JP2001264957A - Pellicle for lithography - Google Patents

Pellicle for lithography

Info

Publication number
JP2001264957A
JP2001264957A JP2000079953A JP2000079953A JP2001264957A JP 2001264957 A JP2001264957 A JP 2001264957A JP 2000079953 A JP2000079953 A JP 2000079953A JP 2000079953 A JP2000079953 A JP 2000079953A JP 2001264957 A JP2001264957 A JP 2001264957A
Authority
JP
Japan
Prior art keywords
pellicle
film
solution
light
lithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000079953A
Other languages
Japanese (ja)
Inventor
Ikuo Sakurai
郁男 櫻井
Susumu Shirasaki
享 白崎
Shu Kashida
周 樫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000079953A priority Critical patent/JP2001264957A/en
Publication of JP2001264957A publication Critical patent/JP2001264957A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pellicle for lithography with a high performance pellicle membrane using an amorphous perfoluroropolymer as the material of the membrane, excellent in peelability from a substrate in the formation of the membrane, free of photogradation and decomposition due to the absorption of short-wavelength ultraviolet light even when irradiated with the light for a long the time and having a long service life and a high invariable transmittance. SOLUTION: In the pellicle for lithography consisting essentially of a pellicle membrane and a pellicle frame, the pellicle membrane stretched on the pellicle frame comprises an amorphous perfluoropolymer and the terminal groups of the perfluoropolymer have been fluorinated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リソグラフィー用
ペリクル、特にはLSI、超LSIなどの半導体デバイ
スあるいは液晶表示板を製造する際の露光原版(レチク
ル)のゴミよけとして使用されるリソグラフィー用ペリ
クル、特には、高解像度を必要とする露光の際に使用さ
れるリソグラフィー用ペリクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pellicle for lithography, and more particularly to a pellicle for lithography used as a dust-repelling material for an exposure original (reticle) when manufacturing a semiconductor device such as an LSI or a super LSI or a liquid crystal display panel. More particularly, the present invention relates to a pellicle for lithography used in exposure requiring high resolution.

【0002】[0002]

【従来の技術】LSI、超LSIなどの半導体デバイス
あるいは液晶表示板などの製造においては、半導体ウエ
ハーあるいは液晶用原版に光を照射してパターニングが
行なわれるが、このとき用いる露光原版にゴミ等の異物
が付着していると、異物が光を吸収したり反射するた
め、転写したパターンが変形したり、エッジががさつい
たものとなるほか、下地が黒く汚れたりして、寸法、品
質、外観などが損われ、半導体装置や液晶表示板などの
性能や歩留りの低下を来すという問題があった。
2. Description of the Related Art In the manufacture of semiconductor devices such as LSIs and VLSIs, or liquid crystal display panels, semiconductor wafers or liquid crystal masters are irradiated with light to perform patterning. If foreign matter adheres, the foreign matter absorbs or reflects light, resulting in deformation of the transferred pattern, rough edges, and black background, resulting in size, quality, appearance, etc. However, there is a problem that the performance and yield of semiconductor devices and liquid crystal display panels are reduced.

【0003】このため、これらの作業は通常クリーンル
ーム内で行われているが、クリーンルーム内でも露光原
版を常に清浄に保つことが難しいため、ゴミ等の異物よ
けとして露光原版の表面に、露光用の光をよく透過させ
るペリクルを装着する方法が採られている。この場合、
異物は露光原版の表面には直接付着せず、ペリクルのペ
リクル膜上に付着するため、リソグラフィー時に焦点を
露光原版のパターン上に合わせておけば、ペリクル膜面
上の異物は転写に無関係となる。
[0003] For this reason, these operations are usually performed in a clean room. However, it is difficult to keep the exposure master clean even in the clean room. A method of mounting a pellicle that transmits light well is adopted. in this case,
Foreign matter does not directly adhere to the surface of the exposure master, but adheres to the pellicle film of the pellicle, so if the focus is focused on the pattern of the exposure master during lithography, the foreign matter on the pellicle film surface will be unrelated to transfer .

【0004】このペリクルは、例えば、図1に示すよう
に、通常光をよく透過させるニトロセルロース、酢酸セ
ルロース、フッ素樹脂などからなる透明なペリクル膜1
を、アルミニウム、ステンレス、ポリエチレンなどから
なるペリクルフレーム(以下,単にフレームと称する)
2の上端面に、ペリクル膜の良溶媒を塗布し、ペリクル
膜1を密着後、風乾して接着し(特開昭58‐219023号公
報参照)、あるいはペリクル膜1をアクリル樹脂、エポ
キシ樹脂、フッ素樹脂などの接着剤で接着し(米国特許
第4,861,402号明細書、特公昭63‐27707号公報参照)、
フレーム2の下端面には、ポリブテン樹脂、ポリ酢酸ビ
ニル樹脂、アクリル樹脂などからなる粘着層3を設け、
さらにこの粘着層3を保護する保護シート(セパレータ)
4を貼付することにより作製される。
As shown in FIG. 1, for example, this pellicle is a transparent pellicle film 1 made of nitrocellulose, cellulose acetate, fluororesin or the like which normally transmits light well.
Is a pellicle frame made of aluminum, stainless steel, polyethylene, etc. (hereinafter simply referred to as a frame)
A good solvent for the pellicle film is applied to the upper end surface of the pellicle film 2, and the pellicle film 1 is adhered and air-dried and adhered (see Japanese Patent Application Laid-Open No. 58-219023). Bonded with an adhesive such as fluororesin (US Pat. No. 4,861,402, JP-B-63-27707),
An adhesive layer 3 made of a polybutene resin, a polyvinyl acetate resin, an acrylic resin, or the like is provided on a lower end surface of the frame 2,
Further, a protective sheet (separator) for protecting the adhesive layer 3
4 is attached.

【0005】[0005]

【発明が解決しようとする課題】近年、リソグラフィー
の解像度は次第に高くなってきており、その解像度を実
現するために、徐々に波長の短い光が光源として用いら
れるようになってきている。具体的には、g線(436
nm)やi線(365nm)の紫外光から、現在は、よ
り波長の短い紫外光であるKrFエキシマレーザー(2
48nm)やArFエキシマレーザー(193nm)へ
と移行してきている。一般に、このように波長が短くな
ると、光エネルギーは大きくなり、これにともないリソ
グラフィーに用いられる材料により大きな光劣化をもた
らす。特に、ペリクル膜は有機物からなっているため、
光の短波長化にともない、この影響は加速度的に増大す
る。
In recent years, the resolution of lithography has been gradually increased, and in order to realize the resolution, light having a gradually shorter wavelength has been used as a light source. Specifically, the g-line (436)
nm) or i-ray (365 nm) from the KrF excimer laser (2
48 nm) and ArF excimer laser (193 nm). Generally, when the wavelength is shortened as described above, the light energy is increased, and accordingly, the material used for lithography causes a great light deterioration. In particular, since the pellicle film is made of an organic material,
As the wavelength of light becomes shorter, this effect increases at an accelerated rate.

【0006】光反応は、基本的に光が吸収されて初めて
開始される。近年の光の短波長化にともない、短波長紫
外光領域にも吸収を持たない非晶質パーフルオロポリマ
ーがペリクル膜に使用されている。この非晶質パーフル
オロポリマーの基本骨格は、不飽和結合等を含まず、ま
た電気陰性度の大きいフッ素原子が存在するため、短波
長紫外光に対しても吸収を持たない。しかし、ポリマー
構造の末端の一部にエステル基(−COO−、以下同
じ)が存在し、これが紫外光を吸収するため、短波長の
紫外光使用時には光劣化が問題となっていた。膜の劣化
が進むと、膜厚が減少し、かつ透過率が減少するという
問題が発生する。また、重合鎖のラジカルによる切断,
再結合が引き起こされ、ポリマーの屈折率が変化する。
このような透過率,屈折率の変化は、露光されるウェー
ハ上の照度むらを引き起こし、リソグラフィーに悪影響
を与える。
[0006] The photoreaction basically starts only after light is absorbed. As the wavelength of light becomes shorter in recent years, an amorphous perfluoropolymer having no absorption even in a short wavelength ultraviolet region is used for a pellicle film. The basic skeleton of the amorphous perfluoropolymer does not contain unsaturated bonds or the like, and has a fluorine atom having a high electronegativity, so that it does not absorb short-wavelength ultraviolet light. However, since an ester group (-COO-, the same applies hereinafter) is present at a part of the terminal of the polymer structure and absorbs ultraviolet light, light degradation has been a problem when using short-wavelength ultraviolet light. As the film deteriorates, there arises a problem that the film thickness decreases and the transmittance decreases. In addition, radical scission of the polymer chain,
Recombination is caused and the refractive index of the polymer changes.
Such changes in transmittance and refractive index cause uneven illuminance on a wafer to be exposed, and adversely affect lithography.

【0007】一般に、ペリクル膜は、シリコン等の基板
上にポリマー溶液を塗布、乾燥後、膜を剥離して単独膜
を得ている。このとき、ポリマー構造の末端にエステル
基が存在すると、膜の剥離が困難となり、皺ができた
り、膜自体が伸張限界を超えて伸びてしまうなどの問題
があった。本発明は、このような問題点を解決するため
になされたもので、ペリクル膜の材質として非晶質パー
フルオロポリマーを使用し、膜形成時、基板からの剥離
性に優れ、短波長紫外光を長時間照射してもこれを吸収
して光劣化したり、分解したりすることのない長寿命
で、かつ透過率が高く変化のない高性能なペリクル膜を
有するリソグラフィー用ペリクルを提供することを課題
としている。
Generally, a pellicle film is obtained by applying a polymer solution onto a substrate such as silicon, drying the film, and then peeling the film to obtain a single film. At this time, if an ester group is present at the terminal of the polymer structure, there are problems such as difficulty in peeling off the film, wrinkling, and extension of the film itself beyond the stretching limit. The present invention has been made to solve such a problem, and uses an amorphous perfluoropolymer as a material of a pellicle film, has excellent peelability from a substrate during film formation, and has a short wavelength ultraviolet light. Provided is a pellicle for lithography having a high-performance pellicle film having a long life without absorbing, deteriorating or decomposing even if irradiated for a long time, and having a high transmittance and no change. Is an issue.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく短波長紫外光に対するペリクル膜の光劣化に
ついて鋭意検討した結果、非晶質パーフルオロポリマ
ー、特に環状パーフルオロエーテル基を有するフッ素モ
ノマー重合体にフッ素ガスを反応させて、この末端基を
フッ素化したものは、KrFエキシマレーザー、ArF
エキシマレーザーのような短波長紫外光に対する吸収が
減少し、実質300nm以下の波長の光を照射したとき
に、光劣化の殆どない、すなわち、膜厚の減少や透過率
減少の少ないペリクル膜が得られることを見出し、諸条
件を精査して本発明を完成させた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies on the photodegradation of the pellicle film against short-wavelength ultraviolet light, and as a result, have found that amorphous perfluoropolymers, especially cyclic perfluoroether groups, The fluorine-containing polymer obtained by reacting a fluorine gas with the fluorine monomer polymer having the terminal group is fluorinated by KrF excimer laser, ArF
The absorption of short-wavelength ultraviolet light such as excimer laser decreases, and when irradiated with light having a wavelength of substantially 300 nm or less, a pellicle film with almost no light deterioration, that is, a decrease in film thickness and a decrease in transmittance is obtained. The present inventors have found that the present invention can be performed, and scrutinized various conditions to complete the present invention.

【0009】すなわち、本発明のリソグラフィー用ペリ
クルは、少なくともペリクル膜とペリクルフレームから
なるペリクルにおいて、該ペリクルフレームに張設され
るペリクル膜が、非晶質パーフルオロポリマーからな
り、該ポリマーの末端基がフッ素化されていることを特
徴としている。この末端基がフッ素化された非晶質パー
フルオロポリマーは、下記の化学式(化2)で表される
環状パーフルオロエーテル基を有している。また、該末
端基中のエステル基(−COO−)の含有量を末端基全
体の3モル%以下とするのが望ましい。
That is, a pellicle for lithography of the present invention is a pellicle comprising at least a pellicle film and a pellicle frame, wherein the pellicle film stretched on the pellicle frame is made of an amorphous perfluoropolymer, and the terminal group of the polymer is Is fluorinated. This amorphous perfluoropolymer having a terminal group fluorinated has a cyclic perfluoroether group represented by the following chemical formula (Formula 2). Further, the content of the ester group (—COO—) in the terminal group is desirably 3 mol% or less of the whole terminal group.

【0010】[0010]

【化2】 Embedded image

【0011】[0011]

【発明の実施の形態】本発明のペリクル膜に使用される
末端基がフッ素化された非晶質パーフルオロポリマーと
しては、例えば、前記化学式(化2)で示される式中の
bをb=0としたサイトップCTXのSタイプ(旭硝子
社製、商品名)が挙げられる。また、次のような方法で
製造したものを使用することもできる。例えば、原料と
なる非晶質パーフルオロポリマーとして、下記の化学式
(化3)で示されるサイトップCTXのAタイプ、Eタ
イプ、Mタイプ、あるいはサイトップ69(いずれも旭
硝子社製、商品名)等を用い、これらをフッ素溶剤等の
良溶媒に溶解した後、フッ素化処理することで、該ポリ
マーの末端基をフッ素化するとともに、末端基中のエス
テル基の含有量を3モル%以下とした非晶質パーフルオ
ロポリマーが得られる。さらに、前記のすでに末端基が
フッ素化されているサイトップCTXのSタイプに対し
て同様のフッ素化処理を行ない、エステル基含有量をさ
らに低減したものも、好適に使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION As an amorphous perfluoropolymer having a fluorinated terminal group used in the pellicle membrane of the present invention, for example, b in the above-mentioned formula (Formula 2) is replaced by b = CYTOP CTX S type (made by Asahi Glass Co., Ltd., trade name) with 0 is used. Further, those manufactured by the following method can also be used. For example, as an amorphous perfluoropolymer used as a raw material, A type, E type, M type, or Cytop 69 of Cytop CTX represented by the following chemical formula (Chem. 3) (all manufactured by Asahi Glass Co., Ltd., trade names) And dissolving them in a good solvent such as a fluorine solvent, and then performing fluorination treatment, thereby fluorinating the terminal groups of the polymer and reducing the ester group content in the terminal groups to 3 mol% or less. The resulting amorphous perfluoropolymer is obtained. Further, the same fluorination treatment as described above for the S-type of Cytop CTX whose terminal group has already been fluorinated to further reduce the ester group content can also be suitably used.

【0012】[0012]

【化3】 Embedded image

【0013】具体的には、例えば、フッ素混合ガスを原
料ポリマー溶液中にバブリングにより導入処理する方法
が挙げられる。このときの反応温度は、200℃を超え
るとポリマー主鎖の切断が起こる虞があり、0℃より低
いと反応速度が小さくなるため、反応温度は0〜200
℃の範囲が好適である。また、フッ素混合ガスは、フッ
素と不活性ガス(窒素,アルゴンなど)を混合したもの
を使用するとよい。このとき混合ガス中のフッ素の含有
率が1体積%より小さいと反応速度が遅くなり、他方、
90体積%を超えるとポリマー主鎖の切断が起こる虞が
あるため、混合ガス中のフッ素の含有率は1〜90体積
%の範囲が好適である。
Specifically, for example, a method of introducing a mixed gas of fluorine into a raw material polymer solution by bubbling can be mentioned. If the reaction temperature at this time exceeds 200 ° C., the polymer main chain may be cut off. If the reaction temperature is lower than 0 ° C., the reaction rate is reduced.
The range of ° C. is preferred. As the fluorine mixed gas, a mixture of fluorine and an inert gas (such as nitrogen or argon) may be used. At this time, if the content of fluorine in the mixed gas is less than 1% by volume, the reaction rate becomes slow, while
If the content exceeds 90% by volume, the polymer main chain may be broken. Therefore, the content of fluorine in the mixed gas is preferably in the range of 1 to 90% by volume.

【0014】また、この反応の終了は、ポリマー末端の
エステル基の含有量が、末端基全体に対して3モル%以
下になった時点とすればよい。末端基中のエステル基の
含有量を末端基全体の3モル%以下とするのは、3モル
%を超えると、ペリクル膜を成膜する時の基板からの膜
の剥離が困難となって皺ができたり、膜自体が伸張限界
を超えて伸びてしまったりすることに加えて、照射した
紫外光の吸収が大きくなり、光劣化を生じるためであ
る。
The reaction may be terminated when the content of the ester group at the terminal of the polymer becomes 3 mol% or less with respect to the entire terminal group. When the content of the ester group in the terminal group is 3 mol% or less of the whole terminal group, if it exceeds 3 mol%, peeling of the film from the substrate at the time of forming the pellicle film becomes difficult, and wrinkles occur. This is because in addition to the fact that the film itself is stretched beyond the stretching limit, the absorption of the irradiated ultraviolet light increases, and photodeterioration occurs.

【0015】このようにして得られた末端基中のエステ
ル基含有量が抑制されたポリマーを使用して、ペリクル
膜に加工したものは、基板から容易に剥離することがで
き、寸法安定性が良く、変形のないペリクル膜が得られ
る。このペリクル膜を用いて作製したペリクルは、Kr
Fエキシマレーザー、ArFエキシマレーザーのような
短波長紫外光に対して、非晶質パーフルオロポリマーが
本来持っている優れた透明性、膜強度,耐光性等の特性
を十分生かしたペリクル膜が得られ、長寿命で透過率変
化の少ない高性能なペリクルの製造が可能となる。
A pellicle film processed using the thus obtained polymer having a reduced ester group content in the terminal group can be easily peeled off from the substrate, and the dimensional stability can be improved. A good pellicle film without deformation can be obtained. The pellicle produced using this pellicle film is Kr
A pellicle film that makes full use of the inherent properties of amorphous perfluoropolymer, such as transparency, film strength, and light resistance, to short wavelength ultraviolet light such as F excimer laser and ArF excimer laser is obtained. As a result, it is possible to manufacture a high-performance pellicle having a long life and a small change in transmittance.

【0016】次に、該ポリマー末端基のフッ素化度の定
量方法およびペリクル膜としての特性評価について記
す。 [末端基のフッ素化度の定量]末端基のフッ素化度の定
量は、エステル基をカルボキシル基に変換後、ヘキサメ
チルジシラザンと反応させ、ポリマーに固定されたシリ
コンを定量することにより行なった.具体的には、ポリ
マー溶液に、リチウムアルミニウム水素化物(LiAl
4)を添加し、−68℃に調整したメタノールドライ
アイス冷媒浴中で反応させ、エステル基をカルボキシル
基に変換後、ヘキサメチルジシラザンを過剰量添加し、
圧力容器内で100℃で72時間加熱し、カルボキシル
基を完全にシリル化した。反応後、溶液を200℃で2
4時間加熱乾燥して、未反応のヘキサメチルジシラザン
を除去した。乾燥後、ポリマーの原子吸光分析を行な
い、シリコンの含有量を求めた。ポリマーの分子量も考
慮に入れ、このシリコン含有量からエステル基の末端の
末端基全体に対する含有量を算出した。
Next, a method for quantifying the degree of fluorination of the polymer terminal group and evaluation of characteristics as a pellicle film will be described. [Quantification of Fluorination Degree of Terminal Group] The quantification of the degree of fluorination of the terminal group was carried out by converting an ester group into a carboxyl group, reacting with hexamethyldisilazane, and quantifying the silicon fixed to the polymer. . Specifically, a lithium aluminum hydride (LiAl
H 4 ) was added and reacted in a methanol dry ice refrigerant bath adjusted to −68 ° C. to convert an ester group to a carboxyl group, and then an excess amount of hexamethyldisilazane was added.
The mixture was heated at 100 ° C. for 72 hours in a pressure vessel to completely silylate the carboxyl groups. After the reaction, the solution was heated at 200 ° C. for 2 hours.
Heat drying was performed for 4 hours to remove unreacted hexamethyldisilazane. After drying, the polymer was subjected to atomic absorption analysis to determine the silicon content. Taking into account the molecular weight of the polymer, the content of the ester group terminal relative to the entire terminal group was calculated from the silicon content.

【0017】[剥離性の評価]剥離性の評価は、以下の
方法で行なった。ポリマー溶液を、直径200mm、厚
さ0.6mmの鏡面研磨したシリコン基板上にスピンコ
ーターを用いて塗布し、膜厚0.8μmのペリクル膜を
成膜した。次いで、内径180mmのアルミ合金製フレ
ームにフッ素系樹脂接着剤を塗布し、この塗布面で基板
上のペリクル膜に貼り付け、室温23℃、湿度90%の
雰囲気下で、フレームを持ち上げて基板からペリクル膜
を剥離した。膜の状態は、暗室内で集光ランプを用いて
観察した。剥離性のよいものは殆ど抵抗なくスムーズに
基板から剥離する。剥離性の悪いものは剥離中に材料の
伸長限界を超え、集光ランプ下で膜が白化して曇ってい
るのが観察される。さらに剥離性の悪いものは、膜に皺
が入ったり、極端な場合には、シリコン基板から膜が剥
がれないことがある。
[Evaluation of Peeling Property] The peeling property was evaluated by the following method. The polymer solution was applied on a mirror-polished silicon substrate having a diameter of 200 mm and a thickness of 0.6 mm using a spin coater to form a 0.8 μm-thick pellicle film. Next, a fluorine-based resin adhesive is applied to an aluminum alloy frame having an inner diameter of 180 mm, and the applied surface is adhered to a pellicle film on the substrate, and the frame is lifted from the substrate at room temperature of 23 ° C. and 90% humidity. The pellicle film was peeled off. The state of the film was observed using a condenser lamp in a dark room. Those with good releasability peel off smoothly from the substrate with little resistance. Those with poor peelability exceeded the elongation limit of the material during peeling, and it was observed that the film was whitened and clouded under a condensing lamp. Further, if the film has poor releasability, the film may be wrinkled or, in extreme cases, the film may not be peeled from the silicon substrate.

【0018】[耐光性の評価]耐光性の評価は、以下の
方法で行なった。ポリマー溶液を直径200mm、厚さ
0.6mmの鏡面研磨したシリコン基板上にスピンコー
ターを用いて塗布し、膜厚0.8μmのペリクル膜を成
膜した。次いで、アルミ合金製フレームにフッ素系樹脂
接着剤を塗布し、この塗布面で基板上のペリクル膜に貼
り付け、室温23℃、湿度90%の雰囲気下で、フレー
ムを持ち上げて基板からペリクル膜を剥離し、単独膜と
した。この単独膜にKrFエキシマレーザー光、ArF
エキシマレーザー光を大気中で照射し、照射前後での膜
厚と透過率を測定し、照射による変化量を算出し、照射
の影響を調べた。照射条件は、KrFエキシマレーザ
ー、ArFエキシマレーザーを用い、いずれもパルス強
度1mJ/cm2,周波数400Hzで、累積照射エネ
ルギー量30,000J/cm2である。
[Evaluation of Light Fastness] The light fastness was evaluated by the following method. The polymer solution was applied on a mirror-polished silicon substrate having a diameter of 200 mm and a thickness of 0.6 mm using a spin coater to form a 0.8 μm-thick pellicle film. Next, a fluorine-based resin adhesive is applied to the aluminum alloy frame, and the pellicle film is adhered to the pellicle film on the substrate on the coated surface, and the pellicle film is lifted from the substrate by lifting the frame under an atmosphere of room temperature 23 ° C. and 90% humidity. The film was peeled off to form a single film. KrF excimer laser light, ArF
Excimer laser light was irradiated in the air, the film thickness and transmittance before and after the irradiation were measured, and the amount of change due to the irradiation was calculated to examine the effect of the irradiation. Irradiation conditions are KrF excimer laser and ArF excimer laser, both of which have a pulse intensity of 1 mJ / cm 2 , a frequency of 400 Hz, and a cumulative irradiation energy of 30,000 J / cm 2 .

【0019】[0019]

【実施例】以下、実施例1乃至3、比較例1乃至3にも
とづきさらに詳細に説明するが、本発明はこれらの実施
例に限定されるものではない。 (実施例1)サイトップCTXのSタイプ(前出)をフ
ッ素系溶剤CT−Solv.180(旭硝子社製、商品名)
に溶解し、濃度9%の溶液を調製した。この溶液をその
ままの状態で末端基のフッ素化度の定量を行なったとこ
ろ、シリル化後のシリコン含有量は1.0ppmであっ
た。これはエステル基換算で0.3モル%の含有率に相
当する。この溶液をシリコン基板上に塗布して成膜し、
剥離したところ、剥離性は良好で、剥離した膜を集光ラ
ンプ下で観察したところ、白い曇りや皺は認められなか
った。この膜に、エキシマレーザー光を累積照射エネル
ギー量で30,000J/cm2照射したところ、膜厚
の減少率は、KrFエキシマレーザーの場合で0.2
%、ArFエキシマレーザーの場合で0.7%で耐光性
に優れていた。これらの結果は、以下の実施例2,3、
比較例1〜3の結果と共に表1にまとめて示した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 3 and Comparative Examples 1 to 3, but the present invention is not limited to these Examples. (Example 1) Cytop CTX S type (described above) was replaced with a fluorine-based solvent CT-Solv. 180 (trade name, manufactured by Asahi Glass Co., Ltd.)
And a solution having a concentration of 9% was prepared. When the fluorination degree of the terminal group was quantified in this solution as it was, the silicon content after the silylation was 1.0 ppm. This corresponds to a content of 0.3 mol% in terms of ester groups. This solution is applied on a silicon substrate to form a film,
When peeled, the peelability was good. When the peeled film was observed under a condenser lamp, no white clouding or wrinkles were observed. When this film was irradiated with excimer laser light at a cumulative irradiation energy of 30,000 J / cm 2 , the rate of decrease in film thickness was 0.2% in the case of a KrF excimer laser.
%, And 0.7% in the case of an ArF excimer laser, indicating excellent light resistance. These results are shown in Examples 2 and 3 below.
The results are shown in Table 1 together with the results of Comparative Examples 1 to 3.

【0020】(実施例2)サイトップCTXのSタイプ
(前出)をフッ素系溶剤CT−Solv.180(前出)に
溶解し、濃度9%の溶液を調製した。この溶液をニッケ
ル製容器に入れ、フッ素を30体積%含有するフッ素−
窒素混合ガスを、120℃で100時間バブリングによ
り導入し、充分にフッ素化を行なった。反応終了後、容
器内を窒素ガスで置換し、溶液を取り出した。この溶液
の末端基のフッ素化度の定量を行なったところ、シリル
化後のシリコン含有量は検出限界の0.07ppmであっ
た。これはエステル基換算で0.02モル%以下の含有
率に相当する。この溶液を基板上に塗布して成膜し、剥
離したところ、剥離性は良好で、この膜を集光ランプ下
で観察したところ、白い曇りや皺は認められなかった。
この膜に、エキシマレーザー光を累積照射エネルギー量
で30,000J/cm2照射したところ、膜厚減少率
は、KrFエキシマレーザーの場合でゼロ、ArFエキ
シマレーザーの場合で0.3%と極めて耐光性に優れて
いた。
Example 2 Cytop CTX S type (described above) was replaced with a fluorinated solvent CT-Solv. 180 (described above) to prepare a solution having a concentration of 9%. This solution was placed in a nickel container, and a fluorine-containing solution containing 30% by volume of fluorine was added.
A nitrogen mixed gas was introduced by bubbling at 120 ° C. for 100 hours to sufficiently perform fluorination. After the completion of the reaction, the inside of the vessel was replaced with nitrogen gas, and the solution was taken out. When the fluorination degree of the terminal group of this solution was quantified, the silicon content after silylation was 0.07 ppm, which is the detection limit. This corresponds to a content of not more than 0.02 mol% in terms of ester groups. This solution was coated on a substrate to form a film, and the film was peeled off. The peelability was good. When this film was observed under a condensing lamp, no white haze or wrinkles were observed.
When this film was irradiated with excimer laser light at a cumulative irradiation energy of 30,000 J / cm 2 , the rate of decrease in film thickness was extremely light-resistant: zero in the case of a KrF excimer laser and 0.3% in the case of an ArF excimer laser. It was excellent.

【0021】(実施例3)サイトップCTXのEタイプ
(前出)をフッ素系溶剤CT−Solv.180(前出)に
溶解し、濃度9%の溶液を調製した。この溶液をニッケ
ル製容器に入れ、フッ素を30体積%含有するフッ素−
窒素混合ガスを、120℃で100時間バブリングによ
り導入し、フッ素化処理を行なった。反応終了後、容器
内を窒素ガスで置換し、溶液を取り出した。この溶液の
末端基のフッ素化度の定量を行なったところ、シリル化
後のシリコン含有量は7.0ppmであった。これはエス
テル基換算で2.0モル%の含有率に相当する。この溶
液を基板上に塗布して成膜し、剥離したところ、やや抵
抗はあったものの剥離は可能であり、剥離した膜を集光
ランプ下で観察したところ、白い曇りや皺は認められな
かった。この膜に、エキシマレーザー光を累積照射エネ
ルギー量で30,000J/cm2照射したところ、膜
厚減少率は、KrFエキシマレーザーの場合で0.5
%、ArFエキシマレーザーの場合で3.4%で耐光性
に優れていた。
Example 3 CYTOP CTX type E (described above) was replaced with a fluorine-based solvent CT-Solv. 180 (described above) to prepare a solution having a concentration of 9%. This solution was placed in a nickel container, and a fluorine-containing solution containing 30% by volume of fluorine was added.
Nitrogen mixed gas was introduced by bubbling at 120 ° C. for 100 hours to perform fluorination treatment. After the completion of the reaction, the inside of the vessel was replaced with nitrogen gas, and the solution was taken out. When the degree of fluorination of the terminal group of this solution was quantified, the silicon content after silylation was 7.0 ppm. This corresponds to a content of 2.0 mol% in terms of ester groups. When this solution was applied on a substrate to form a film and peeled, peeling was possible although there was some resistance.When the peeled film was observed under a condensing lamp, white clouding and wrinkles were not observed. Was. When this film was irradiated with an excimer laser beam at a cumulative irradiation energy of 30,000 J / cm 2 , the film thickness reduction rate was 0.5% in the case of a KrF excimer laser.
%, And 3.4% in the case of an ArF excimer laser, indicating excellent light resistance.

【0022】(比較例1)サイトップCTXのEタイプ
(前出)をフッ素系溶剤CT−Solv.180(前出)に
溶解し、濃度9%の溶液を調製した。この溶液をそのま
まの状態で末端基のフッ素化度の定量を行なったとこ
ろ、シリル化後のシリコン含有量は198ppmであっ
た。これはエステル基換算で57モル%の含有率に相当
する。この溶液を基板上に塗布して成膜したところ、ま
ったく剥離することができず、このため耐光性の評価を
行なうことができなかった。
COMPARATIVE EXAMPLE 1 Cytop CTX E type (described above) was replaced with a fluorine-based solvent CT-Solv. 180 (described above) to prepare a solution having a concentration of 9%. When the fluorination degree of the terminal group was quantified in this solution as it was, the silicon content after the silylation was 198 ppm. This corresponds to a content of 57 mol% in terms of ester groups. When this solution was applied on a substrate to form a film, the film could not be peeled off at all, and thus the light resistance could not be evaluated.

【0023】(比較例2)サイトップCTXのAタイプ
(前出)をフッ素系溶剤CT−Solv.180(前出)に
溶解し、濃度9%の溶液を調製した。この溶液をニッケ
ル製容器に入れ、フッ素を0.5体積%含有するフッ素
−窒素混合ガスを、23℃で100時間バブリングによ
り導入し、フッ素化処理を行なった。反応終了後、容器
内を窒素ガスで置換し、溶液を取り出した。この溶液の
末端基のフッ素化度の定量を行なったところ、シリル化
後のシリコン含有量は23ppmであった。これはエステ
ル基換算で6.5モル%の含有率に相当する。この溶液
を基板上に塗布して成膜し、剥離したところ、剥離性は
劣悪で一応剥離できたものの、膜が伸びきった状態とな
ってしまった。また、耐光性の評価もできなかった。
(Comparative Example 2) A type of CYTOP CTX (described above) was prepared using a fluorinated solvent CT-Solv. 180 (described above) to prepare a solution having a concentration of 9%. This solution was placed in a nickel container, and a fluorine-nitrogen mixed gas containing 0.5% by volume of fluorine was introduced by bubbling at 23 ° C. for 100 hours to perform a fluorination treatment. After the completion of the reaction, the inside of the vessel was replaced with nitrogen gas, and the solution was taken out. When the fluorination degree of the terminal group of this solution was quantified, the silicon content after silylation was 23 ppm. This corresponds to a content of 6.5 mol% in terms of ester groups. When this solution was applied on a substrate to form a film, and the film was peeled off, the peelability was poor and the film could be peeled off for a time, but the film was in an extended state. Also, the light resistance could not be evaluated.

【0024】(比較例3)サイトップCTXのAタイプ
(前出)をフッ素系溶剤CT−Solv.180(前出)に
溶解し、濃度9%の溶液を調製した。この溶液をニッケ
ル製容器に入れ、フッ素を0.5体積%含有するフッ素
−窒素混合ガスを、50℃で100時間バブリングによ
り導入し、フッ素化処理を行なった。反応終了後、容器
内を窒素ガスで置換し、溶液を取り出した。この溶液の
末端基のフッ素化度の定量を行なったところ、シリル化
後のシリコン含有量は13ppmであった。これはエステ
ル基換算で3.7モル%の含有率に相当する。この溶液
を基板上に塗布して成膜し、剥離したところ、抵抗はあ
ったものの剥離は可能であり、剥離後の膜を集光ランプ
下で観察したところ、白い曇りや皺は認められなかっ
た。この膜に、エキシマレーザー光を累積照射エネルギ
ー量で30,000J/cm2照射したところ、膜厚減
少率は、KrFエキシマレーザーの場合1.3%であっ
たが、ArFエキシマレーザーの場合は9.5%に達
し、実用に供し得るレベルのものではなかった。
(Comparative Example 3) A type of Cytop CTX (described above) was converted to a fluorinated solvent CT-Solv. 180 (described above) to prepare a solution having a concentration of 9%. This solution was placed in a nickel container, and a fluorine-nitrogen mixed gas containing 0.5% by volume of fluorine was introduced by bubbling at 50 ° C. for 100 hours to perform a fluorination treatment. After the completion of the reaction, the inside of the vessel was replaced with nitrogen gas, and the solution was taken out. When the fluorination degree of the terminal group of this solution was quantified, the silicon content after silylation was 13 ppm. This corresponds to a content of 3.7 mol% in terms of ester groups. When this solution was applied on a substrate to form a film and peeled, the film was peeled, but there was resistance, but peeling was possible.When the film after peeling was observed under a condensing lamp, white clouding and wrinkles were not observed. Was. When this film was irradiated with excimer laser light at a cumulative irradiation energy of 30,000 J / cm 2 , the film thickness reduction rate was 1.3% in the case of a KrF excimer laser, but was 9% in the case of an ArF excimer laser. 0.5%, which was not at a practical level.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上、詳述したように、ペリクル膜の材
質として非晶質パーフルオロポリマー、特に、環状パー
フルオロエーテル基を有する含フッ素モノマー重合体の
末端基がフッ素化され、末端基中のエステル基含有量が
抑制されたポリマーは、基板から容易に剥離することが
でき、寸法安定性が良く、変形のないペリクル膜が得ら
れる。さらに、このペリクル膜を使用して作製したペリ
クルは、KrFエキシマレーザー、ArFエキシマレー
ザーのような短波長紫外光を長時間照射しても光劣化の
少ない、つまり膜厚変化や透過率変化が少なく耐光性に
優れ、長寿命で高性能なものであった。
As described in detail above, the terminal group of the amorphous perfluoropolymer, particularly the fluorine-containing monomer polymer having a cyclic perfluoroether group, is fluorinated as the material of the pellicle film, The polymer whose ester group content is suppressed can be easily peeled off from the substrate, and a pellicle film having good dimensional stability and no deformation can be obtained. Further, the pellicle manufactured using this pellicle film has little light deterioration even when irradiated with short-wavelength ultraviolet light such as a KrF excimer laser or an ArF excimer laser for a long time. It had excellent light resistance, long life and high performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ペリクルの構造を示す概略拡大断面図であ
る。
FIG. 1 is a schematic enlarged sectional view showing the structure of a pellicle.

【符号の説明】[Explanation of symbols]

1. ペリクル膜、 2. フレーム、 3. 粘着層、 4. 保護シート。 1. Pellicle membrane; Frame, 3. 3. an adhesive layer; Protection sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樫田 周 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 Fターム(参考) 2H095 BC33 4J100 AE72P CA01 CA21 CA31 HA21 HB03 HC05 HE14 JA39 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shu Kashida 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Gunma Office F-term (reference) 2H095 BC33 4J100 AE72P CA01 CA21 CA31 HA21 HB03 HC05 HE14 JA39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくともペリクル膜とペリクルフレー
ムからなるペリクルにおいて、該ペリクルフレームに張
設されるペリクル膜が、非晶質パーフルオロポリマーか
らなり、該ポリマーの末端基がフッ素化されていること
を特徴とするリソグラフィー用ペリクル。
1. A pellicle comprising at least a pellicle film and a pellicle frame, wherein the pellicle film stretched over the pellicle frame is made of an amorphous perfluoropolymer, and a terminal group of the polymer is fluorinated. Characteristic pellicle for lithography.
【請求項2】 前記非晶質パーフルオロポリマーが、下
記の化学式(化1)で表される環状パーフルオロエーテ
ル基を有するフッ素ポリマーである請求項1に記載のリ
ソグラフィー用ペリクル。 【化1】
2. The pellicle for lithography according to claim 1, wherein the amorphous perfluoropolymer is a fluoropolymer having a cyclic perfluoroether group represented by the following chemical formula (1). Embedded image
【請求項3】 前記非晶質パーフルオロポリマーにおい
て、該末端基中のエステル基(−COO−)含有量が、
末端基全体の3モル%以下である請求項1または2に記
載のリソグラフィー用ペリクル。
3. The amorphous perfluoropolymer, wherein the content of an ester group (—COO—) in the terminal group is as follows:
The pellicle for lithography according to claim 1, wherein the pellicle is 3 mol% or less of the entire terminal groups.
JP2000079953A 2000-03-22 2000-03-22 Pellicle for lithography Pending JP2001264957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079953A JP2001264957A (en) 2000-03-22 2000-03-22 Pellicle for lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079953A JP2001264957A (en) 2000-03-22 2000-03-22 Pellicle for lithography

Publications (1)

Publication Number Publication Date
JP2001264957A true JP2001264957A (en) 2001-09-28

Family

ID=18597126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079953A Pending JP2001264957A (en) 2000-03-22 2000-03-22 Pellicle for lithography

Country Status (1)

Country Link
JP (1) JP2001264957A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323178A (en) * 2005-05-19 2006-11-30 Shin Etsu Chem Co Ltd Pellicle for lithography, and its manufacturing method
JP2007153970A (en) * 2005-12-02 2007-06-21 Asahi Glass Co Ltd Method for producing amorphous fluorine-containing resin
CN100386843C (en) * 2002-11-05 2008-05-07 信越化学工业株式会社 Mask protective layer for photoetching and its mfg. method
JPWO2007088862A1 (en) * 2006-02-01 2009-06-25 三井化学株式会社 Pellicle for high numerical aperture exposure system
KR101370134B1 (en) 2010-07-08 2014-03-04 미쓰이 가가쿠 가부시키가이샤 Pellicle film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386843C (en) * 2002-11-05 2008-05-07 信越化学工业株式会社 Mask protective layer for photoetching and its mfg. method
JP2006323178A (en) * 2005-05-19 2006-11-30 Shin Etsu Chem Co Ltd Pellicle for lithography, and its manufacturing method
JP2007153970A (en) * 2005-12-02 2007-06-21 Asahi Glass Co Ltd Method for producing amorphous fluorine-containing resin
JPWO2007088862A1 (en) * 2006-02-01 2009-06-25 三井化学株式会社 Pellicle for high numerical aperture exposure system
KR101370134B1 (en) 2010-07-08 2014-03-04 미쓰이 가가쿠 가부시키가이샤 Pellicle film

Similar Documents

Publication Publication Date Title
EP0416528B1 (en) Amorphous fluoropolymer pellicle films
EP3470921B1 (en) Pellicle frame and pellicle
EP3958060A1 (en) Pellicle, exposure original plate with pellicle, method for producing semiconductor device, method for producing liquid crystal display panel, method for recycling exposure original plates, and method for reducing release residue
CN215449882U (en) Pellicle frame and pellicle, exposure original plate, exposure apparatus and exposure system, and manufacturing system
TWI443450B (en) Pellicle
JP2000292908A (en) Pellicle for lithography
JP2001264957A (en) Pellicle for lithography
KR20090118833A (en) Pellicle
JP2000275817A (en) Pellicle for lithography and its production
EP0907106A1 (en) Pellicle membrane for ultraviolet rays and pellicle
JP4185233B2 (en) Pellicle for lithography
US20120244477A1 (en) Pellicle for lithography
KR20070105236A (en) Pellicle for lithography
JP3562790B2 (en) Pellicle
JP2000305255A (en) Pellicle for fluorine excimer laser lithography
JP2004226476A (en) Method for manufacturing pellicle
JP4000231B2 (en) Pellicle for lithography with improved light resistance
JP4873565B2 (en) Pellicle for lithography
JP2001022052A (en) Pellicle for lithography
CN215416267U (en) Pellicle frame and its assembly, exposure original plate, exposure system and manufacturing system
JP2001066760A (en) Pellicle for lithography
JPH04104155A (en) Pellicle for lithography
JPH0412355A (en) High pay transmittable dustproof film, production thereof and dustproof body
JP2000305251A (en) Pellicle for lithography
JPH02134634A (en) Production of pellicle film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090803