JP2000258895A - Pellicle for lithography with improved light resistance - Google Patents

Pellicle for lithography with improved light resistance

Info

Publication number
JP2000258895A
JP2000258895A JP6251399A JP6251399A JP2000258895A JP 2000258895 A JP2000258895 A JP 2000258895A JP 6251399 A JP6251399 A JP 6251399A JP 6251399 A JP6251399 A JP 6251399A JP 2000258895 A JP2000258895 A JP 2000258895A
Authority
JP
Japan
Prior art keywords
pellicle
film
lithography
light
pellicle film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6251399A
Other languages
Japanese (ja)
Other versions
JP4000231B2 (en
Inventor
Susumu Shirasaki
享 白崎
Ikuo Sakurai
郁男 櫻井
Shu Kashida
周 樫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6251399A priority Critical patent/JP4000231B2/en
Publication of JP2000258895A publication Critical patent/JP2000258895A/en
Application granted granted Critical
Publication of JP4000231B2 publication Critical patent/JP4000231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a pellicle for lithography consisting of a pellicle film which has a long life without deterioration or decomposition by light even when the film is irradiated for a long time with vacuum UV rays of short wavelength and which has high transmissivity for light and high performance without changes, by treating the pellicle film with fluorine gas to form a fluorinated layer on the film surface. SOLUTION: A pellicle film comprising an amorphous perfluoropolymer is treated with fluorine gas to form a fluorinated layer on the film surface. By forming a fluorinated layer of high density on the surface of the pellicle film, the fluorinated layer of high density causes recombination of opened bonds due to the radical reaction even under the conditions that the film absorbs light to produce radicals and deterioration is accelerated. Thus, deterioration of the film can be suppressed to an extremely low level. The fluorine atom content on the film surface is preferably at least >=60 mol.%. However, when the content exceeds 80 mol.%, the film strength may decrease, so the fluorine atom content is especially preferably controlled to 60 to 80 mol%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リソグラフィー用
ペリクル、特に高解像度を必要とする露光において使用
される波長200nm以下の真空紫外光露光に使用され
るリソグラフィー用ペリクルに関する。
The present invention relates to a pellicle for lithography, and more particularly to a pellicle for lithography used in vacuum ultraviolet light exposure at a wavelength of 200 nm or less, which is used in exposure requiring high resolution.

【0002】[0002]

【従来の技術】従来、LSI、超LSI等の半導体装置
あるいは液晶表示板を製造する際に、半導体ウェーハや
液晶用基板に光を照射してパターニングをするわけであ
るが、その場合に用いる露光基板にゴミが付着している
と、このゴミが光を吸収したり、光を曲げてしまうた
め、転写したパターンが変形したり、エッジが、がさつ
いたものとなる他、白地が黒く汚れたりして、寸法、外
観、品質等が損なわれ、半導体装置や液晶表示板等の性
能や製造歩留の低下を来すという問題があった。
2. Description of the Related Art Conventionally, when a semiconductor device such as an LSI or a super LSI or a liquid crystal display panel is manufactured, a semiconductor wafer or a substrate for a liquid crystal is irradiated with light to perform patterning. If dust adheres to the substrate, the dust absorbs or bends the light, causing the transferred pattern to be deformed, the edges to be rough, and the white background to become black. Therefore, there has been a problem that dimensions, appearance, quality, and the like are impaired, and the performance and manufacturing yield of semiconductor devices and liquid crystal display panels are reduced.

【0003】このため、これらの作業は通常クリーンル
ームで行われるが、このクリーンルーム内でも露光基板
を常に清浄に保つことが難しいので、露光基板の表面に
ゴミ除けのための露光用の光を良く通過させるペリクル
を貼着する方法が行われている。この場合、ゴミは露光
基板の表面には直接付着せず、ペリクル膜上に付着する
ため、リソグラフィー時に焦点を露光基板のパターン上
に合わせておけば、ペリクル上のゴミは転写に無関係と
なる利点がある。
[0003] For this reason, these operations are usually performed in a clean room. However, even in this clean room, it is difficult to keep the exposed substrate clean at all times. A method of attaching a pellicle to be made has been performed. In this case, the dust does not directly adhere to the surface of the exposed substrate, but adheres to the pellicle film. Therefore, if the focus is focused on the pattern of the exposed substrate during lithography, the dust on the pellicle becomes independent of transfer. There is.

【0004】このペリクルは、例えば図1に示すように
光を良く通過させるニトロセルロース、酢酸セルロース
またはフッ素樹脂等からなる透明なペリクル膜1をアル
ミニウム、ステンレスポリエチレン等からなるペリクル
枠2の上部にペリクル膜の良溶媒を塗布し、ペリクル膜
を密着後風乾して接着するか(特開昭58−21902
3号公報参照)、アクリル樹脂、エポキシ樹脂またはフ
ッ素樹脂等の接着剤で接着し(米国特許第486140
2号明細書、特公昭63−27707号公報、特開平7
−168345号公報参照)、ペリクル枠2の下部には
ポリブテン樹脂、ポリ酢酸ビニル樹脂、アクリル樹脂、
シリコーン樹脂等からなる粘着剤および粘着層3を保護
するための離型層4(セパレータ)を密着して構成され
ている。
As shown in FIG. 1, a transparent pellicle film 1 made of nitrocellulose, cellulose acetate, fluororesin, or the like, which allows light to pass therethrough, is provided on a pellicle frame 2 made of aluminum, stainless steel, or the like. A good solvent for the film is applied, and the pellicle film is adhered by air drying after adhesion (Japanese Patent Laid-Open No. 58-21902).
No. 3) and bonded with an adhesive such as acrylic resin, epoxy resin or fluororesin (US Pat. No. 486140).
No. 2, JP-B-63-27707, JP-A-7-27707
In the lower part of the pellicle frame 2, a polybutene resin, a polyvinyl acetate resin, an acrylic resin,
An adhesive made of a silicone resin or the like and a release layer 4 (separator) for protecting the adhesive layer 3 are adhered to each other.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年、
リソグラフィーの解像度は次第に高くなってきており、
その解像度を実現するために徐々に波長の短い光が光源
として用いられるようになってきている。具体的には、
紫外光(g線(436nm)、I線(365nm))か
ら現在は遠紫外光(KrFエキシマレーザー(248n
m))へと移行しており、近い将来には真空紫外光(A
rFエキシマレーザー(193nm))が使用されるこ
とになる。このように波長が短くなると光子エネルギー
は大きくなり、リソグラフィーに用いられる材料に、よ
り大きな光劣化をもたらす。特に、ペリクル膜の材質は
有機物であるので、その影響は短波長化に伴い加速度的
に大きくなる。
However, in recent years,
The resolution of lithography is gradually increasing,
In order to realize the resolution, light having a short wavelength is gradually used as a light source. In particular,
From ultraviolet light (g line (436 nm), I line (365 nm)) to far ultraviolet light (KrF excimer laser (248n
m)), and in the near future, vacuum ultraviolet light (A
An rF excimer laser (193 nm) will be used. As the wavelength becomes shorter, the photon energy becomes larger, and the material used for lithography causes greater light degradation. In particular, since the material of the pellicle film is an organic substance, its influence increases at an accelerated rate as the wavelength becomes shorter.

【0006】ところで、光反応は基本的に光が吸収され
て初めて開始される。ペリクル膜に使用している樹脂、
例えばフッ素樹脂は、本来基本骨格に二重結合を含ま
ず、また、電気陰性度が大きいフッ素原子が存在するた
め、本来遠紫外域で吸収を持たない。しかし、ポリマー
の末端には反応開始剤に由来するエステル基が存在する
可能性があり、また実際の樹脂では完全に重合反応が完
了することは困難であり、従って未反応の二重結合等が
存在する可能性が否定できない。これらの官能基が紫外
光を吸収し、光劣化反応の開始点となり得る。
Incidentally, the photoreaction basically starts only after light is absorbed. Resin used for pellicle membrane,
For example, a fluororesin originally does not contain a double bond in its basic skeleton, and has a fluorine atom having a high electronegativity, so that it does not originally have absorption in the far ultraviolet region. However, there is a possibility that an ester group derived from the reaction initiator may be present at the terminal of the polymer, and it is difficult for the actual resin to complete the polymerization reaction completely. The possibility of existence cannot be denied. These functional groups absorb ultraviolet light and can be a starting point of a photodegradation reaction.

【0007】そして、膜の光劣化が進むと、膜厚が減少
し透過率が減少するという問題が発生する。また、ポリ
マー鎖のラジカルによる切断、再結合が引き起こされ、
ポリマーの屈折率が変化する。このような透過率、屈折
率の変化は露光されるウェーハ上の照度むらを引き起こ
し、リソグラフィーに悪影響を与える。また、ペリクル
膜は非常に薄い膜なので、リソグラフィーの光源となる
光に対して干渉を起こす。従って、ペリクルの製造時に
は、光の干渉を計算して透過率が最大になるような膜厚
に制御する。しかし、光の照射により膜厚が変化する
と、干渉がずれてしまい、透過率が低下しウェーハ上に
照度ムラが発生するという問題がある。
[0007] Then, when the optical deterioration of the film proceeds, there arises a problem that the film thickness is reduced and the transmittance is reduced. In addition, cleavage and recombination of the polymer chain by radicals are caused,
The refractive index of the polymer changes. Such changes in transmittance and refractive index cause uneven illuminance on the wafer to be exposed, and adversely affect lithography. Further, since the pellicle film is a very thin film, it causes interference with light serving as a light source for lithography. Therefore, at the time of manufacturing the pellicle, the film thickness is controlled so as to maximize the transmittance by calculating light interference. However, when the film thickness changes due to light irradiation, interference deviates, causing a problem that transmittance decreases and illuminance unevenness occurs on the wafer.

【0008】光照射後の膜の表面の分析の結果、光照射
された部分に凹部が生じていることが分かった。一方、
酸素等が存在する大気中で光照射を行ったにもかかわら
ず、光照射部の化学分析を行うとその部分の変質は起こ
っていない。すなわち、この場合の光劣化は、光照射に
よりペリクル膜を構成するポリマー鎖が切断され、その
結果生じる低分子分が蒸発し膜厚が減少したことによる
ものと考えられる。
As a result of analyzing the surface of the film after the light irradiation, it was found that a concave portion was formed in the portion irradiated with the light. on the other hand,
Despite the light irradiation in the atmosphere where oxygen and the like are present, the chemical analysis of the light-irradiated portion has not altered the portion. That is, it is considered that the photodeterioration in this case is due to the fact that the polymer chains constituting the pellicle film are cut by the light irradiation, and the resulting low molecular weight is evaporated to reduce the film thickness.

【0009】本発明は、このような問題点に鑑みなされ
たもので、ペリクル膜の材質が非晶質パーフルオロポリ
マーであって、短波長の真空紫外光を長時間照射して
も、光劣化したり分解することのない長寿命で、かつ光
透過率が高く変化のない高性能なペリクル膜からなるリ
ソグラフィー用ペリクルを提供することを主目的とする
ものである。
The present invention has been made in view of the above-mentioned problems, and the pellicle film is made of an amorphous perfluoropolymer. It is a main object of the present invention to provide a pellicle for lithography comprising a high-performance pellicle film which has a long life and does not change and has a high light transmittance without being worn or decomposed.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、本発明の請求項1に記載
した発明は、リソグラフィーに使用されるペリクル膜の
材質として非晶質パーフルオロポリマーを用いたリソグ
ラフィー用ペリクルにおいて、該ペリクル膜がフッ素ガ
スで処理され、表面上にフッ素化層を形成されたもので
あることを特徴とするリソグラフィー用ペリクルであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention described in claim 1 of the present invention provides an amorphous pellicle film used for lithography. A pellicle for lithography using a perfluoropolymer, wherein the pellicle film is treated with a fluorine gas to form a fluorinated layer on the surface.

【0011】このように、リソグラフィーに使用される
ペリクル膜の材質として非晶質パーフルオロポリマーを
用いたリソグラフィー用ペリクルにおいて、該ペリクル
膜がフッ素ガスで処理され、表面上にフッ素化層を形成
されたものであれば、長時間光照射しても光劣化のな
い、すなわち膜厚変化や光透過率変化のない耐光性に優
れ、長寿命かつ高性能なペリクル膜からなるリソグラフ
ィー用ペリクルとすることができる。
As described above, in a pellicle for lithography using an amorphous perfluoropolymer as the material of the pellicle film used for lithography, the pellicle film is treated with fluorine gas to form a fluorinated layer on the surface. A pellicle for lithography that is made of a pellicle film that has no light degradation even after long-time light irradiation, that is, a pellicle film that is excellent in light resistance without a change in film thickness or light transmittance and has a long life and high performance. Can be.

【0012】この場合、請求項2に記載したように、リ
ソグラフィー用ペリクルが、200nm以下の真空紫外
光露光に使用されるものとすることができる。
In this case, as described in claim 2, the pellicle for lithography can be used for vacuum ultraviolet light exposure of 200 nm or less.

【0013】このように、リソグラフィー用ペリクル
が、光子エネルギーが大きな200nm以下の紫外光、
例えばArFエキシマレーザーのような真空紫外光露光
に使用されるものであっても、ペリクル膜の膜厚変化、
光透過率の減少および亀裂の発生がなく、長寿命かつ高
性能なペリクル膜からなるリソグラフィー用ペリクルと
することができる。
As described above, the pellicle for lithography can be used to produce ultraviolet light having a large photon energy of 200 nm or less,
For example, even when used for vacuum ultraviolet light exposure such as ArF excimer laser, the thickness change of the pellicle film,
A pellicle for lithography comprising a long-lived and high-performance pellicle film without reduction in light transmittance and generation of cracks can be obtained.

【0014】また、この場合、請求項3に記載したよう
に、フッ素ガスで処理されたペリクル膜の表面上のフッ
素原子含有量が、60mol%以上であることが好まし
い。
In this case, it is preferable that the fluorine atom content on the surface of the pellicle film treated with the fluorine gas is 60 mol% or more.

【0015】このように、フッ素ガスで処理されたペリ
クル膜の表面上のフッ素原子含有量が、60mol%以
上であれば、光子エネルギーが大きな200nm以下の
紫外光、例えばArFエキシマレーザーのような真空紫
外光露光に使用されるものであっても、確実にペリクル
膜の膜厚変化、光透過率の減少および亀裂の発生がな
く、長寿命かつ高性能なペリクル膜からなるリソグラフ
ィー用ペリクルとすることができる。但し、フッ素原子
含有量が80mol%よりも大きいと膜強度が低下する
ことがあるので、60〜80mol%の範囲とすること
が特に好ましい。
As described above, when the fluorine atom content on the surface of the pellicle film treated with the fluorine gas is 60 mol% or more, ultraviolet light having a large photon energy of 200 nm or less, for example, a vacuum such as an ArF excimer laser. A pellicle for lithography consisting of a long-life, high-performance pellicle film that does not change the thickness of the pellicle film, reduces light transmittance, and does not crack even if used for ultraviolet light exposure. Can be. However, if the fluorine atom content is larger than 80 mol%, the film strength may be reduced. Therefore, it is particularly preferable that the content be in the range of 60 to 80 mol%.

【0016】そして、本発明の請求項4に記載した発明
は、20000J/cm2 のレーザー光照射をした場合
に、ペリクル膜の膜厚減少率が0.5%以下であること
を特徴とする。
The invention according to a fourth aspect of the present invention is characterized in that the pellicle film has a reduction rate of 0.5% or less when irradiated with a laser beam of 20,000 J / cm 2. .

【0017】このように、本発明では、例えば、ArF
エキシマレーザーにより20000J/cm2 の光照射
をした場合であっても、ペリクル膜の膜厚減少率を0.
5%以下とすることができ、真空紫外光のような短波長
に曝されても、確実にペリクル膜の光透過率の減少や亀
裂の発生がなく、長寿命かつ高性能なペリクル膜からな
るリソグラフィー用ペリクルとすることができる。
As described above, in the present invention, for example, ArF
Even when the light is irradiated at 20000 J / cm 2 by an excimer laser, the rate of decrease in the thickness of the pellicle film is 0.1%.
It can be 5% or less, and even if exposed to a short wavelength such as vacuum ultraviolet light, the pellicle film is formed of a long-life and high-performance pellicle film without a decrease in light transmittance or cracking of the pellicle film. It can be a pellicle for lithography.

【0018】また、請求項5に記載した発明は、ペリク
ル枠に非晶質パーフルオロポリマーからなるペリクル膜
を貼り付けてなるリソグラフィー用ペリクルの製造方法
において、該ペリクル膜を、非晶質パーフルオロポリマ
ーからなるペリクル膜を成膜後、フッ素ガスで処理して
該膜表面にフッ素化層を形成することにより製造するこ
とをを特徴とするリソグラフィー用ペリクルの製造方法
である。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a pellicle for lithography comprising attaching a pellicle film made of an amorphous perfluoropolymer to a pellicle frame. A method for producing a pellicle for lithography, comprising: forming a pellicle film made of a polymer, treating the film with a fluorine gas, and forming a fluorinated layer on the surface of the film.

【0019】このように、ペリクル枠に非晶質パーフル
オロポリマーからなるペリクル膜を貼り付けてなるリソ
グラフィー用ペリクルの製造方法において、該ペリクル
膜の製造は、非晶質パーフルオロポリマーからなるペリ
クル膜を成膜後、フッ素ガスで処理して該膜表面にフッ
素化層を形成するようにすれば、真空紫外光のような短
波長に曝されても、ペリクル膜の膜厚変化、光透過率の
減少および亀裂の発生がなく、長寿命かつ高性能なペリ
クル膜からなるリソグラフィー用ペリクルを簡単に製造
することができる。
As described above, in the method of manufacturing a pellicle for lithography in which a pellicle film made of an amorphous perfluoropolymer is attached to a pellicle frame, the pellicle film is made of a pellicle film made of an amorphous perfluoropolymer. After the film is formed, if the film is treated with fluorine gas to form a fluorinated layer on the film surface, the pellicle film thickness change and light transmittance even when exposed to a short wavelength such as vacuum ultraviolet light It is possible to easily produce a pellicle for lithography comprising a high-performance pellicle film having a long life and no reduction in cracks and generation of cracks.

【0020】この場合、請求項6に記載したように、ペ
リクル膜の表面上のフッ素原子含有量が60mol%以
上となるようにフッ素ガスで処理することが好ましい。
In this case, it is preferable that the pellicle film is treated with fluorine gas so that the fluorine atom content on the surface of the pellicle film is 60 mol% or more.

【0021】このように、ペリクル膜を表面上のフッ素
原子含有量が60mol%以上となるようにフッ素ガス
で処理してリソグラフィー用ペリクルを製造すれば、真
空紫外光のような短波長に曝されても、ペリクル膜の膜
厚変化、光透過率の減少および亀裂の発生が確実に抑制
され、長寿命かつ高性能なペリクル膜からなるリソグラ
フィー用ペリクルを容易かつ確実に製造することができ
る。
As described above, if a pellicle for lithography is manufactured by treating the pellicle film with fluorine gas so that the fluorine atom content on the surface becomes 60 mol% or more, the pellicle film is exposed to a short wavelength such as vacuum ultraviolet light. However, a change in the thickness of the pellicle film, a decrease in light transmittance, and the generation of cracks are reliably suppressed, and a pellicle for lithography comprising a pellicle film having a long life and high performance can be easily and reliably manufactured.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明はこれらに限定されるものではな
い。本発明者らは、前述した問題点を解決すべく鋭意検
討を行った結果、非晶質パーフルオロポリマーからなる
ペリクル膜をフッ素ガスで処理して、表面にフッ素化層
を形成させれば、例えばArFエキシマレーザーのよう
な200nm以下の真空紫外光をペリクル膜に照射して
も光劣化の殆どない、すなわち、ペリクル膜の膜厚減少
や透過率減少がないペリクル膜を得ることができること
を見出し、諸条件を精査して本発明を完成させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments. The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, if a pellicle film made of an amorphous perfluoropolymer is treated with a fluorine gas to form a fluorinated layer on the surface, For example, it has been found that even if the pellicle film is irradiated with vacuum ultraviolet light of 200 nm or less such as an ArF excimer laser, the pellicle film hardly undergoes photodegradation, that is, it is possible to obtain a pellicle film without a decrease in the thickness or transmittance of the pellicle film. The present invention was completed by examining various conditions.

【0023】以下、本発明のリソグラフィー用ペリクル
のペリクル膜について詳細に説明する。本発明のリソグ
ラフィー用ペリクルのペリクル膜の材質は、非晶質パー
フルオロポリマーであり、これらは、例えばサイトップ
(旭硝子(株)製)等として市販されている。
Hereinafter, the pellicle film of the pellicle for lithography of the present invention will be described in detail. The material of the pellicle film of the pellicle for lithography of the present invention is an amorphous perfluoropolymer, and these are commercially available, for example, as Cytop (manufactured by Asahi Glass Co., Ltd.).

【0024】この非晶質パーフルオロポリマー等のフッ
素系樹脂は、薄膜化し易く、しかも透過性に優れると共
に、紫外光領域に吸収を持たない優れた特性を有してい
る。しかし、このようなフッ素系樹脂を使用しても、真
空紫外光等の短波長レーザー光による光照射を受ける
と、上述のような光劣化による膜厚減少や透過率の低下
等の問題を生じ、かかる問題を解決すべく種々検討した
結果、ArFエキシマレーザー照射下では、フッ素系樹
脂が光を吸収して発生するラジカルによりポリマー鎖が
切断され、低分子量化した分子が蒸発することが膜厚変
化および透過率変化の大きな原因になっていることを突
き止めた。
The fluorine-based resin such as an amorphous perfluoropolymer is easily thinned, has excellent transmittance, and has excellent characteristics not absorbing in the ultraviolet region. However, even when such a fluorine-based resin is used, when light irradiation is performed by short-wavelength laser light such as vacuum ultraviolet light, problems such as a decrease in film thickness and a decrease in transmittance due to light degradation occur. As a result of various studies to solve this problem, it was found that under irradiation with an ArF excimer laser, the polymer chain was cut by radicals generated by the absorption of light by the fluororesin, and the low molecular weight molecules were evaporated. It has been found that the change and the transmittance change are the major causes.

【0025】そこで、フッ素系樹脂の膜表面を保護する
方法を種々検討した結果、該膜表面をフッ素ガスを用い
てフッ素化すれば、極めて容易に、しかも低コストでフ
ッ素系樹脂の膜表面に高濃度のフッ素化層を有するペリ
クル膜とすることができることを見出した。これによ
り、光子エネルギーの大きなArFエキシマレーザー光
を長時間照射しても光劣化の少ない、すなわち光照射に
よる膜厚変化および透過率変化の少ないペリクル膜から
なるリソグラフィー用ペリクルとする上記目的が達成さ
れた。
Therefore, as a result of various studies on methods for protecting the surface of the fluororesin film, if the surface of the film is fluorinated using fluorine gas, the film surface of the fluororesin can be extremely easily and at low cost. It has been found that a pellicle film having a high concentration fluorinated layer can be obtained. As a result, the above-described object is achieved in which a pellicle for lithography is formed of a pellicle film having little photodeterioration even when irradiated with ArF excimer laser light having a large photon energy for a long time, that is, having a small change in film thickness and transmittance due to light irradiation. Was.

【0026】本発明を完成する過程で明らかとなったペ
リクル膜の光劣化が抑制されるメカニズムについて説明
すれば、一般にポリマーの光劣化は、光を吸収して分子
が励起された場合に、ラジカル反応として起こるが、こ
のラジカル反応が起こると、化学結合はホモ的に開裂す
る。そして、発生したラジカルは分子内を伝播し、ポリ
マー鎖の切断が進行する。
The mechanism of suppressing the photodeterioration of the pellicle film, which became apparent during the process of completing the present invention, will be described. Generally, photodeterioration of a polymer is caused by radical absorption when light is absorbed and molecules are excited. Although this occurs as a reaction, when this radical reaction occurs, the chemical bond is homogenously cleaved. Then, the generated radical propagates in the molecule, and cleavage of the polymer chain proceeds.

【0027】しかし、フッ素系樹脂の場合には、その主
要構成原子であるフッ素原子が非常に大きい電気陰性度
を有するため、ラジカル反応によりポリマー分子が開裂
しても、フッ素原子の大きな電気陰性度のため開裂した
結合が再結合する割合が高くなり、ポリマーの低分子化
は光吸収からの予測よりも非常に低く抑えられ、光劣化
が抑制されることになる。その結果、膜の透過率や屈折
率に影響を及ぼすことも抑制される。
However, in the case of a fluorine-based resin, the fluorine atom which is the main constituent atom has a very high electronegativity, so that even if the polymer molecule is cleaved by a radical reaction, the fluorine atom has a large electronegativity. As a result, the rate at which the broken bonds are recombined increases, and the lowering of the molecular weight of the polymer is suppressed much lower than predicted from light absorption, and light degradation is suppressed. As a result, the influence on the transmittance and the refractive index of the film is also suppressed.

【0028】すなわち、ペリクル膜の表面に高濃度のフ
ッ素化層を設ければ、膜が光を吸収してラジカルが発生
し劣化が進む条件下であっても、高濃度のフッ素化層が
ラジカル反応で開裂した結合の再結合を引き起こすの
で、膜の劣化は非常に小さく抑えることができる。
That is, if a high-concentration fluorinated layer is provided on the surface of the pellicle film, the high-concentration fluorinated layer is free from radicals even under conditions in which the film absorbs light to generate radicals and deterioration proceeds. Since the reaction causes the recombination of the bond that has been cleaved, the deterioration of the film can be kept very small.

【0029】この場合、膜表面上のフッ素原子含有量
は、X線光電子分光法(XPS)により測定を行い容易
に算出することができる。すなわち、X線光電子分光法
は、表面の数百Åからの光電子を測定するため、表面の
情報を得るのに最適な測定法であり、試料のC1s、F
1s、O1sスペクトルを測定して、それぞれの測定感
度を補正しスペクトルの積分面積比からフッ素原子含有
量を容易に算出できる。
In this case, the content of fluorine atoms on the surface of the film can be easily calculated by measuring by X-ray photoelectron spectroscopy (XPS). That is, X-ray photoelectron spectroscopy is the most suitable measurement method for obtaining information on the surface because it measures photoelectrons from several hundred square meters on the surface.
The 1s and O1s spectra are measured, the sensitivity of each measurement is corrected, and the fluorine atom content can be easily calculated from the integrated area ratio of the spectra.

【0030】ペリクル膜の表面に存在するフッ素原子含
有量は高い方が、開裂した結合を再結合させる効果が得
易いが、確実に再結合させる効果を得るためには、膜表
面上のフッ素原子含有量は少なくとも60mol%以上
であることが望ましい。但し、80mol%を超えると
膜強度が低下することがあるので、フッ素原子含有量は
60〜80mol%の範囲とすることが特に望ましい。
そして、膜表面上のフッ素原子含有量が60mol%以
上であれば、例えばArFエキシマレーザーの照射量が
20000J/cm2 に達しても、膜厚減少率は0.5
%以下に抑制することができる。
The higher the fluorine atom content present on the surface of the pellicle film, the more easily the effect of recombining the cleaved bond is obtained. It is desirable that the content is at least 60 mol% or more. However, if it exceeds 80 mol%, the film strength may be reduced, so that the fluorine atom content is particularly preferably in the range of 60 to 80 mol%.
If the fluorine atom content on the film surface is 60 mol% or more, for example, even if the irradiation amount of the ArF excimer laser reaches 20,000 J / cm 2 , the film thickness reduction rate is 0.5%.
% Or less.

【0031】次に、本発明のリソグラフィー用ペリクル
のペリクル膜の製造方法について説明する。まず、非晶
質パーフルオロポリマーの溶液を基板、例えばシリコン
基板上に滴下しスピンコーターを用いて薄膜状にした
後、加熱乾燥して溶媒を蒸発させシリコン基板上にペリ
クル膜を成膜する。
Next, a method for manufacturing a pellicle film of a pellicle for lithography of the present invention will be described. First, a solution of an amorphous perfluoropolymer is dropped on a substrate, for example, a silicon substrate, formed into a thin film using a spin coater, and then dried by heating to evaporate the solvent to form a pellicle film on the silicon substrate.

【0032】そして、シリコン基板上のペリクル膜を、
フッ素に浸食されない材質からなる仮枠、例えばニッケ
ル製の仮枠に貼り付けた後、フッ素ガスで処理してペリ
クル膜表面にフッ素化層を形成させることにより、本発
明のリソグラフィー用ペリクルのペリクル膜が得られ
る。この場合、フッ素ガスによる処理はどのような方法
によってもよく、例えばフッ素ガスで浸食されないニッ
ケル等の材質からなる反応装置内にペリクル膜を配置
し、これにフッ素ガスを導入することによって処理を行
っても構わない。また、フッ素ガスの処理は、フッ素と
窒素、アルゴン等の不活性ガスとの混合ガスとして行っ
ても良い。
Then, the pellicle film on the silicon substrate is
A temporary frame made of a material that is not eroded by fluorine, such as a pellicle film of a pellicle for lithography of the present invention, which is attached to a temporary frame made of nickel and then treated with fluorine gas to form a fluorinated layer on the surface of the pellicle film. Is obtained. In this case, the treatment with fluorine gas may be performed by any method.For example, a pellicle film is placed in a reactor made of a material such as nickel that is not eroded by fluorine gas, and the treatment is performed by introducing fluorine gas into the pellicle film. It does not matter. Further, the treatment of the fluorine gas may be performed as a mixed gas of fluorine and an inert gas such as nitrogen or argon.

【0033】[0033]

【実施例】以下、本発明を実施例および比較例を挙げて
説明する。
The present invention will be described below with reference to examples and comparative examples.

【0034】ここで、本発明のペリクル膜の表面上のフ
ッ素原子の定量は、前述のX線光電子分光法(XPS)
を用いて行った。また、ペリクル膜の耐光性の評価は、
以下のようにして行った。
Here, the determination of fluorine atoms on the surface of the pellicle film of the present invention is performed by the above-mentioned X-ray photoelectron spectroscopy (XPS).
This was performed using The evaluation of the light resistance of the pellicle film
This was performed as follows.

【0035】[耐光性評価]ArFエキシマレーザー光
(波長193nm)を大気中で膜に照射し、照射前後で
の膜厚と透過率を測定した。その後、変化量を算出し、
照射の影響を調べた。ArFエキシマレーザーの照射条
件は、強度を1mJ/cm2 /pulse、パルス周波
数を400Hzとした。
[Evaluation of Light Resistance] The film was irradiated with ArF excimer laser light (wavelength: 193 nm) in the air, and the film thickness and transmittance before and after the irradiation were measured. After that, calculate the amount of change,
The effects of irradiation were investigated. The irradiation conditions of the ArF excimer laser were an intensity of 1 mJ / cm 2 / pulse and a pulse frequency of 400 Hz.

【0036】(実施例)膜材料として非晶質パーフルオ
ロポリマーであるサイトップCTX−S(旭硝子(株)
製)をフッ素系溶剤CT−solv.180(旭硝子
(株)製)に溶解し、濃度5%の溶液を調製した。次
に、この溶液を直径200mm、厚さ1.2mmの表面
研摩したシリコン基板上に滴下し、スピンコーターを用
いて基板を回転させて膜厚1μmの透過膜を形成させ
た。その後、200℃で15分間乾燥してペリクル膜を
基板上に成膜した。そして、基板上の膜にニッケル製の
仮枠を貼り付け、この枠ごとシリコン基板から剥離し単
独膜を得た。
(Example) Cytop CTX-S (Asahi Glass Co., Ltd.) which is an amorphous perfluoropolymer as a film material
Manufactured by Fluorinated Solvent CT-solv. 180 (manufactured by Asahi Glass Co., Ltd.) to prepare a 5% concentration solution. Next, this solution was dropped on a surface-polished silicon substrate having a diameter of 200 mm and a thickness of 1.2 mm, and the substrate was rotated using a spin coater to form a 1 μm-thick permeable film. Thereafter, the substrate was dried at 200 ° C. for 15 minutes to form a pellicle film on the substrate. Then, a temporary nickel frame was attached to the film on the substrate, and the entire frame was peeled off from the silicon substrate to obtain a single film.

【0037】次に、ニッケル製反応容器の中に、ニッケ
ル製の仮枠に貼り付けたサイトップの膜を導入し真空引
きした後、フッ素ガスと窒素ガスの体積比が1:9の割
合に混合した混合ガスを反応容器内に導入した。室温で
24時間反応を行い膜のフッ素化処理を行った。反応終
了後、容器内を窒素ガスで置換し試料を取り出した。こ
のようにしてフッ素化されたペリクル膜の表面上のフッ
素原子含有量についてXPS測定を行い、その結果を表
1に示した。
Next, after introducing the CYTOP film attached to the nickel temporary frame into the nickel reaction vessel and evacuating it, the volume ratio of fluorine gas to nitrogen gas was reduced to 1: 9. The mixed gas mixture was introduced into the reaction vessel. The reaction was carried out at room temperature for 24 hours to fluorinate the film. After completion of the reaction, the inside of the container was replaced with nitrogen gas, and a sample was taken out. XPS measurement was performed on the fluorine atom content on the surface of the fluorinated pellicle film in this manner, and the results are shown in Table 1.

【0038】また、耐光性評価は、ArFエキシマレー
ザー照射量が、5000J/cm2、10000J/c
2 および20000J/cm2 において実施し、その
結果を表2に示した。
The light fastness was evaluated by irradiating an ArF excimer laser at a dose of 5000 J / cm 2 and 10,000 J / c.
The test was performed at m 2 and 20,000 J / cm 2 , and the results are shown in Table 2.

【0039】(比較例)実施例と同一条件で得られたニ
ッケル製の仮枠に貼り付けたサイトップの膜について、
フッ素化層を形成させずにペリクル膜の表面上のフッ素
原子含有量と耐光性を測定した。結果を表1および表2
に示した。
(Comparative Example) A CYTOP film attached to a nickel temporary frame obtained under the same conditions as in the example was
Without forming a fluorinated layer, the content of fluorine atoms on the surface of the pellicle film and the light resistance were measured. Tables 1 and 2 show the results.
It was shown to.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】上記の結果から明らかなように、ペリクル
膜のフッ素化により膜表面上の炭素原子と酸素原子の含
有量はフッ素化前と比較してそれぞれ6mol%、3m
ol%減少した。一方フッ素の含有量は9mol%上昇
した。この実験結果から、フッ素化によりペリクル膜表
面に高濃度フッ素化層が形成されていることが証明され
た。
As is clear from the above results, the content of carbon atoms and oxygen atoms on the surface of the pellicle film was 6 mol% and 3 m
ol%. On the other hand, the fluorine content increased by 9 mol%. From this experimental result, it was proved that a high concentration fluorinated layer was formed on the surface of the pellicle film by fluorination.

【0043】耐光性に関して、ペリクル膜のフッ素化を
行った場合、5000J/cm2 のArFエキシマレー
ザー照射を行った後の膜厚減少率が0.1%であり、ま
た10000J/cm2 では0.2%、そして2000
0J/cm2 でも0.4%であったことから光劣化が少
なく、極めて優れることがわかった。また、光子エネル
ギーの大きなArFエキシマレーザー照射を行っても、
ペリクル膜に透過性低下や亀裂等の外観上の不具合は生
じなかった。
[0043] With respect to light fastness, in the case of performing the fluorination of the pellicle film, a film thickness reduction rate is 0.1% after the ArF excimer laser irradiation of 5000 J / cm 2, also 10000 J / cm 2 at 0 .2% and 2000
Since it was 0.4% even at 0 J / cm 2 , it was found that there was little light deterioration, and it was extremely excellent. In addition, even when irradiation with an ArF excimer laser having a large photon energy is performed,
The pellicle membrane did not have any appearance defects such as reduced permeability and cracks.

【0044】一方、ペリクル膜のフッ素化を行わない場
合には、5000J/cm2 のArFエキシマレーザー
照射を行った後の膜厚減少率が0.2%であり、また1
0000J/cm2 では0.4%、そして20000J
/cm2 では1.0%と膜厚減少率が大きくなってお
り、光劣化が激しく短波長露光光源、例えば真空紫外光
の照射には適応できないことが明らかになった。
On the other hand, when the pellicle film was not fluorinated, the reduction rate of the film thickness after the irradiation of 5000 J / cm 2 ArF excimer laser was 0.2%, and 1%.
0.4% at 0000 J / cm 2 and 20,000 J
/ Cm 2 , the film thickness reduction rate was as large as 1.0%, indicating that the photodegradation was so severe that it could not be adapted to irradiation with a short wavelength exposure light source, for example, vacuum ultraviolet light.

【0045】以上のことから、ペリクル膜の表面に高濃
度のフッ素化層が形成されている場合には、ArFエキ
シマレーザー等の短波長の光照射による膜厚減少率が小
さく、光劣化が少ないことから、膜表面上の高濃度フッ
素化層がレーザー照射による光劣化を抑制していること
が証明された。
From the above, when a fluorinated layer having a high concentration is formed on the surface of the pellicle film, the reduction rate of the film thickness due to the irradiation of short wavelength light such as ArF excimer laser is small, and the light deterioration is small. This proved that the high-concentration fluorinated layer on the film surface suppressed photodegradation due to laser irradiation.

【0046】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術思想と実質的に同一
な構成を有し、同様な作用効果を奏するものは、いかな
るものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. Within the technical scope of

【0047】例えば、本発明において、非晶質パーフル
オロポリマーとして環状パーフルオロエーテル基含有フ
ッ素モノマー重合体だけでなく、直鎖状のパーフルオロ
エーテル基含有モノマー重合体を用いてもよい。
For example, in the present invention, not only a perfluoroether group-containing fluoromonomer polymer but also a linear perfluoroether group-containing monomer polymer may be used as the amorphous perfluoropolymer.

【0048】[0048]

【発明の効果】本発明によれば、ペリクル膜の材質が非
晶質パーフルオロポリマー、特にパーフルオロエーテル
基を有する含フッ素モノマー重合体の場合に、膜の表面
をフッ素化し高濃度のフッ素化層を形成すれば、リソグ
ラフィー時の短波長露光光源、特にArFエキシマレー
ザーによるペリクル膜の光劣化が抑制されるので、膜厚
や透過率の減少や亀裂の発生が起こることが殆どなく、
長寿命かつ高性能なペリクル膜からなるリソグラフィー
用ペリクルとすることができる。
According to the present invention, when the material of the pellicle film is an amorphous perfluoropolymer, in particular, a fluorine-containing monomer polymer having a perfluoroether group, the surface of the film is fluorinated and fluorinated at a high concentration. If a layer is formed, light degradation of the pellicle film due to a short-wavelength exposure light source during lithography, particularly an ArF excimer laser, is suppressed, so that a decrease in film thickness and transmittance and generation of cracks hardly occur,
A pellicle for lithography comprising a long-life and high-performance pellicle film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ペリクル膜の構成例を示した概略図である。FIG. 1 is a schematic diagram showing a configuration example of a pellicle film.

【符号の説明】[Explanation of symbols]

1・・・ ペリクル膜、 2・・・ ペリクル枠、 3・・・ 粘着
層、 4・・・ 離型層。
DESCRIPTION OF SYMBOLS 1 ... Pellicle film, 2 ... Pellicle frame, 3 ... Adhesive layer, 4 ... Release layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樫田 周 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 2H095 BC33 BC35  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shu Kashida 2-13-1 Isobe, Annaka-shi, Gunma F-term in Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory 2H095 BC33 BC35

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リソグラフィーに使用されるペリクル膜
の材質として非晶質パーフルオロポリマーを用いたリソ
グラフィー用ペリクルにおいて、該ペリクル膜がフッ素
ガスで処理され、表面上にフッ素化層を形成されたもの
であることを特徴とするリソグラフィー用ペリクル
1. A pellicle for lithography using an amorphous perfluoropolymer as a material of a pellicle film used for lithography, wherein the pellicle film is treated with fluorine gas to form a fluorinated layer on the surface. Pellicle for lithography, characterized in that:
【請求項2】 前記リソグラフィー用ペリクルが、20
0nm以下の真空紫外光露光に使用されるものであるこ
とを特徴とする請求項1に記載のリソグラフィー用ペリ
クル。
2. The pellicle for lithography according to claim 1, wherein
2. The pellicle for lithography according to claim 1, wherein the pellicle is used for vacuum ultraviolet light exposure of 0 nm or less.
【請求項3】 前記フッ素ガスで処理されたペリクル膜
の表面上のフッ素原子含有量が、60mol%以上であ
ることを特徴とする請求項1または請求項2に記載のリ
ソグラフィー用ペリクル。
3. The pellicle for lithography according to claim 1, wherein the fluorine atom content on the surface of the pellicle film treated with the fluorine gas is 60 mol% or more.
【請求項4】 20000J/cm2 のレーザー光照射
をした場合に、ペリクル膜の膜厚減少率が0.5%以下
であることを特徴とする請求項1乃至請求項3のいずれ
か1項に記載のリソグラフィー用ペリクル。
4. The pellicle film according to claim 1, wherein the pellicle film has a thickness reduction rate of 0.5% or less when irradiated with a laser beam of 20,000 J / cm 2. A pellicle for lithography according to 1.
【請求項5】 ペリクル枠に非晶質パーフルオロポリマ
ーからなるペリクル膜を貼り付けてなるリソグラフィー
用ペリクルの製造方法において、該ペリクル膜を、非晶
質パーフルオロポリマーからなるペリクル膜を成膜後、
フッ素ガスで処理して該膜表面にフッ素化層を形成する
ことにより製造することを特徴とするリソグラフィー用
ペリクルの製造方法。
5. A method for manufacturing a pellicle for lithography comprising attaching a pellicle film made of an amorphous perfluoropolymer to a pellicle frame, wherein the pellicle film is formed after forming a pellicle film made of an amorphous perfluoropolymer. ,
A method for producing a pellicle for lithography, characterized in that the film is produced by forming a fluorinated layer on the film surface by treating with a fluorine gas.
【請求項6】 前記フッ素ガスで処理されたペリクル膜
の表面上のフッ素原子含有量を60mol%以上とする
ことを特徴とする請求項5に記載のリソグラフィー用ペ
リクルの製造方法。
6. The method for producing a pellicle for lithography according to claim 5, wherein the fluorine atom content on the surface of the pellicle film treated with the fluorine gas is 60 mol% or more.
JP6251399A 1999-03-10 1999-03-10 Pellicle for lithography with improved light resistance Expired - Fee Related JP4000231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251399A JP4000231B2 (en) 1999-03-10 1999-03-10 Pellicle for lithography with improved light resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251399A JP4000231B2 (en) 1999-03-10 1999-03-10 Pellicle for lithography with improved light resistance

Publications (2)

Publication Number Publication Date
JP2000258895A true JP2000258895A (en) 2000-09-22
JP4000231B2 JP4000231B2 (en) 2007-10-31

Family

ID=13202346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251399A Expired - Fee Related JP4000231B2 (en) 1999-03-10 1999-03-10 Pellicle for lithography with improved light resistance

Country Status (1)

Country Link
JP (1) JP4000231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088862A1 (en) * 2006-02-01 2007-08-09 Mitsui Chemicals, Inc. Pellicle for high numerical aperture exposure device
US8815476B2 (en) 2010-07-08 2014-08-26 Mitsui Chemicals, Inc. Pellicle membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718105B (en) 2011-07-29 2016-08-17 旭硝子株式会社 Photoetching film, membrane photomask and exposure processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088862A1 (en) * 2006-02-01 2007-08-09 Mitsui Chemicals, Inc. Pellicle for high numerical aperture exposure device
US8815476B2 (en) 2010-07-08 2014-08-26 Mitsui Chemicals, Inc. Pellicle membrane

Also Published As

Publication number Publication date
JP4000231B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US9533327B2 (en) Transparent resin plate and a method for producing the same
KR20040096654A (en) Fluorine-containing compounds with high transparency in the vacuum ultraviolet
US20100279212A1 (en) Photomask
Devine et al. Defect pair creation through ultraviolet radiation in dense, amorphous SiO 2
US20100273097A1 (en) Pellicle
KR100698602B1 (en) Pellicle for photolithography
Ikuta et al. Defect formation and structural alternation in modified SiO 2 glasses by irradiation with F 2 laser or ArF excimer laser
JP5608234B2 (en) Pellicle membrane
KR101431304B1 (en) Lithographic pellicle
JP2000258895A (en) Pellicle for lithography with improved light resistance
US20090286168A1 (en) Method for stripping pellicle and stripping apparatus used therein
JP2000275817A (en) Pellicle for lithography and its production
KR101164460B1 (en) Pellicle for lithography
JP2001264957A (en) Pellicle for lithography
JP2001255644A (en) Pellicle for lithography
US20070269751A1 (en) Immersion Liquid for Liquid Immersion Lithography Process and Method for Forming Resist Pattern Using Such Immersion Liquid
JP3192680B2 (en) Method of coating substrate
Henry et al. Structural changes in PMMA under hard X-ray irradiation
KR101427404B1 (en) Pellicle frame with polyorganosilsesquioxane coating layer and method of fabricating the same
US20230244138A1 (en) Pellicle, exposure original plate, exposure device, method of manufacturing pellicle, and method of manufacturing semiconductor device
JP2000241819A (en) Device for removing organic molecule with ultraviolet ray and method for removing organic polymer film
Wochnowski et al. UV-laser-assisted liquid phase fluorination of PMMA
JP2004184705A (en) Pellicle for fluorine gas excimer laser and manufacturing method thereof
JPS60240128A (en) Electromagnetic wave irradiation type washing method
JPS6363564B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees