JP2000257498A - Self-diagnostic system for vehicle - Google Patents

Self-diagnostic system for vehicle

Info

Publication number
JP2000257498A
JP2000257498A JP11055198A JP5519899A JP2000257498A JP 2000257498 A JP2000257498 A JP 2000257498A JP 11055198 A JP11055198 A JP 11055198A JP 5519899 A JP5519899 A JP 5519899A JP 2000257498 A JP2000257498 A JP 2000257498A
Authority
JP
Japan
Prior art keywords
engine
vehicle
stop
value
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055198A
Other languages
Japanese (ja)
Other versions
JP3614021B2 (en
Inventor
Tetsuya Iwasaki
鉄也 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP05519899A priority Critical patent/JP3614021B2/en
Publication of JP2000257498A publication Critical patent/JP2000257498A/en
Application granted granted Critical
Publication of JP3614021B2 publication Critical patent/JP3614021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent misdiagnosis by detecting faults, while the engine of an automatic stop vehicle is operating, and deciding fault when integrated value of fault detection is above the first setting value, and prohibiting engine stop for the predetermined period, when the integrated value is larger than the second setting value (< the first setting value). SOLUTION: In controlling an engine 2 by a controller 16, when diagnosis conditions and range conditions are satisfied, monitor clamp, a process to fix a correction factor of air-fuel ratio to a certain value when air-fuel ratio correction reaches the limit of rich or lean side, is detected. Every time the monitor clamp is detected, an integrated value N is added, and results of the addition made is compared with a setting value CMC1. When N>=CMC1, an engine stop prohibit flag is set to 1 to make the engine stop. Next, the integrated value N and a setting value CMC2 (>CMC1) are compared. When N>=CMC2, NG deciding processing is conducted, and then engine stop prohibit process is canceled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエンジン出力が不要
なときにエンジンを自動的に停止させる機能を備えてい
る車両の自己診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle self-diagnosis device having a function of automatically stopping an engine when engine output is not required.

【0002】[0002]

【従来の技術と解決すべき課題】車両の動力源としてエ
ンジンとモータ(電動機と発電機とを兼ねる回転電機)
とを併有し、いずれか一方または双方の駆動力により走
行するようにしたハイブリッド車両が知られている(例
えば、鉄道日本社発行「自動車工学」VOL.46 No.7 199
7年6月号 39〜52頁参照)。こうしたハイブリッド車両
では、モータのみによる走行時や停車時などエンジン出
力が不要なときにはエンジンを停止させるようにしてい
る。また、ハイブリッド車両の他にも、いわゆるアイド
ルストップ車両では燃費を節約するために停車時にエン
ジンを停止させるようにしている。
2. Description of the Related Art An engine and a motor (a rotating electric machine serving both as an electric motor and a generator) as power sources for a vehicle.
A hybrid vehicle having both of them and running with one or both driving forces is known (for example, “Automotive Engineering” VOL.46 No.7 199 issued by Railway Japan Co., Ltd.)
(June 19, pp. 39-52). In such a hybrid vehicle, the engine is stopped when the engine output is unnecessary, such as when the vehicle is running only by the motor or when the vehicle is stopped. In addition to a hybrid vehicle, in a so-called idle stop vehicle, the engine is stopped when the vehicle stops to save fuel consumption.

【0003】ところで、エンジンの異常を自動的に検出
して整備者が故障原因等を容易に把握できるようにした
自己診断装置というものが知られているが、従来の自己
診断装置を上述したようにエンジンを一時的に停止させ
る車両に適用すると的確な故障診断ができないという問
題が生じる。すなわち、エンジン停止の直前に異常検出
履歴を記憶するバックアップ回路を設け、エンジン始動
後にその記憶内容を引き継ぐようにすることが考えられ
るが、このようにすると、エンジン停止により診断に要
する時間が長くなり、また特にエンジン停止の間の雰囲
気条件の変化等に原因して診断の精度が低下したり誤診
断を起こしたりする可能性が生じて好ましくない。
There is known a self-diagnosis device which automatically detects an abnormality of an engine so that a mechanic can easily grasp the cause of a failure or the like. If the present invention is applied to a vehicle in which the engine is temporarily stopped, there arises a problem that accurate failure diagnosis cannot be performed. In other words, it is conceivable to provide a backup circuit for storing the abnormality detection history just before the engine is stopped, and to take over the stored contents after the engine is started. In addition, there is a possibility that the accuracy of diagnosis may be reduced or erroneous diagnosis may be caused due to a change in the atmospheric condition during the stop of the engine.

【0004】本発明はこのような問題点に着目してなさ
れたもので、異常の蓋然性が生じた場合にはエンジンの
停止を一時的に禁止することにより従来の問題点を解消
することを目的にしている。
The present invention has been made in view of such a problem, and aims to solve the conventional problem by temporarily prohibiting the stop of the engine when a probability of abnormality occurs. I have to.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、出力
が不要なときに自動的にエンジンを停止させるエンジン
自動停止車両において、エンジンの運転中の異常を検出
し、異常検出の積算値が第1の設定値以上となったとき
に故障判定を行なう故障判定装置と、前記積算値が、前
記第1の設定値よりも小さく設定した第2の設定値以上
となったときには、エンジンの自動停止をあらかじめ定
めた期間禁止するエンジン停止禁止装置とを備えた。
According to a first aspect of the present invention, there is provided an engine automatic stop vehicle for automatically stopping an engine when output is not required. A failure determination device that performs a failure determination when is equal to or greater than a first set value; and a failure determination device that determines whether the integrated value is equal to or greater than a second set value that is set to be smaller than the first set value. An engine stop prohibition device that prohibits automatic stop for a predetermined period is provided.

【0006】請求項2の発明は、上記エンジン停止禁止
装置を、あらかじめ定めた停止禁止時間が経過したと
き、または異常検出の積算値が第1の設定値以上となっ
たときのいずれかの条件を満たしたときにエンジンの停
止禁止を解除するようにした。
According to a second aspect of the present invention, there is provided the engine stop prohibiting device according to one of the following conditions: when a predetermined stop prohibition time has elapsed, or when an integrated value of abnormality detection becomes equal to or greater than a first set value. The engine stop prohibition is released when the condition is satisfied.

【0007】請求項3の発明は、上記請求項1の発明
を、アイドル運転を停車時に自動停止させるアイドルス
トップ車両に適用する。
According to a third aspect of the present invention, the first aspect of the present invention is applied to an idle stop vehicle that automatically stops idle operation when the vehicle is stopped.

【0008】請求項4の発明は、上記請求項1の発明
を、エンジンの他に動力源として回転電機を備え、エン
ジンによる駆動力が不要な運行状態のときにエンジンを
停止させるようにしたハイブリッド車両に適用する。
According to a fourth aspect of the present invention, there is provided a hybrid according to the first aspect of the present invention, further comprising a rotating electric machine as a power source in addition to the engine, wherein the engine is stopped when the driving state by the engine is not required. Applies to vehicles.

【0009】請求項5の発明は、上記請求項1の発明の
故障判定装置を、排気酸素センサまたは空燃比センサか
らの信号に基づいて燃料供給量をフィードバック制御す
る空燃比制御装置のモニタクランプ状態を検出したとき
に異常検出の積算を行うものとした。
According to a fifth aspect of the present invention, a monitor clamp state of the air-fuel ratio control device for performing feedback control of the fuel supply amount based on a signal from the exhaust oxygen sensor or the air-fuel ratio sensor in the failure determination device according to the first aspect of the present invention. When detection of is detected, integration of abnormality detection is performed.

【0010】請求項6の発明は、上記請求項5の発明の
エンジン停止禁止装置を、エンジン停止禁止期間中にエ
ンジンの負荷または回転速度を高めるエンジン制御装置
を備えるものとした。
According to a sixth aspect of the present invention, the engine stop prohibiting device according to the fifth aspect of the present invention includes an engine control device for increasing the load or the rotational speed of the engine during the engine stop prohibiting period.

【0011】請求項7の発明は、上記請求項5の発明の
エンジン停止禁止装置を、エンジン停止禁止期間中は自
動変速機のシフトスケジュールをエンジン回転が比較的
上昇する方向に補正するシフトスケジュール補正装置を
備えるものとした。
According to a seventh aspect of the present invention, the engine stop prohibition device according to the fifth aspect of the invention corrects a shift schedule of the automatic transmission in a direction in which the engine speed is relatively increased during the engine stop prohibition period. The device was provided.

【0012】[0012]

【作用・効果】上記請求項1以下の各発明において、故
障判定装置はエンジン運転中の異常検出の積算値が第1
の設定値に達したときに故障と判定する。この故障判定
後はエンジンの自動停止はあらかじめ定めた停止条件が
成立したとき、一般にエンジン出力が不要と判断される
運転時に実行される。ただし、異常検出の積算値が第2
の設定値以上となり、かつ第1の設定値未満である場合
にはエンジン停止禁止装置により一時的に前記のエンジ
ン停止制御が禁止される。これにより、異常が検出され
て故障発生が予測される条件下では異常検出が継続され
ることになるため、異常が生じているときにはこれをよ
り確実に検出して精度の高い故障判定を行うことが可能
となる。
According to the first and second aspects of the present invention, the failure determination device determines whether the integrated value of abnormality detection during engine operation is equal to the first value.
Is determined to have failed when the set value is reached. After the failure is determined, the automatic stop of the engine is generally performed when a predetermined stop condition is satisfied and when the engine is determined to require no engine output. However, if the integrated value of abnormality detection is the second
If it is not less than the set value and less than the first set value, the engine stop control is temporarily prohibited by the engine stop prohibition device. As a result, the abnormality detection is continued under the condition in which the abnormality is detected and the occurrence of the failure is predicted. Therefore, when the abnormality has occurred, it is necessary to more reliably detect the abnormality and make a highly accurate failure determination. Becomes possible.

【0013】エンジン停止を禁止する期間としては、た
とえば請求項2の発明に示したようにあらかじめ定めた
時間が経過するまで、または異常検出の積算値が第1の
設定値以上となるまでに設定することができる。積算値
が第2の設定値以上となってからある程度以上の時間が
経過しても第1の設定値に達しないときには、重篤な故
障が発生していることはないとみなせるので、エンジン
停止禁止を解除する。また、積算値が第1の設定値に達
すれば故障判定がなされるので、それ以上エンジン停止
を禁止しておく必要はなく、爾後のエンジン停止を許容
することにより、エンジン停止禁止に伴い起こりうる燃
費および排気性能の悪化を最小限に抑えることができ
る。
The period during which the engine stop is prohibited is set, for example, until a predetermined time elapses as described in the second aspect of the present invention or until the integrated value of the abnormality detection becomes equal to or more than the first set value. can do. If the first set value is not reached even after a certain period of time has elapsed after the integrated value has become equal to or larger than the second set value, it can be considered that no serious failure has occurred, and the engine is stopped. Release the ban. Further, if the integrated value reaches the first set value, a failure determination is made. Therefore, it is not necessary to prohibit the engine from being stopped any longer. Deterioration of fuel efficiency and exhaust performance can be minimized.

【0014】エンジン自動停止車両としては、請求項3
または4の発明として示したように、アイドル運転を停
車時に自動停止させるアイドルストップ車両、またはエ
ンジンの他に動力源として回転電機を備え、エンジンに
よる駆動力が不要な運行状態のときにエンジンを停止さ
せるようにしたハイブリッド車両などであり、本発明に
よればこれらの車両においてエンジンの自己診断をより
適切に行うことが可能となる。
According to a third aspect of the present invention, there is provided a vehicle for automatically stopping an engine.
Alternatively, as described in the invention of the fourth aspect, an idle-stop vehicle that automatically stops idle operation when the vehicle is stopped, or a rotating electric machine as a power source in addition to the engine and stops the engine when the driving state is not required by the engine. According to the present invention, the self-diagnosis of the engine can be performed more appropriately in these vehicles.

【0015】請求項5の発明では、排気酸素センサまた
は空燃比センサからの信号に基づいて燃料供給量をフィ
ードバック制御する空燃比制御装置のモニタクランプ状
態を検出したときに異常検出の積算を行う。モニタクラ
ンプとは、空燃比センサからの信号により目標空燃比か
らのずれを検出し、このずれに応じて目標空燃比に接近
する方向にエンジンへの燃料供給量を補正する際に、た
とえば燃料系システムの故障等に原因して補正係数がそ
れ以上の補正を行うことができない限界値に達して一定
値化した状態である。制御周期ごとにこのモニタクラン
プが積算され、ある程度つまりこの場合第1の設定値を
超えたときに故障と判定して、以後はたとえばオープン
ループによる空燃比制御に移行することになる。モニタ
クランプに代表される空燃比異常は精密な燃料制御を必
要とするエンジンでは最優先で検出すべき異常であり、
この故障判定を正確に行うことがエンジンの燃費や排気
性能の悪化を最小限度に抑制する観点から重要である。
したがって、本発明によりこの故障判定をより精度よく
行って、本来の故障診断の目的をよりよく達成すること
ができる。
According to the fifth aspect of the present invention, the abnormality detection is integrated when the monitor clamp state of the air-fuel ratio control device for feedback-controlling the fuel supply amount based on the signal from the exhaust oxygen sensor or the air-fuel ratio sensor is detected. The monitor clamp detects a deviation from a target air-fuel ratio based on a signal from an air-fuel ratio sensor and corrects a fuel supply amount to the engine in a direction approaching the target air-fuel ratio in accordance with the deviation. This is a state in which the correction coefficient reaches a limit value at which further correction cannot be performed due to a system failure or the like, and is kept constant. This monitor clamp is integrated for each control cycle, and when a certain amount, that is, in this case, exceeds the first set value, it is determined that a failure has occurred, and thereafter, for example, the air-fuel ratio control by an open loop is performed. An air-fuel ratio abnormality represented by a monitor clamp is an abnormality that should be detected with the highest priority in engines that require precise fuel control.
It is important to accurately perform this failure determination from the viewpoint of minimizing deterioration of fuel efficiency and exhaust performance of the engine.
Therefore, according to the present invention, the failure determination can be performed with higher accuracy, and the original purpose of the failure diagnosis can be better achieved.

【0016】請求項6の発明は、上記請求項5の発明の
エンジン停止禁止装置に、エンジン停止禁止期間中にエ
ンジンの負荷または回転速度を高めるエンジン制御装置
を備えるものとしている。モニタクランプが発生してい
るときにはエンジンの負荷または回転速度を高めるほど
それだけ異常として検出される頻度が上昇して、より短
時間のうちに故障判定が可能となるので、故障判定の精
度が高められる。
According to a sixth aspect of the present invention, the engine stop prohibiting device according to the fifth aspect of the present invention includes an engine control device for increasing the load or the rotation speed of the engine during the engine stop prohibiting period. When the monitor clamp is generated, the frequency of detection as an abnormality increases as the load or rotation speed of the engine increases, and the failure can be determined in a shorter time, so that the accuracy of the failure determination is improved. .

【0017】請求項7の発明は、上記請求項5の発明の
エンジン停止禁止装置に、エンジン停止禁止期間中は自
動変速機のシフトスケジュールをエンジン回転が比較的
上昇する方向に補正するシフトスケジュール補正装置を
備えるものとしている。自動変速機のシフトスケジュー
ルをエンジン回転が比較的上昇する方向に補正すること
により、シフトスケジュール変更前に比較して同一運転
条件下でのエンジン回転数が上昇するので、請求項6の
発明と同様にして故障検出精度を高めることが可能とな
る。
According to a seventh aspect of the present invention, there is provided the engine stop prohibiting device according to the fifth aspect of the present invention, wherein the shift schedule of the automatic transmission is corrected in a direction in which the engine speed is relatively increased during the engine stop prohibition period. A device is provided. By correcting the shift schedule of the automatic transmission in a direction in which the engine speed is relatively increased, the engine speed under the same operating conditions is increased as compared to before the shift schedule is changed. Thus, it is possible to increase the accuracy of failure detection.

【0018】[0018]

【発明の実施の形態】以下本発明の実施形態を図面に基
づいて説明する。まず図1−図2に本願発明が適用可能
なハイブリッド車両の構成例を示す。これは走行条件に
応じてエンジンまたはモータの何れか一方または双方の
動力を用いて走行するパラレル方式のハイブリッド車両
である。この車両のパワートレインは、モータ1、エン
ジン2、クラッチ3、モータ4、無段変速機5、減速装
置6、差動装置7および駆動輪8から構成される。モー
タ1の出力軸、エンジン2の出力軸およびクラッチ3の
入力軸は互いに連結されている。モータ1とエンジン2
は所定の回転比を有する減速装置(図示せず)を介して
相互駆動可能に連結されている。また、クラッチ3の出
力軸、モータ4の出力軸および無段変速機5の入力軸が
互いに連結されている。
Embodiments of the present invention will be described below with reference to the drawings. First, FIGS. 1 and 2 show a configuration example of a hybrid vehicle to which the present invention can be applied. This is a parallel-type hybrid vehicle that travels using the power of one or both of an engine and a motor according to traveling conditions. The power train of this vehicle includes a motor 1, an engine 2, a clutch 3, a motor 4, a continuously variable transmission 5, a reduction gear 6, a differential gear 7, and driving wheels 8. The output shaft of the motor 1, the output shaft of the engine 2, and the input shaft of the clutch 3 are connected to each other. Motor 1 and engine 2
Are connected to each other via a reduction gear (not shown) having a predetermined rotation ratio. The output shaft of the clutch 3, the output shaft of the motor 4, and the input shaft of the continuously variable transmission 5 are connected to each other.

【0019】クラッチ3締結時はエンジン2とモータ4
が車両の推進源となり、クラッチ3解放時はモータ4の
みが車両の推進源となる。エンジン2またはモータ4の
駆動力は、無段変速機5、減速装置6および差動装置7
を介して駆動輪8へ伝達される。無段変速機5には油圧
装置9から圧油が供給され、ベルトのクランプと潤滑が
なされる。
When the clutch 3 is engaged, the engine 2 and the motor 4
Is the propulsion source of the vehicle, and when the clutch 3 is released, only the motor 4 is the propulsion source of the vehicle. The driving force of the engine 2 or the motor 4 is controlled by a continuously variable transmission 5, a reduction gear 6, and a differential gear 7.
Is transmitted to the drive wheels 8 via the Pressure oil is supplied from the hydraulic device 9 to the continuously variable transmission 5 to clamp and lubricate the belt.

【0020】モータ1は主としてエンジン始動と発電に
用いられ、モータ4は主として車両の力行と減速時の回
生運転に用いられる。また、モータ10は油圧装置9の
オイルポンプ駆動用である。ただしクラッチ3締結時に
は、モータ1を車両の力行と制動に用いることもでき、
モータ4をエンジン始動や発電に用いることもできる。
クラッチ3は電磁式のパウダークラッチであり、電流制
御によりその伝達トルクを調節することができる。
The motor 1 is mainly used for starting the engine and generating power, and the motor 4 is mainly used for power running and regenerative operation at the time of deceleration. The motor 10 is for driving the oil pump of the hydraulic device 9. However, when the clutch 3 is engaged, the motor 1 can be used for powering and braking of the vehicle,
The motor 4 can be used for starting the engine or generating power.
The clutch 3 is an electromagnetic powder clutch, and its transmission torque can be adjusted by current control.

【0021】モータ1,4,10はそれぞれ、インバー
タ11,12,13により駆動される。なお、モータ
1,4,10に直流電動モータを用いる場合には、イン
バータの代わりにDC/DCコンバータを用いる。イン
バータ11〜13は共通のDCリンク14を介して強電
バッテリ15に接続されており、強電バッテリ15の直
流電力を交流電力に変換してモータ1,4,10へ供給
するとともに、モータ1,4の交流発電電力を直流電力
に変換して強電バッテリ15を充電する。インバータ1
1〜13は互いにDCリンク14を介して接続されてい
るので、回生運転中のモータにより発電された電力を強
電バッテリ15を介さずに直接、力行運転中のモータへ
供給することができる。
The motors 1, 4, and 10 are driven by inverters 11, 12, and 13, respectively. When a DC electric motor is used for the motors 1, 4, and 10, a DC / DC converter is used instead of the inverter. The inverters 11 to 13 are connected to a high-power battery 15 via a common DC link 14, convert DC power of the high-power battery 15 into AC power, supply the AC power to the motors 1, 4, 10, and Is converted into DC power to charge the high-power battery 15. Inverter 1
Since 1 to 13 are connected to each other via the DC link 14, the electric power generated by the motor during the regenerative operation can be directly supplied to the motor during the power running operation without passing through the high-power battery 15.

【0022】16は本発明の故障判定装置やエンジン停
止禁止装置など各種制御回路の機能を備えたコントロー
ラであり、マイクロコンピュータとその周辺部品や各種
アクチュエータなどを備え、クラッチ3の伝達トルク、
モータ1,4,10の回転数や出力トルク、無段変速機
5の変速比、エンジン2の燃料噴射量・噴射時期、点火
時期などを制御する。
Reference numeral 16 denotes a controller having functions of various control circuits such as a failure determination device and an engine stop prohibiting device of the present invention. The controller 16 includes a microcomputer and its peripheral parts and various actuators.
It controls the rotation speed and output torque of the motors 1, 4, and 10, the speed ratio of the continuously variable transmission 5, the fuel injection amount and injection timing of the engine 2, the ignition timing, and the like.

【0023】コントローラ16には、図2に示すよう
に、キースイッチ20、セレクトレバースイッチ21、
アクセルペダルセンサ22、ブレーキスイッチ23、車
速センサ24、バッテリ温度センサ25、バッテリSO
C検出装置26、エンジン回転数センサ27、スロット
ル開度センサ28が接続される。セレクトレバースイッ
チ21は、パーキングP、ニュートラルN、リバースR
およびドライブDの何れかのレンジに切り換えるセレク
トレバー(図示せず)の設定位置に応じて、P,N,
R,Dのいずれかのスイッチがオンする。
As shown in FIG. 2, the controller 16 includes a key switch 20, a select lever switch 21,
Accelerator pedal sensor 22, brake switch 23, vehicle speed sensor 24, battery temperature sensor 25, battery SO
A C detection device 26, an engine speed sensor 27, and a throttle opening sensor 28 are connected. The selector lever switch 21 is provided for parking P, neutral N, and reverse R.
And P, N, depending on the set position of a select lever (not shown) for switching to any range of drive D.
One of the switches R and D is turned on.

【0024】アクセルペダルセンサ22はアクセルペダ
ルの踏み込み量を検出し、ブレーキスイッチ23はブレ
ーキペダルの踏み込み状態を検出する。車速センサ24
は車両の走行速度を検出し、バッテリ温度センサ25は
強電バッテリ15の温度を検出する。バッテリSOC検
出装置26は強電バッテリ15の実容量の代表値である
SOC(State Of Charge)を検出する。また、エンジ
ン回転数センサ27はエンジン2の回転数を検出し、ス
ロットル開度センサ28はエンジン2のスロットルバル
ブ開度を検出する。
The accelerator pedal sensor 22 detects the amount of depression of the accelerator pedal, and the brake switch 23 detects the state of depression of the brake pedal. Vehicle speed sensor 24
Detects the running speed of the vehicle, and the battery temperature sensor 25 detects the temperature of the high-power battery 15. The battery SOC detection device 26 detects an SOC (State Of Charge) that is a representative value of the actual capacity of the high-power battery 15. The engine speed sensor 27 detects the speed of the engine 2, and the throttle opening sensor 28 detects the throttle valve opening of the engine 2.

【0025】コントローラ16にはさらに、エンジン2
の燃料噴射装置30、点火装置31、可変動弁装置32
などが接続される。コントローラ16は、燃料噴射装置
30を制御してエンジン2への燃料の供給と停止および
燃料噴射量・噴射時期を調節するとともに、点火装置3
1を駆動してエンジン2の点火時期制御を行う。また、
コントローラ16は可変動弁装置32を制御してエンジ
ン2の吸・排気弁の作動状態を調節する。なお、コント
ローラ16には低圧の補助バッテリ33から電源が供給
される。
The controller 16 further includes an engine 2
Fuel injection device 30, ignition device 31, variable valve operating device 32
Are connected. The controller 16 controls the fuel injection device 30 to supply and stop the fuel to the engine 2 and adjust the fuel injection amount and the injection timing.
1 to control the ignition timing of the engine 2. Also,
The controller 16 controls the variable valve operating device 32 to adjust the operating states of the intake and exhaust valves of the engine 2. The controller 16 is supplied with power from a low-voltage auxiliary battery 33.

【0026】以上は本発明が適用可能なハイブリッド車
両の基本的な構成例を示したものであり、本発明ではこ
のハイブリッド車両のように運行中にエンジンが自動停
止される車両におけるエンジンの自己診断精度を向上さ
せることを目的としている。以下にこのためのコントロ
ーラ16の制御内容の実施形態につき図3以下の各図面
を参照しながら説明する。
The above is an example of a basic configuration of a hybrid vehicle to which the present invention can be applied. In the present invention, self-diagnosis of an engine in a vehicle in which the engine is automatically stopped during operation such as the hybrid vehicle is described. It aims to improve accuracy. An embodiment of the control contents of the controller 16 for this purpose will be described below with reference to FIGS.

【0027】図3は本発明によるエンジン停止禁止制御
の概要を示す流れ図である。この制御はコントローラ1
6による車両・エンジン制御の一環として周期的に実行
される。この制御では、当初にエンジン停止禁止フラグ
#EGOPR、モニタクランプ回数のカウンタ積算値
N、エンジン停止禁止開始からの経過時間のタイマ値T
をそれぞれ0に初期化する(ステップ301)。前記#
EGOPRは図示しないエンジン停止制御において参照
され、#EGOPRが0のときはエンジン停止を許可、
1のときはエンジン停止を禁止する。
FIG. 3 is a flowchart showing an outline of the engine stop prohibition control according to the present invention. This control is performed by the controller 1
6 is executed periodically as part of vehicle / engine control. In this control, initially, an engine stop prohibition flag #EGOPR, a counter integrated value N of the number of monitor clamps, and a timer value T of an elapsed time from the start of engine stop prohibition are set.
Are initialized to 0 (step 301). # Above
EGOPR is referred to in an engine stop control (not shown). When #EGOPR is 0, engine stop is permitted.
When it is 1, stopping the engine is prohibited.

【0028】次に診断条件および領域条件の成否を判定
する(ステップ302,303)。診断条件とは、エン
ジンが診断可能な運転状態にあるか否かであり、たとえ
ば診断の途中で運転者のキースイッチ操作等により強制
的にエンジンが停止したときには以後の診断が不可能と
なるので前記の#EGOPR、N、Tを初期化して次回
以降の診断に備える(ステップ304)。また、この制
御では空燃比フィードバック制御の異常状態を示すモニ
タクランプを検出することが前提であるので、領域条件
として空燃比フィードバック制御が行われる運転条件か
否かをエンジン回転センサ27やスロットル開度センサ
28等からの運転状態信号に基づいて判定し、たとえば
減速燃料カット時やアイドリング時などエンジンが空燃
比フィードバック制御を行わない運転領域にあることを
検出したときには診断を行わない。
Next, it is determined whether the diagnosis condition and the region condition are satisfied (steps 302 and 303). The diagnosis condition is whether or not the engine is in an operating state in which the engine can be diagnosed. For example, when the engine is forcibly stopped by a driver's key switch operation or the like during the diagnosis, the subsequent diagnosis becomes impossible. The above #EGOPR, N, and T are initialized to prepare for the next and subsequent diagnoses (step 304). Further, since this control is based on the detection of a monitor clamp indicating an abnormal state of the air-fuel ratio feedback control, the engine rotation sensor 27 and the throttle opening degree are determined as operating conditions under which the air-fuel ratio feedback control is performed as a region condition. The determination is made based on the operation state signal from the sensor 28 or the like. When the engine is detected to be in an operation range where the air-fuel ratio feedback control is not performed, for example, during deceleration fuel cut or idling, no diagnosis is performed.

【0029】上記診断条件および領域条件が成立したと
きには、次にモニタクランプを検出する(ステップ30
5)。モニタクランプは、上述したように空燃比補正が
リッチ側またはリーン側の限界となったときに空燃比補
正係数を一定値にクランプする処理である。一般にエン
ジンの空燃比フィードバック制御では、次式で示したよ
うに燃料供給量Teを、エンジン回転数と吸入空気量と
に基づいてマップ検索から定めた基本燃料量Tpに冷却
水温等により定めた各種補正係数Coと空燃比補正係数
ALPHAとを乗じて決定している。
When the diagnosis condition and the region condition are satisfied, a monitor clamp is detected next (step 30).
5). The monitor clamp is a process for clamping the air-fuel ratio correction coefficient to a constant value when the air-fuel ratio correction reaches the limit on the rich side or lean side as described above. In general, in the air-fuel ratio feedback control of the engine, as shown in the following equation, the fuel supply amount Te is changed to a basic fuel amount Tp determined from a map search based on the engine speed and the intake air amount to various values determined by the coolant temperature or the like. It is determined by multiplying the correction coefficient Co by the air-fuel ratio correction coefficient ALPHA.

【0030】Te=Tp・Co・ALPHA 空燃比補正係数ALPHAは、排気酸素センサまたは空
燃比センサにより検出した実空燃比と目標空燃比との偏
差に基づいて、実空燃比が目標空燃比に接近するように
Teに対する補正量を付与する。その補正範囲はたとえ
ば1.25〜0.75に設定してあり、仮に空燃比セン
サの故障等により空燃比がリッチ側に偏ってALPHA
≦0.75となり、またはリーン側に偏ってALPHA
≧1.25となったときには、それ以上の補正は不可能
であるのでALPHA=1にクランプして一時的にフィ
ードバック制御を停止する。
Te = Tp · Co · ALPHA The air-fuel ratio correction coefficient ALPHA is based on the deviation between the actual air-fuel ratio detected by the exhaust oxygen sensor or the air-fuel ratio sensor and the target air-fuel ratio, and the actual air-fuel ratio approaches the target air-fuel ratio. In this case, a correction amount for Te is given. The correction range is set to, for example, 1.25 to 0.75. If the air-fuel ratio is biased to the rich side due to a failure of the air-fuel ratio sensor or the like, the ALPHA
≦ 0.75 or ALPHA biased toward the lean side
When ≧ 1.25, further correction is impossible, and ALPHA = 1 is clamped to temporarily stop the feedback control.

【0031】この制御では、上記モニタクランプを検出
するたびに積算値Nを加算し(ステップ306)、加算
結果と設定値CMC1とを比較し、N≧CMC1となる
まで上記モニタクランプ検出処理を繰り返す(ステップ
308)。前記設定値CMC1は本発明の第2の設定値
に相当するものであり、故障発生が予測されるモニタク
ランプ発生回数の基準値として1以上の適宜の値に設定
する。ここで、もしN≧CMC1となったときにはエン
ジン停止禁止フラグ#EGOPRに1をセットしてエン
ジンの停止を禁止したのち、積算値Nと設定値CMC2
(ただしCMC2>CMC1)とを比較する(ステップ
309,310)。前記設定値CMC2は本発明の第1
の設定値に相当するもので、モニタクランプ発生回数に
対して最終的な故障判定を行うための基準値である。な
お、#EGOPR=1となって以後は積算値Nと設定値
CMC1との比較を行う必要はないので、CMC1によ
る比較の前段で#EGOPRを参照し(ステップ30
7)、#EGOPR=1のときはCMC1との比較を迂
回して直接CMC2との比較処理に移るようにしてい
る。
In this control, each time the monitor clamp is detected, the integrated value N is added (step 306), the addition result is compared with the set value CMC1, and the monitor clamp detection process is repeated until N ≧ CMC1. (Step 308). The set value CMC1 corresponds to the second set value of the present invention, and is set to one or more appropriate values as a reference value of the number of monitor clamp occurrences at which failure occurrence is predicted. Here, if N ≧ CMC1, the engine stop prohibition flag #EGOPR is set to 1 to prohibit the engine from stopping, and then the integrated value N and the set value CMC2 are set.
(Where CMC2> CMC1) (steps 309 and 310). The set value CMC2 is the first value of the present invention.
And is a reference value for making a final failure determination with respect to the number of monitor clamp occurrences. Since it is not necessary to compare the integrated value N with the set value CMC1 after # EGOPR = 1, #EGOPR is referred to before the comparison by CMC1 (step 30).
7), when # EGOPR = 1, the comparison with CMC1 is bypassed, and the process directly proceeds to the comparison with CMC2.

【0032】設定値CMC2はモニタクランプ発生回数
に対する本来の故障判定基準値であるから、N≧CMC
2となったときにはNG判定処理、たとえば自己診断装
置のモニタランプ点灯等の処理を行ったのち、フラグ#
EGOPRをリセットしてエンジン停止の禁止を解除す
るとともに積算値N、タイマ値Tを0に初期化して故障
診断を終了する(ステップ314)。これに対して、N
<CMC2である間はタイマ値Tの更新(加算)を行
い、Tが基準値TMCONに達するまでは上記処理を繰
り返す(ステップ311,312)。
Since the set value CMC2 is an original failure judgment reference value for the number of monitor clamp occurrences, N ≧ CMC
When the flag is 2, the NG determination process, for example, the process of turning on the monitor lamp of the self-diagnosis device, and then the flag #
EGOPR is reset to release the prohibition of the engine stop, and the integrated value N and the timer value T are initialized to 0, thereby terminating the failure diagnosis (step 314). In contrast, N
While <CMC2, the timer value T is updated (added), and the above processing is repeated until T reaches the reference value TMCON (steps 311 and 312).

【0033】もしモニタクランプ数の積算値Nが設定値
CMC2に達する前にタイマ値Tが基準値TMCONに
達した場合、これはモニタクランプの発生数がCMC1
を超えて以降のモニタクランプの発生頻度が低いことを
意味しており、現状では深刻な故障状態ではないと判断
できるので、フラグ#EGOPRをリセットしてエンジ
ン停止の禁止を解除し、積算値N、タイマ値Tを0に初
期化したのち診断処理の当初(ステップ302)に戻り
新たに診断処理を開始する(ステップ313)。もしタ
イマ値Tが基準値TMCONに達する以前に積算値Nが
設定値CMC2以上となった場合には上述した通りNG
判定処理(ステップ314)を行う。
If the timer value T reaches the reference value TMCON before the integrated value N of the number of monitor clamps reaches the set value CMC2, this indicates that the number of monitor clamp occurrences is CMC1.
Means that the frequency of occurrence of the monitor clamp after that is low is low, and it can be determined that it is not a serious failure state at present. Therefore, the flag #EGOPR is reset to cancel the prohibition of the engine stop, and the integrated value N After the timer value T is initialized to 0, the process returns to the beginning of the diagnostic processing (step 302) and starts a new diagnostic processing (step 313). If the integrated value N becomes equal to or larger than the set value CMC2 before the timer value T reaches the reference value TMCON, the error is determined as NG as described above.
A determination process (step 314) is performed.

【0034】図4または図5に、上記エンジン停止禁止
制御による制御動作例を示す。これらは何れも空燃比補
正係数ALPHAが1(図では「100%」と示してあ
る)よりも小さい限界値に達するリッチ異常のケースを
示している。また、CMC=1に設定してあるので、最
初のモニタクランプ発生に伴いフラグ#EGOPRに1
をセットしてエンジン(ENG)の停止を禁止してい
る。
FIG. 4 or FIG. 5 shows an example of a control operation by the engine stop prohibition control. Each of these shows a case of a rich abnormality in which the air-fuel ratio correction coefficient ALPHA reaches a limit value smaller than 1 (shown as “100%” in the figure). In addition, since CMC is set to 1, the flag #EGOPR is set to 1 with the first monitor clamp occurrence.
Is set to prohibit stopping the engine (ENG).

【0035】図4は、最初のモニタクランプによりエン
ジン停止禁止として以後、モニタクランプ積算値Nが設
定値CMC2に達する以前にタイマ値Tが基準値TMC
ONに達した場合を示しており、この場合は上述したよ
うに診断NG処理を行うことなくエンジン停止の禁止を
解除(#EGOPR=0)している。これに対して、図
5は、最初のモニタクランプによりエンジン停止禁止と
して以後、タイマ値Tが基準値TMCONに達する以前
にモニタクランプ積算値Nが設定値CMC2に達した場
合を示しており、この場合はN=CMC2となった時点
でNG判定し、エンジン停止の禁止を解除している。
FIG. 4 shows that the timer value T is changed to the reference value TMC before the monitor clamp integrated value N reaches the set value CMC2 after the engine stop is inhibited by the first monitor clamp.
In this case, the prohibition of the engine stop is released (# EGOPR = 0) without performing the diagnosis NG process as described above. On the other hand, FIG. 5 shows a case where the monitor clamp integrated value N reaches the set value CMC2 before the timer value T reaches the reference value TMCON after the engine stop is inhibited by the first monitor clamp, and In this case, NG is determined when N = CMC2, and the prohibition of engine stop is released.

【図面の簡単な説明】[Brief description of the drawings]

【図1】、FIG.

【図2】本発明が適用可能なハイブリッド車両の構成例
を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a configuration example of a hybrid vehicle to which the present invention can be applied.

【図3】本発明による制御の一実施形態を示す流れ図。FIG. 3 is a flowchart showing one embodiment of control according to the present invention.

【図4】、FIG.

【図5】上記実施形態の制御による制御動作例の説明
図。
FIG. 5 is an explanatory diagram of a control operation example by the control of the embodiment.

【符号の説明】[Explanation of symbols]

1 モータ 2 エンジン 3 クラッチ 4 モータ(回転電機) 5 無段変速機 9 油圧装置 10 油圧発生用モータ 15 バッテリ 16 コントローラ 19 DC/DCコンバータ 20 キースイッチ 21 セレクトレバースイッチ 22 アクセルペダルセンサ 23 ブレーキスイッチ 24 車速センサ 25 バッテリ温度センサ 26 バッテリSOC検出装置 27 エンジン回転数センサ 28 スロットル開度センサ 33 補助バッテリ Reference Signs List 1 motor 2 engine 3 clutch 4 motor (rotary electric machine) 5 continuously variable transmission 9 hydraulic device 10 hydraulic pressure generation motor 15 battery 16 controller 19 DC / DC converter 20 key switch 21 select lever switch 22 accelerator pedal sensor 23 brake switch 24 vehicle speed Sensor 25 Battery temperature sensor 26 Battery SOC detection device 27 Engine speed sensor 28 Throttle opening sensor 33 Auxiliary battery

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 17/00 F02D 41/22 301G 5H115 29/02 321 F16H 61/10 41/22 301 B60K 9/00 Z F16H 61/10 Fターム(参考) 3G084 AA00 BA02 BA03 BA13 BA15 BA17 BA32 BA33 CA07 DA27 DA28 EA07 EA11 EB12 EB22 EC01 FA03 FA05 FA06 FA10 FA20 FA26 FA29 FA33 3G092 AB02 AC02 AC03 BA03 BA09 BB01 BB06 CA01 EA01 EA02 EA08 EA11 EA14 EA15 EA17 EB04 EC01 FA30 FB06 GA10 HA06Z HD05Z HE01Z HE08Z HF02Z HF12Z HF21Z HF26Z 3G093 AA07 BA22 CA00 CA12 DA01 DA05 DA06 DA13 DB05 DB11 DB15 EA00 EA02 EA03 EA05 EA13 EB03 FA07 FA11 FB01 FB02 FB05 3G301 HA00 HA01 JB09 JB10 KA28 LA00 MA11 MA18 ND02 ND17 NE19 NE23 PD02Z PE01Z PE08Z PF01Z PF03Z PF05Z PF08Z PG01Z 3J052 AA11 BA13 DA02 DA03 EA04 FA01 FB31 GC04 GC13 GC23 GC46 GC64 LA01 5H115 PG04 PI15 PI16 PI29 PU02 PU08 PU22 PU24 PU25 PU29 PV02 PV09 QN02 QN12 RB08 RE01 RE05 RE20 SE05 SE08 TB01 TE02 TE03 TE04 TI01 TI10 TO21 TO23 TR20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F02D 17/00 F02D 41/22 301G 5H115 29/02 321 F16H 61/10 41/22 301 B60K 9/00 Z F16H 61/10 F term (reference) 3G084 AA00 BA02 BA03 BA13 BA15 BA17 BA32 BA33 CA07 DA27 DA28 EA07 EA11 EB12 EB22 EC01 FA03 FA05 FA06 FA10 FA20 FA26 FA29 FA33 3G092 AB02 AC02 AC03 BA03 BA09 BB01 BB01 CA01 EA01 EA02 EA02 EB04 EC01 FA30 FB06 GA10 HA06Z HD05Z HE01Z HE08Z HF02Z HF12Z HF21Z HF26Z 3G093 AA07 BA22 CA00 CA12 DA01 DA05 DA06 DA13 DB05 DB11 DB15 EA00 EA02 NEEA EA03 EA13 EB03 FA07 FA11 FB03 FB01 FB02 PE01Z PE08Z PF01Z PF03Z PF05Z PF08Z PG01Z 3J052 AA11 BA13 DA02 DA03 EA04 FA01 FB31 GC04 GC13 G C23 GC46 GC64 LA01 5H115 PG04 PI15 PI16 PI29 PU02 PU08 PU22 PU24 PU25 PU29 PV02 PV09 QN02 QN12 RB08 RE01 RE05 RE20 SE05 SE08 TB01 TE02 TE03 TE04 TI01 TI10 TO21 TO23 TR20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】出力が不要なときに自動的にエンジンを停
止させるエンジン自動停止車両において、 エンジンの運転中の異常を検出し、異常検出の積算値が
第1の設定値以上となったときに故障判定を行なう故障
判定装置と、 前記積算値が、前記第1の設定値よりも小さく設定した
第2の設定値以上となったときには、エンジンの自動停
止をあらかじめ定めた期間禁止するエンジン停止禁止装
置とを備えたことを特徴とする車両の自己診断装置。
In an automatic stop vehicle for automatically stopping an engine when output is not required, when an abnormality during operation of the engine is detected and an integrated value of the abnormality detection becomes equal to or greater than a first set value. A failure determination device that performs a failure determination on the engine; and an engine stop that prohibits the automatic stop of the engine for a predetermined period when the integrated value is equal to or greater than a second set value that is set smaller than the first set value. A self-diagnosis device for a vehicle, comprising a prohibition device.
【請求項2】エンジン停止禁止装置は、あらかじめ定め
た停止禁止時間が経過したとき、または異常検出の積算
値が第1の設定値以上となったときのいずれかの条件を
満たしたときにエンジンの停止禁止を解除するようにし
た請求項1に記載の車両の自己診断装置。
2. The engine stop prohibition device according to claim 1, wherein when a predetermined stop prohibition time elapses or when an integrated value of abnormality detection becomes equal to or more than a first set value, the engine stop prohibition device is activated. The vehicle self-diagnosis device according to claim 1, wherein the stop prohibition of the vehicle is released.
【請求項3】エンジン自動停止車両は、アイドル運転を
停車時に自動停止させるアイドルストップ車両である請
求項1に記載の車両の自己診断装置。
3. The self-diagnosis device for a vehicle according to claim 1, wherein the vehicle with the engine automatically stopped is an idle stop vehicle that automatically stops idle operation when the vehicle is stopped.
【請求項4】エンジン自動停止車両は、エンジンの他に
動力源として回転電機を備え、エンジンによる駆動力が
不要な運行状態のときにエンジンを停止させるようにし
たハイブリッド車両である請求項1に記載の車両の自己
診断装置。
4. The hybrid vehicle according to claim 1, wherein the engine automatic stop vehicle is provided with a rotating electric machine as a power source in addition to the engine, and stops the engine when the vehicle is in an operation state in which no driving force is required by the engine. A self-diagnosis device for a vehicle according to the above.
【請求項5】故障判定装置は、排気酸素センサまたは空
燃比センサからの信号に基づいて燃料供給量をフィード
バック制御する空燃比制御装置のモニタクランプ状態を
検出したときに異常検出の積算を行う請求項1に記載の
車両の自己診断装置。
5. The failure determination device according to claim 1, wherein when the monitor clamp state of the air-fuel ratio control device for feedback-controlling the fuel supply amount based on a signal from the exhaust oxygen sensor or the air-fuel ratio sensor is detected, the abnormality detection is integrated. Item 2. The vehicle self-diagnosis device according to Item 1.
【請求項6】エンジン停止禁止装置は、エンジン停止禁
止期間中にエンジンの負荷または回転速度を高めるエン
ジン制御装置を備える請求項5に記載の車両の自己診断
装置。
6. The vehicle self-diagnosis device according to claim 5, wherein the engine stop prohibition device includes an engine control device that increases an engine load or a rotation speed during the engine stop prohibition period.
【請求項7】エンジン停止禁止装置は、エンジン停止禁
止期間中は自動変速機のシフトスケジュールをエンジン
回転が比較的上昇する方向に補正するシフトスケジュー
ル補正装置を備える請求項5に記載の車両の自己診断装
置。
7. The vehicle according to claim 5, wherein the engine stop prohibition device includes a shift schedule correction device that corrects a shift schedule of the automatic transmission in a direction in which the engine speed increases relatively during the engine stop prohibition period. Diagnostic device.
JP05519899A 1999-03-03 1999-03-03 Vehicle self-diagnosis device Expired - Fee Related JP3614021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05519899A JP3614021B2 (en) 1999-03-03 1999-03-03 Vehicle self-diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05519899A JP3614021B2 (en) 1999-03-03 1999-03-03 Vehicle self-diagnosis device

Publications (2)

Publication Number Publication Date
JP2000257498A true JP2000257498A (en) 2000-09-19
JP3614021B2 JP3614021B2 (en) 2005-01-26

Family

ID=12991995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05519899A Expired - Fee Related JP3614021B2 (en) 1999-03-03 1999-03-03 Vehicle self-diagnosis device

Country Status (1)

Country Link
JP (1) JP3614021B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329122A (en) * 2005-05-27 2006-12-07 Fujitsu Ten Ltd Automatic stop and start device and method for engine and engine control system
JP2007247503A (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corp Fuel injection system
JP2008014234A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Abnormality diagnosing device for exhaust sensor
WO2008072395A1 (en) * 2006-12-13 2008-06-19 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
JP2008151041A (en) * 2006-12-18 2008-07-03 Denso Corp Control device of internal combustion engine
WO2008139785A1 (en) * 2007-05-08 2008-11-20 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling the same
JP2011063047A (en) * 2009-09-15 2011-03-31 Mazda Motor Corp Controller for hybrid vehicle
US7971570B2 (en) 2007-05-23 2011-07-05 Denso Corporation Engine controller
WO2011111163A1 (en) * 2010-03-09 2011-09-15 トヨタ自動車株式会社 Internal combustion engine control device
US8050851B2 (en) * 2008-02-13 2011-11-01 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle equipped with power output apparatus, driving system, and control method of power output apparatus
WO2013099394A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and vehicle
WO2013099395A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
WO2013099396A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
JP2013139181A (en) * 2011-12-28 2013-07-18 Toyota Motor Corp Hybrid vehicle
JP2013204587A (en) * 2012-03-28 2013-10-07 Dr Ing Hcf Porsche Ag Controller of automobile
KR101339233B1 (en) * 2011-12-01 2013-12-09 기아자동차 주식회사 System and method for determining stop status of hev engine
US8676477B2 (en) 2010-03-17 2014-03-18 Toyota Jidosha Kabushiki Kaisha Rotational fluctuation malfunction detection device and rotational fluctuation malfunction detection method for internal combustion engine
US20150178997A1 (en) * 2013-12-25 2015-06-25 Denso Corporation Vehicle diagnosis system and method
US9422909B2 (en) 2012-08-29 2016-08-23 Mazda Motor Corporation Automatic stop device for vehicle engines
US20170084092A1 (en) * 2013-12-25 2017-03-23 Denso Corporation Vehicle diagnosis system and method
JP2019095430A (en) * 2017-10-23 2019-06-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Vehicle error identification system
CN112172834A (en) * 2019-06-18 2021-01-05 丰田自动车株式会社 Control device for hybrid vehicle

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329122A (en) * 2005-05-27 2006-12-07 Fujitsu Ten Ltd Automatic stop and start device and method for engine and engine control system
JP4520362B2 (en) * 2005-05-27 2010-08-04 富士通テン株式会社 ENGINE AUTOMATIC STOP / START DEVICE AND METHOD, AND ENGINE CONTROL SYSTEM
JP2007247503A (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corp Fuel injection system
JP4561702B2 (en) * 2006-07-06 2010-10-13 トヨタ自動車株式会社 Exhaust sensor abnormality diagnosis device
JP2008014234A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Abnormality diagnosing device for exhaust sensor
WO2008072395A1 (en) * 2006-12-13 2008-06-19 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
JP2008151041A (en) * 2006-12-18 2008-07-03 Denso Corp Control device of internal combustion engine
US8234030B2 (en) 2007-05-08 2012-07-31 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
WO2008139785A1 (en) * 2007-05-08 2008-11-20 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling the same
US7971570B2 (en) 2007-05-23 2011-07-05 Denso Corporation Engine controller
US8050851B2 (en) * 2008-02-13 2011-11-01 Toyota Jidosha Kabushiki Kaisha Power output apparatus, vehicle equipped with power output apparatus, driving system, and control method of power output apparatus
JP2011063047A (en) * 2009-09-15 2011-03-31 Mazda Motor Corp Controller for hybrid vehicle
WO2011111163A1 (en) * 2010-03-09 2011-09-15 トヨタ自動車株式会社 Internal combustion engine control device
KR101229336B1 (en) 2010-03-09 2013-02-05 도요타 지도샤(주) Control apparatus for internal combustion engine
JP5223969B2 (en) * 2010-03-09 2013-06-26 トヨタ自動車株式会社 Control device for internal combustion engine
US8812219B2 (en) 2010-03-09 2014-08-19 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US8676477B2 (en) 2010-03-17 2014-03-18 Toyota Jidosha Kabushiki Kaisha Rotational fluctuation malfunction detection device and rotational fluctuation malfunction detection method for internal combustion engine
KR101339233B1 (en) * 2011-12-01 2013-12-09 기아자동차 주식회사 System and method for determining stop status of hev engine
JPWO2013099396A1 (en) * 2011-12-28 2015-04-30 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
WO2013099396A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
WO2013099395A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
WO2013099394A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and vehicle
CN104024822A (en) * 2011-12-28 2014-09-03 本田技研工业株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
JPWO2013099394A1 (en) * 2011-12-28 2015-04-30 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and vehicle
JP5714132B2 (en) * 2011-12-28 2015-05-07 本田技研工業株式会社 Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
US9047719B2 (en) 2011-12-28 2015-06-02 Honda Motor Co., Ltd. Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
JP2013139181A (en) * 2011-12-28 2013-07-18 Toyota Motor Corp Hybrid vehicle
US9224255B2 (en) 2011-12-28 2015-12-29 Honda Motor Co., Ltd. Vehicle diagnostic system, vehicle diagnostic method, and vehicle
US9245393B2 (en) 2011-12-28 2016-01-26 Honda Motor Co., Ltd. Vehicle diagnostic system, vehicle diagnostic method, and external diagnostic device
JP2013204587A (en) * 2012-03-28 2013-10-07 Dr Ing Hcf Porsche Ag Controller of automobile
US9422909B2 (en) 2012-08-29 2016-08-23 Mazda Motor Corporation Automatic stop device for vehicle engines
US20150178997A1 (en) * 2013-12-25 2015-06-25 Denso Corporation Vehicle diagnosis system and method
US20170084092A1 (en) * 2013-12-25 2017-03-23 Denso Corporation Vehicle diagnosis system and method
US9677529B2 (en) * 2013-12-25 2017-06-13 Denso Corporation Vehicle diagnosis system and method
US10351127B2 (en) 2013-12-25 2019-07-16 Denso Corporation Vehicle diagnosis system and method
US10371074B2 (en) 2013-12-25 2019-08-06 Denso Corporation Vehicle diagnosis system and method
US11279357B2 (en) 2013-12-25 2022-03-22 Denso Corporation Vehicle diagnosis system and method
JP2019095430A (en) * 2017-10-23 2019-06-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Vehicle error identification system
JP7161912B2 (en) 2017-10-23 2022-10-27 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド vehicle error identification system
CN112172834A (en) * 2019-06-18 2021-01-05 丰田自动车株式会社 Control device for hybrid vehicle
CN112172834B (en) * 2019-06-18 2024-04-19 丰田自动车株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP3614021B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2000257498A (en) Self-diagnostic system for vehicle
JP3498593B2 (en) Hybrid vehicle control device
JP3714266B2 (en) Auxiliary drive device for idle stop car
JP4040241B2 (en) Vehicle control device
JP3488654B2 (en) Engine control device for hybrid vehicle
WO2013103105A1 (en) Vehicle control device
JP2001054201A (en) Regenerative braking/charging permission judgement method and judgement device for hybrid vehicle
US11325577B2 (en) On-board controller and method for controlling vehicle
JP3409522B2 (en) Control device for vehicle drive unit
JP3852228B2 (en) Engine start control device
US11584359B2 (en) Control device of hybrid vehicle and control method
JP2000287304A (en) Driving device for internal combustion engine
JP3988334B2 (en) Control device for internal combustion engine
JP4595253B2 (en) Power supply
JP3861486B2 (en) Control device for hybrid vehicle
JP4075589B2 (en) Engine power transmission member abnormality determination device
JP2001295683A (en) Idling engine speed control device of hybrid vehicle
JP3013728B2 (en) Control device for vehicle drive unit
US20240227770A9 (en) In-vehicle controller
US20240132045A1 (en) In-vehicle controller
JP2005180374A (en) Engine control device of vehicle
JPH11257120A (en) Controller for automatically stopping and starting engine of vehicle
JPH11351003A (en) Automatically stopping and starting device for engine
JP4182607B2 (en) Control device for vehicle having flywheel for energy storage
JP2023115606A (en) Control device of hybrid vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees