte material B5~B12 that are within the scope of the read that it is possible to vitrification. Al 2 O 3: P 2 O 5 is 60: 40-74: 26 result of measuring the conductivity at each of the solid-state electrolyte with electrolyte material B5~B12 that are within the scope of each substantially comparable conductivity obtained Conductivity at a temperature of 600 ° C. is 10 −1
S / cm.

【0028】ゆえに、Al23:P25が60:40〜
74:26の範囲内にあるAl23・P25系のガラス
から成る電解質材料を用いた固体電解質により、低温
(600°C以下)で動作する燃料電池を構成することが
可能であることを確認できた。
Therefore, when Al 2 O 3 : P 2 O 5 is 60: 40-
The solid electrolyte using an electrolyte material of Al 2 O 3 .P 2 O 5 based glass in the range of 74:26 has a low temperature.
(600 ° C. or lower), it was confirmed that it was possible to construct a fuel cell.

【0029】(第3実施例)次に、前記第1実施例(また
は、第2実施例)に示すTiO2・P25系のガラスの
「Ti」(または、Al23・P25系のガラスの「A
l」)を「Zr」に置換したZrO2・P25系のガラス
において、ZrO2とP25とのモル比(ZrO2:P2
5)を種々変化させて電解質材料C1〜C18を形成し、
それら電解質材料C1〜C18をガラス化して固体電解
質の作製を試み、その結果を下記表3に示した。
Third Embodiment Next, the "Ti" (or Al 2 O 3 .P) of the TiO 2 .P 2 O 5 -based glass shown in the first embodiment (or the second embodiment) will be described. “A” of 2 O 5 glass
l)) is replaced with “Zr” in a ZrO 2 · P 2 O 5 system glass, in which the molar ratio between ZrO 2 and P 2 O 5 (ZrO 2 : P 2 O 5
5 ) is varied to form electrolyte materials C1 to C18,
The electrolyte materials C1 to C18 were vitrified to produce a solid electrolyte, and the results are shown in Table 3 below.

【0030】[0030]

【表3】 [Table 3]

【0031】前記表3に示す結果から、ZrO2:P2
5が64:36〜76:24の範囲内にある電解質材料
C7〜C13は、ガラス化が可能であることを読み取れ
る。ZrO2:P25が64:36〜76:24の範囲
内にある電解質材料C7〜C13を用いた各固体電解質
において導電率を測定した結果、それぞれ略同程度の導
電率が得られ、600°Cの温度での導電率は10-1
/cmであった。
From the results shown in Table 3, ZrO 2 : P 2 O
It can be seen that the electrolyte materials C7 to C13 whose 5 is in the range of 64:36 to 76:24 can be vitrified. As a result of measuring the electric conductivity of each of the solid electrolytes using the electrolyte materials C7 to C13 in which ZrO 2 : P 2 O 5 is in the range of 64:36 to 76:24, substantially the same electric conductivity is obtained, Conductivity at a temperature of 600 ° C. is 10 −1 S
/ Cm.

【0032】ゆえに、ZrO2:P25が64:36〜
76:24の範囲内にあるZrO2・P25系のガラス
から成る電解質材料を用いた固体電解質により、低温
(600°C以下)で動作する燃料電池を構成することが
可能であることを確認できた。
Therefore, when ZrO 2 : P 2 O 5 is 64: 36-
76:24, the solid electrolyte using an electrolyte material made of ZrO 2 · P 2 O 5 based glass has a low temperature.
(600 ° C. or lower), it was confirmed that it was possible to construct a fuel cell.

【0033】(第4実施例)次に、前記第1実施例(また
は、第2,3実施例)に示すTiO2・P25系のガラス
の「Ti」(または、Al23・P25系のガラスの
「Al」,ZrO2・P25系のガラスの「Zr」)を
「Hf」に置換したHfO2・P25系のガラスにおい
て、HfO2とP25とのモル比(HfO2:P25)を種
々変化させて電解質材料D1〜D18を作製し、それら
電解質材料D1〜D18をガラス化して固体電解質の作
製を試み、その結果を下記表4に示した。
(Fourth Embodiment) Next, the "Ti" (or Al 2 O 3 ) of the TiO 2 .P 2 O 5 based glass shown in the first embodiment (or the second and third embodiments) is described. "Al" in · P 2 O 5 based glass, the glass of HfO 2 · P 2 O 5 system which replaces the "Zr") glass ZrO 2 · P 2 O 5 based on the "Hf", and HfO 2 the molar ratio of P 2 O 5 (HfO 2: P 2 O 5) and was variously changed to prepare the electrolyte material D1~D18, their electrolyte material D1~D18 tried to prepare a vitrified solid electrolyte, as a result Are shown in Table 4 below.

【0034】[0034]

【表4】 [Table 4]

【0035】前記表4に示す結果から、HfO2:P2
5が64:36〜76:24の範囲内にある電解質材料
D7〜D13は、ガラス化が可能であることを読み取れ
る。HfO2:P25が64:36〜76:24の範囲
内にある電解質材料D7〜D13を用いた各固体電解質
において導電率を測定した結果、それぞれ略同程度の導
電率が得られ、600°Cの温度での導電率は10-1
/cmであった。
From the results shown in Table 4 above, HfO 2 : P 2 O
It can be seen that the electrolyte materials D7 to D13 having 5 in the range of 64:36 to 76:24 can be vitrified. As a result of measuring the electric conductivity of each solid electrolyte using the electrolyte materials D7 to D13 in which HfO 2 : P 2 O 5 is in the range of 64:36 to 76:24, substantially the same electric conductivity is obtained, Conductivity at a temperature of 600 ° C. is 10 −1 S
/ Cm.

【0036】ゆえに、HfO2:P25が64:36〜
76:24の範囲内にあるHfO2・P25系のガラス
から成る電解質材料を用いた固体電解質により、低温
(600°C以下)で動作する燃料電池を構成することが
可能であることを確認できた。
Therefore, HfO 2 : P 2 O 5 is 64: 36-
76:24, a solid electrolyte using an electrolyte material composed of HfO 2 · P 2 O 5 glass is used.
(600 ° C. or lower), it was confirmed that it was possible to construct a fuel cell.

【0037】以上第1〜4実施例に示したように、Ti
族元素(Ti,Zr,またはHf)またはAlを含んだガ
ラスを用い、そのガラスを溶かして型に入れて成形する
ことにより、種々の形状の固体電解質を容易に作製する
ことができる。
As shown in the first to fourth embodiments, Ti
By using a glass containing a group element (Ti, Zr, or Hf) or Al, melting the glass, putting it into a mold, and molding, a solid electrolyte having various shapes can be easily produced.

【0038】次に、本実施の第2形態を説明する。本実
施の第2形態は、前記第1,3実施例に示したガラスを
結晶化させて固体電解質(ガラスセラミックス;第5,
6実施例)を形成し、燃料電池の動作温度を低減させる
と共に製造効率の向上を図ったものである。
Next, a second embodiment of the present invention will be described. In the second embodiment, the glass shown in the first and third embodiments is crystallized to form a solid electrolyte (glass ceramic;
6) to reduce the operating temperature of the fuel cell and improve production efficiency.

【0039】図3は、本実施の第2形態におけるガラス
セラミックスを用いた固体電解質の製造工程図を示すも
のである。なお、図1に示すものと同様なものは省略す
る。図3において、ステップS31は結晶化工程を示す
ものであり、この工程では図1に示す工程(ステップS
11〜S14)を経て得られたガラスを結晶化する。こ
の結晶化されたガラスはステップS32に示す粉砕工程
にて粉砕した後、ステップS33に示す成形工程にてプ
レスし所望の形状に成形して成形体を得る。そして、ス
テップS34に示す焼成工程にて前記成形体を焼成し
て、ガラスセラミックスから成る固体電解質を完成させ
る。
FIG. 3 shows a manufacturing process diagram of a solid electrolyte using glass ceramics according to the second embodiment. Note that components similar to those shown in FIG. 1 are omitted. In FIG. 3, step S31 indicates a crystallization step. In this step, the step shown in FIG.
The glass obtained through 11-S14) is crystallized. The crystallized glass is pulverized in a pulverizing step shown in step S32, and then pressed in a forming step shown in step S33 to be formed into a desired shape to obtain a formed body. Then, in the firing step shown in step S34, the molded body is fired to complete a solid electrolyte made of glass ceramic.

【0040】ここで、図3に示す製造工程を経て得られ
たガラスセラミックスについて、第5,6実施例により
説明する。
Here, the glass ceramics obtained through the manufacturing process shown in FIG. 3 will be described with reference to fifth and sixth embodiments.

【0041】(第5実施例)前記第1実施例に示したガラ
ス(表1中の電解質材料A7〜A13)を用い、図3に示
す製造工程を経てガラスセラミックスから成る固体電解
質をそれぞれ作製し、それら固体電解質の導電率(イオ
ン導電率)を測定した。その結果、各固体電解質はそれ
ぞれ略同程度の導電率が得られ、600°Cにおける導
電率は10−S・cmであった。ゆえに、TiO2:P2
5が64:36〜76:24の範囲内にあるTiO2
25系のガラスを結晶化させて成るガラスセラミック
スを固体電解質として用いることにより、低温(600
°C以下)で動作する燃料電池を構成することが可能で
あることを確認できた。
(Fifth Embodiment) Using the glass (electrolyte materials A7 to A13 in Table 1) shown in the first embodiment, solid electrolytes made of glass ceramics were produced through the manufacturing steps shown in FIG. The conductivity (ionic conductivity) of these solid electrolytes was measured. As a result, each of the solid electrolytes had substantially the same conductivity, and the conductivity at 600 ° C. was 10-S · cm. Therefore, TiO 2 : P 2
TiO 2. O 5 in the range of 64:36 to 76:24
By using glass ceramics obtained by crystallizing P 2 O 5 glass as a solid electrolyte, low temperature (600
(° C. or less), it was confirmed that it was possible to construct a fuel cell that operates at a temperature of not more than (° C.).

【0042】(第6実施例)前記第3実施例に示したガラ
ス(表3中の電解質材料C7〜C13)を用い、図3に示
す製造工程を経てガラスセラミックスから成る固体電解
質をそれぞれ作製し、それら固体電解質の導電率(イオ
ン導電率)を測定した。その結果、各固体電解質はそれ
ぞれ略同程度の導電率が得られ、600°Cにおける導
電率は10-1S・cmであった。ゆえに、ZrO2:P2
5が64:36〜76:24の範囲内にあるZrO2
25系のガラスを結晶化させて成るガラスセラミック
スを固体電解質として用いることにより、低温(600
°C以下)で動作する燃料電池を構成することが可能で
あることを確認できた。
(Sixth Embodiment) Using the glass shown in the third embodiment (electrolyte materials C7 to C13 in Table 3), solid electrolytes made of glass ceramics were produced through the manufacturing steps shown in FIG. The conductivity (ionic conductivity) of these solid electrolytes was measured. As a result, each of the solid electrolytes had substantially the same conductivity, and the conductivity at 600 ° C. was 10 −1 S · cm. Therefore, ZrO 2 : P 2
ZrO 2 .O 5 in which O 5 is in the range of 64:36 to 76:24
By using glass ceramics obtained by crystallizing P 2 O 5 glass as a solid electrolyte, low temperature (600
(° C. or less), it was confirmed that it was possible to construct a fuel cell that operates at a temperature of not more than (° C.).

【0043】[0043]

【発明の効果】以上示したように本発明によれば、Ti
族元素(Ti,Zr,またはHf)またはAl元素を含ん
だガラスにより、そのガラスを容易に成形して固体電解
質を作製することができると共に、その固体電解質を用
いて600°C以下の温度で動作する燃料電池を構成す
ることができるため、高価なセラミックスや特殊な耐熱
材料を用いずにステンレス等の金属材料を用いることが
でき、1000°Cの温度で動作するジルコニア系の燃
料電池と同様の電池特性を得ることができる。
As described above, according to the present invention, Ti
A glass containing a group III element (Ti, Zr, or Hf) or an Al element can be easily formed into a solid electrolyte by using the glass, and at a temperature of 600 ° C. or lower using the solid electrolyte. Since a fuel cell that can operate can be configured, a metal material such as stainless steel can be used without using expensive ceramics or special heat-resistant materials, and is similar to a zirconia-based fuel cell that operates at a temperature of 1000 ° C. Battery characteristics can be obtained.

【0044】また、前記ガラス(Ti元素またはZr元
素を含んだガラス)を結晶化させて成る固体電解質を用
いて燃料電池を構成した場合においても、前記ガラスか
ら成る固体電解質を用いた燃料電池と同様の作用効果を
得ることができる。
In the case where a fuel cell is formed by using a solid electrolyte obtained by crystallizing the glass (glass containing a Ti element or a Zr element), a fuel cell using a solid electrolyte made of the glass may Similar functions and effects can be obtained.

【0045】ゆえに、燃料電池の製造コストを低減する
と共に、製造効率を向上させることが可能となる。
Therefore, it is possible to reduce the manufacturing cost of the fuel cell and to improve the manufacturing efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態における固体電解質の
製造工程図。
FIG. 1 is a manufacturing process diagram of a solid electrolyte according to a first embodiment of the present invention.

【図2】温度に対するイオン導電率特性を示すアレーニ
ウスプロット図(第1実施例)。
FIG. 2 is an Arrhenius plot showing ionic conductivity characteristics with respect to temperature (first embodiment).

【図3】本発明の実施の第2形態における固体電解質の
製造工程図。
FIG. 3 is a manufacturing process diagram of a solid electrolyte according to a second embodiment of the present invention.

【図4】固体電解質型燃料電池の概略構成図。FIG. 4 is a schematic configuration diagram of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

S11…混合・撹拌工程 S12…予備加熱工程 S13…溶融工程 S14…冷却工程 S31…結晶化工程 S32…粉砕工程 S33…成形工程 S34…焼成工程 S11: Mixing / stirring step S12: Preheating step S13: Melting step S14: Cooling step S31: Crystallizing step S32: Pulverizing step S33: Forming step S34: Firing step

フロントページの続き Fターム(参考) 4G062 AA11 BB09 CC10 DA01 DB06 DB07 DC01 DD04 DD05 DE01 DF01 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB06 FB07 FC06 FC07 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH18 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM23 NN25 5H026 AA06 BB00 EE12 HH05 Continued on the front page F term (reference) 4G062 AA11 BB09 CC10 DA01 DB06 DB07 DC01 DD04 DD05 DE01 DF01 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB06 FB07 FC06 FC07 FD01 FE01 FF01 FG01 FH01 G01H01 GC01 FL01 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH18 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM23 NN25 5H026 AA06 BB00 EE12 HH05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 イオン導電性を有する固体電解質に酸素
極および水素極を設けて構成された固体電解質型燃料電
池において、 前記固体電解質は、Ti族元素またはAl元素を含んだ
ガラスを所望の形状に成形して成ることを特徴とする固
体電解質型燃料電池。
1. A solid electrolyte fuel cell comprising a solid electrolyte having ionic conductivity and an oxygen electrode and a hydrogen electrode, wherein the solid electrolyte is formed of glass containing a Ti group element or an Al element in a desired shape. A solid oxide fuel cell characterized by being molded into a solid electrolyte fuel cell.
【請求項2】 前記固体電解質にはTiO2・P25
のガラスを用い、そのガラスのTiO2とP25とのモ
ル比が64:36〜76:24であることを特徴とする
請求項1記載の固体電解質型燃料電池。
Wherein said solid electrolyte with a glass of TiO 2 · P 2 O 5 system, the molar ratio of TiO 2 and P 2 O 5 in the glass is 64: 36 to 76: characterized in that it is 24 The solid oxide fuel cell according to claim 1, wherein
【請求項3】 前記固体電解質にはAl23・P25
のガラスを用い、そのガラスのAl23とP25とのモ
ル比が60:40〜74:26であることを特徴とする
請求項1記載の固体電解質型燃料電池。
Wherein said solid electrolyte with Al 2 O 3 · P 2 O 5 based glass, the molar ratio of Al 2 O 3 and P 2 O 5 in the glass is 60: 40-74: 26 2. The solid oxide fuel cell according to claim 1, wherein:
【請求項4】 前記固体電解質にはZrO2・P25
のガラスを用い、そのガラスのZrO2とP25とのモ
ル比が64:36〜76:24であることを特徴とする
請求項1記載の固体電解質型燃料電池。
Wherein said solid electrolyte with a glass of ZrO 2 · P 2 O 5 system, the molar ratio of ZrO 2 and P 2 O 5 in the glass is 64: 36 to 76: characterized in that it is 24 The solid oxide fuel cell according to claim 1, wherein
【請求項5】 前記固体電解質にはHfO2・P25
のガラスを用い、そのガラスのHfO2とP25とのモ
ル比が64:36〜76:24であることを特徴とする
請求項1記載の固体電解質型燃料電池。
Wherein said solid electrolyte with a glass of HfO 2 · P 2 O 5 system, the molar ratio of HfO 2 and P 2 O 5 in the glass is 64: 36 to 76: characterized in that it is 24 The solid oxide fuel cell according to claim 1, wherein
【請求項6】 前記ガラスを結晶化させて成るガラスセ
ラミックスを固体電解質として用いたことを特徴とする
請求項2または4記載の固体電解質型燃料電池。
6. The solid oxide fuel cell according to claim 2, wherein a glass ceramic obtained by crystallizing the glass is used as a solid electrolyte.
JP05786499A 1999-03-05 1999-03-05 Solid oxide fuel cell Expired - Fee Related JP3965820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05786499A JP3965820B2 (en) 1999-03-05 1999-03-05 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05786499A JP3965820B2 (en) 1999-03-05 1999-03-05 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000260442A true JP2000260442A (en) 2000-09-22
JP3965820B2 JP3965820B2 (en) 2007-08-29

Family

ID=13067870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05786499A Expired - Fee Related JP3965820B2 (en) 1999-03-05 1999-03-05 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3965820B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301404A1 (en) * 2003-01-16 2004-07-29 Forschungszentrum Jülich GmbH Fuel cell for a fuel cell stack comprises a glass electrolyte layer containing oxygen between an anode and a cathode
KR100647307B1 (en) * 2004-12-23 2006-11-23 삼성에스디아이 주식회사 Proton conductor and electrochemical device using the same
WO2007105422A1 (en) * 2006-03-14 2007-09-20 Riken Ion conductive material, conductive film for fuel cell, film electrode bonded body and fuel cell
WO2007108282A1 (en) * 2006-03-23 2007-09-27 Tokyo Institute Of Technology Solid oxide battery
JP2007265803A (en) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology Proton-conducting crystallized glass solid electrolyte
KR100790848B1 (en) 2006-01-13 2008-01-02 삼성에스디아이 주식회사 Electrode for fuel cell, manufacturing method thereof, and fuel cell employing the same
JP2012076987A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive material and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068624A3 (en) * 2003-01-16 2005-06-02 Forschungszentrum Juelich Gmbh Fuel cell, fuel cell stack and production method therefor
DE10301404A1 (en) * 2003-01-16 2004-07-29 Forschungszentrum Jülich GmbH Fuel cell for a fuel cell stack comprises a glass electrolyte layer containing oxygen between an anode and a cathode
DE10301404B4 (en) * 2003-01-16 2010-04-01 Forschungszentrum Jülich GmbH Fuel cell, fuel cell stack and its production process
KR100647307B1 (en) * 2004-12-23 2006-11-23 삼성에스디아이 주식회사 Proton conductor and electrochemical device using the same
KR100790848B1 (en) 2006-01-13 2008-01-02 삼성에스디아이 주식회사 Electrode for fuel cell, manufacturing method thereof, and fuel cell employing the same
WO2007105422A1 (en) * 2006-03-14 2007-09-20 Riken Ion conductive material, conductive film for fuel cell, film electrode bonded body and fuel cell
US8470496B2 (en) 2006-03-14 2013-06-25 Riken Ion conductive material, conductive film for fuel cell, film electrode bonded body and fuel cell
JP5419034B2 (en) * 2006-03-14 2014-02-19 独立行政法人理化学研究所 Ion conductive material, conductive membrane for fuel cell, membrane electrode assembly and fuel cell
JP2008198585A (en) * 2006-03-23 2008-08-28 Tokyo Institute Of Technology Solid oxide cell
WO2007108282A1 (en) * 2006-03-23 2007-09-27 Tokyo Institute Of Technology Solid oxide battery
US8309272B2 (en) 2006-03-23 2012-11-13 Tokyo Institute Of Technology Solid oxide cell
JP2007265803A (en) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology Proton-conducting crystallized glass solid electrolyte
JP2012076987A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive material and method for producing the same

Also Published As

Publication number Publication date
JP3965820B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
JP3965820B2 (en) Solid oxide fuel cell
JPH0745291A (en) Solid electrolyte fuel cell
JP6897930B2 (en) Manufacturing method of solid electrolyte member
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JPH04219364A (en) Lanthanum chromite-based oxide and its use
KR102105056B1 (en) triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof
JPH0891929A (en) Electrically conductive ceramics and their production
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JP3342571B2 (en) Solid oxide fuel cell
KR101840094B1 (en) Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
KR102270128B1 (en) Zirconia electrolyte and manufacturing method thereof
JPH0785875A (en) Solid electrolytic fuel cell
KR102233833B1 (en) Zirconia electrolyte and unit cell for solid oxide fuel cell containing it
JP3121991B2 (en) Conductive ceramics
JP3339936B2 (en) Method for producing conductive ceramics
KR20110037716A (en) Solid oxide electrolyte, solid oxide fuel cell containing solid oxide electrolyte, and preparation method thereof
JP2003068324A (en) Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JP4018797B2 (en) Electron conductive ceramics
JP2002373676A (en) Material for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees