JP2000256467A - Synthesis of polymer, resin composition, and production of molded article - Google Patents

Synthesis of polymer, resin composition, and production of molded article

Info

Publication number
JP2000256467A
JP2000256467A JP11059550A JP5955099A JP2000256467A JP 2000256467 A JP2000256467 A JP 2000256467A JP 11059550 A JP11059550 A JP 11059550A JP 5955099 A JP5955099 A JP 5955099A JP 2000256467 A JP2000256467 A JP 2000256467A
Authority
JP
Japan
Prior art keywords
polymer
molecular weight
resin
reaction
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11059550A
Other languages
Japanese (ja)
Inventor
Noriyuki Saito
則之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11059550A priority Critical patent/JP2000256467A/en
Publication of JP2000256467A publication Critical patent/JP2000256467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for synthesizing a polymer which effectively conduct the termination of polymerization reaction and the dissolution of the association of resins with one another, the improvement of the solubility of the resulting polymers, the control of their re-association and the like. SOLUTION: The process for synthesizing a polymer comprises reacting (A) a first monomer having (-CO)2O, -COOH, -OH or -CHOCH2 as the functional group having bonding properties with (B) a second monomer having -NH2, -NCO or -CHOCH2 as the functional group having bonding properties in the respective equivalent amounts to be defined by the target average molecular weight to render the resulting product high molecular weight and then, adding a low-molecular weight compound having a reactive functional group to the reaction solution thereby modifying the remaining active groups to extremely reduce the reactivity and polarity of the polymer and dissolving the once formed association of the polymer to an optional extent to make the re-association difficult.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマの合成方法
に関し、詳しくは接着剤、繊維材料などの合成高分子の
製造に用いられるもので、重合反応の停止および樹脂同
士の会合解消、得られた樹脂の溶解性向上、再会合の抑
制などを効果的に行うポリマの合成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a polymer, and more particularly, to a method for producing a synthetic polymer such as an adhesive or a fiber material. The present invention relates to a method for synthesizing a polymer, which effectively improves the solubility of the resin and suppresses reassociation.

【0002】[0002]

【従来の技術】一般にポリマ合成でモノマから目的とす
る平均分子量のポリマを得るためには、例えば熱による
重合反応ならば重合反応の停止点を反応液粘度やGPC
法による測定などであらかじめ決めておき、そこに到達
した時点で反応系を冷却したり、反応液を溶媒中に沈殿
させるなどの方法によって反応を停止させることが多
い。または、あらかじめ原料の仕込み比率を調整してお
き、目的とする分子量で重合が停止するように設定する
方法なども用いられている。
2. Description of the Related Art Generally, in order to obtain a polymer having a desired average molecular weight from a monomer in a polymer synthesis, for example, in the case of a polymerization reaction by heat, a stop point of the polymerization reaction is determined by a reaction solution viscosity or GPC.
The reaction is often stopped in advance by a method such as cooling down the reaction system or precipitating the reaction solution in a solvent when the reaction system is reached. Alternatively, a method of adjusting the charge ratio of the raw materials in advance and setting the polymerization so as to stop the polymerization at a target molecular weight is also used.

【0003】しかし、これらの方法を用いた場合は生成
物に未反応または反応性を残した官能基が残存しやすい
ため、反応液をそのまま樹脂溶液として塗工や紡糸に利
用する場合は、溶液の保存中に反応が進行したり空気中
の湿気や酸素によって副反応を起こしたりしやすく、保
存寿命が著しく短かいことが多かった。また、重合反応
の停止や樹脂の精製を目的として反応液を水などの溶媒
に沈殿させた場合には、溶媒を介した反応のために樹脂
の物性が変化することも多い。
[0003] However, when these methods are used, unreacted or reactive functional groups are apt to remain in the product. Therefore, when the reaction solution is directly used as a resin solution for coating or spinning, a solution is used. During storage, the reaction easily proceeded or side reactions were likely to occur due to moisture or oxygen in the air, and the storage life was often extremely short. When the reaction solution is precipitated in a solvent such as water for the purpose of stopping the polymerization reaction or purifying the resin, the physical properties of the resin often change due to the reaction via the solvent.

【0004】ポリマ合成では重合反応と同時にポリマの
会合が進行することが多く、溶液の粘度やGPC法で測
定される分子量はポリマ重合度と会合体生成量の両方の
影響を受けたものとなるため、これらを利用して反応終
点を決めるとロットごとで平均分子量に大きな差異を生
じることがあり、一定した分子量のポリマを得られにく
いという欠点があった。また、得られた樹脂の物性も会
合の影響を受けたものとなり、ポリマの本質的な特性が
得られにくいことが多かった。
[0004] In polymer synthesis, the association of the polymer often proceeds simultaneously with the polymerization reaction, and the viscosity of the solution and the molecular weight measured by the GPC method are affected by both the degree of polymer polymerization and the amount of aggregate formed. Therefore, when the reaction end point is determined by using these, a large difference may occur in the average molecular weight between lots, and there is a disadvantage that it is difficult to obtain a polymer having a constant molecular weight. Further, the physical properties of the obtained resin were also affected by the association, and it was often difficult to obtain the essential characteristics of the polymer.

【0005】[0005]

【発明が解決しようとする課題】本発明はこれらの問題
を解決するものであり、空気中の湿気や酸素のほか、水
やアルコールなどの溶媒を介した反応を抑制して物性変
化が起こりにくくするほか、溶剤に溶かして樹脂溶液を
調製する際にも樹脂の溶解性を著しく向上させるもので
ある。またポリマ合成の過程て生成した会合を任意の程
度まで解消かつ再び会合が起こりにくくすることによっ
て、合成ロットによる差異が小さい均一な分子量分布の
生成物を得、ポリマの本質的な特性が得られ易くするポ
リマの合成方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and suppresses a reaction through a solvent such as water or alcohol, in addition to moisture and oxygen in the air, so that a change in physical properties hardly occurs. In addition, it also significantly improves the solubility of the resin when preparing a resin solution by dissolving it in a solvent. In addition, by eliminating the association generated during the polymer synthesis process to an arbitrary degree and making the association less likely to occur, a product having a uniform molecular weight distribution with little difference between synthesis lots can be obtained, and the essential characteristics of the polymer can be obtained. It provides a method of synthesizing a polymer that facilitates the synthesis.

【0006】[0006]

【課題を解決するための手段】本発明者は鋭意検討した
結果、ある種の化合物によってポリマ中に残存している
未反応または反応性を残した官能基を修飾することによ
って、ポリマの反応性や極性を著しく低下させられるこ
と、一度形成されたポリマ同士の会合を任意の程度まで
解消して再び会合しにくく出来ることを見い出し、本発
明を完成するに至った。本発明はポリマの反応性や極性
を低下させることを目的として、−OH基やエポキシ基
など反応性の官能基を有する低分子量化合物と反応させ
ることにより、ポリマ中の未反応または反応性を残した
官能基を構造修飾することを特徴とする。
Means for Solving the Problems As a result of diligent studies, the present inventor has found that by modifying the unreacted or reactive functional groups remaining in the polymer with a certain compound, the reactivity of the polymer is improved. It has been found that the polarity of the polymer can be remarkably reduced, and the association between the polymers formed once can be eliminated to an arbitrary degree to make it difficult to associate again, and the present invention has been completed. The present invention is intended to reduce the reactivity and polarity of the polymer by reacting with a low molecular weight compound having a reactive functional group such as an -OH group or an epoxy group to leave unreacted or reactive in the polymer. Characterized in that the functional groups are structurally modified.

【0007】すなわち、本発明のポリマの合成方法は、
モノマを重合させ、ポリマが目的とする分子量付近まで
高分子量化した反応液に、反応性の官能基を有する低分
子量化合物を添加して残存活性基を修飾することを特徴
とする。また本発明のポリマの合成方法は、第1のモノ
マ(A)と、これと反応性を有する第2のモノマ(B)
を、それぞれ目的とする平均分子量によって規定される
当量ずつ反応させて高分子量化した後、反応液に反応性
の官能基を有する低分子量化合物を添加して残存活性基
を修飾することを特徴とする。モノマ(A)は結合性を
有する官能基として(−CO)2O、−COOH、−O
H、又は−CHOCH2を有しており、モノマ(B)は
結合性を有する官能として−NH2、−NCO又は−C
HOCH2を有しているものが好ましい。本発明の樹脂
組成物は、上記の反応性の官能基を有する低分子量化合
物を添加して残存活性基を修飾した反応液を含むもので
ある。上記の反応性の官能基を有する低分子量化合物を
添加して残存活性基を修飾した反応液をそのまま樹脂溶
液として成形品を製造することができる。
That is, the method for synthesizing the polymer of the present invention comprises:
The method is characterized in that a low molecular weight compound having a reactive functional group is added to a reaction solution in which a monomer is polymerized to increase the molecular weight of the polymer to around a target molecular weight, thereby modifying the remaining active group. Further, the method for synthesizing a polymer according to the present invention comprises a first monomer (A) and a second monomer (B) reactive therewith.
Is reacted by an equivalent amount defined by the desired average molecular weight to obtain a high molecular weight, and then the remaining active group is modified by adding a low molecular weight compound having a reactive functional group to the reaction solution. I do. The monomer (A) has (—CO) 2 O, —COOH, and —O as functional groups having a binding property.
H, or —CHOCH 2 , and the monomer (B) has —NH 2 , —NCO or —C
Those having HOCH 2 are preferred. The resin composition of the present invention includes a reaction solution in which the low-molecular weight compound having a reactive functional group is added to modify the remaining active group. A molded article can be produced by directly using the reaction solution in which the above-mentioned low molecular weight compound having a reactive functional group is added to modify the remaining active groups as a resin solution.

【0008】[0008]

【発明の実施の形態】本発明において合成される重合体
は主に酸成分を有するモノマ(A)と、主に塩基成分を
有するモノマ(B)を適宜触媒を加えて必要に応じて溶
媒中で反応させることにより得られる。モノマ(A)の
例としてはピロメリット酸二無水物、3,3’,4,
4’−ベンゾフェノンテトラカルボン酸二無水物(BT
DA)、3,3’,4,4’−ビフェニルテトラカルボ
ン酸二無水物、2,2−ビスフタル酸ヘキサフルオロイ
ソプロピリデン二無水物、ビス(3,4−ジカルボキシ
フェニル)エーテル二無水物、ビス(3,4−ジカルボ
キシフェニル)スルホン二無水物、4,4’−ビス
(3,4−ジカルボキシフェノキシ)ジフェニルスルホ
ン二無水物、2,2−ビス[4−(3,4−ジカルボキ
シフェノキシ)フェニル]プロパン二無水物、エチレン
グリコールビストリメリテート二無水物(EBTA)、
デカメチレングリコールビストリメリテート二無水物
(DBTA)、ビスフェノールAビストリメリテート二
無水物(BABT)、等のテトラカルボン酸二無水物、
無水トリメリト酸等のトリカルボン酸無水物、コハク
酸、グルタル酸、アジピン酸、スペリン酸、アゼライン
酸、セバチン酸、デカンジカルボン酸等の脂肪族ジカル
ボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフ
タレンジカルボン酸等の芳香族ジカルボン酸が挙げられ
る。これらのジカルボン酸は単独で用いてもよいし2種
以上を混合して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer synthesized in the present invention comprises a monomer (A) mainly having an acid component and a monomer (B) mainly having a base component, optionally added with a catalyst, and optionally in a solvent. By reacting with Examples of the monomer (A) include pyromellitic dianhydride, 3,3 ′, 4,
4'-benzophenonetetracarboxylic dianhydride (BT
DA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, hexafluoroisopropylidene dianhydride 2,2-bisphthalate, bis (3,4-dicarboxyphenyl) ether dianhydride, Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 2,2-bis [4- (3,4-di Carboxyphenoxy) phenyl] propane dianhydride, ethylene glycol bistrimellitate dianhydride (EBTA),
Tetracarboxylic dianhydrides such as decamethylene glycol bistrimellitate dianhydride (DBTA) and bisphenol A bistrimellitate dianhydride (BABT);
Tricarboxylic anhydrides such as trimellitic anhydride, succinic acid, glutaric acid, adipic acid, speric acid, azelaic acid, aliphatic dicarboxylic acids such as sebacic acid, decanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid And the like. These dicarboxylic acids may be used alone or as a mixture of two or more.

【0009】これ以外に、エチレングリコール、プロピ
レングリコール、プタンジオール、1,3−ブチレング
リコール、2−メチル−1,3−プロパンジオール、ネ
オペンチルグリコール、3ーメチル−1,5−ペンタン
ジオール、ヘキサンジオール、2,2−ジエチル−1,
3−プロパンジオール、2−エチル−1,3−ヘキサン
ジオール、3,3−ジメチロールヘプタン、ノナンジオ
ール、2−メチル−1,8−オクタンジオール、デカン
ジオール等の脂肪族ジオール、ビスフェノールA、ヒド
ロキノン、4,4’−ビフェニルジオール、2,6−ナ
フタレンジオール等の芳香族ジオール等が挙げられる。
これらのジオールは単独で用いてもよいし、2種以上を
混合して用いてもよい。
In addition, ethylene glycol, propylene glycol, butanediol, 1,3-butylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol , 2,2-diethyl-1,
Aliphatic diols such as 3-propanediol, 2-ethyl-1,3-hexanediol, 3,3-dimethylolheptane, nonanediol, 2-methyl-1,8-octanediol, decanediol, bisphenol A, hydroquinone And aromatic diols such as 4,4'-biphenyldiol and 2,6-naphthalenediol.
These diols may be used alone or as a mixture of two or more.

【0010】ジカルボン酸とジオールを反応させてポリ
エステルとして使用する場合、ポリエステルが生成する
条件であれば特に制限するものではないが溶融反応によ
れば溶媒除去等の生成操作が不要になる。ポリエステル
製造の際のジカルボン酸とジオールの使用量は、目的と
する末端基によって適宜決められる。ジカルボン酸を過
剰に用いれば両末端がカルボキシル基を有するポリエス
テルが得られ、ジオールを過剰に用いれば両末端がヒド
ロキシ基を有するポリエステルが得られる。
When a dicarboxylic acid and a diol are reacted and used as a polyester, there is no particular limitation as long as the polyester is formed, but a melting operation eliminates the need for a production operation such as solvent removal. The amounts of the dicarboxylic acid and the diol used in the production of the polyester are appropriately determined depending on the desired terminal group. When a dicarboxylic acid is used in excess, a polyester having carboxyl groups at both terminals is obtained, and when a diol is used excessively, a polyester having hydroxy groups at both terminals is obtained.

【0011】トリメリット酸とジオールを反応させてテ
トラカルボン酸二無水物を得る場合は、トリメリット酸
をトリメリット酸クロライドに変換したものとジオール
をピリジン等の存在下で反応させた後、無水酢酸で再結
晶すると目的物が得られる。これらカルボン酸化合物は
無水物の他に遊離酸(テトラカルボン酸、トリカルボン
酸)も使用することが出来、エステル化物、クロライド
等の誘導体を使用することも出来る。これらのモノマは
単独で用いても二種類以上を併用してもよい。
When trimellitic acid and a diol are reacted to obtain a tetracarboxylic dianhydride, a product obtained by converting trimellitic acid to trimellitic acid chloride and a diol are reacted in the presence of pyridine or the like, and then the anhydride is added. Recrystallization from acetic acid gives the desired product. As these carboxylic acid compounds, free acids (tetracarboxylic acid, tricarboxylic acid) can be used in addition to anhydrides, and derivatives such as esterified products and chlorides can also be used. These monomers may be used alone or in combination of two or more.

【0012】モノマBの例としては1,2−ジアミノプ
ロパン、1,3−ジアミノプロパン、1,2−ジアミノ
−2−メチルプロパン、1,4−ジアミノブタン、1,
6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,
8-シ゛アミノオクタン、1,9−ジアミノノナン、1,10−ジア
ミノデカン、1,12−ジアミノドデカン、等のアルキ
レンジアミン、イソホロンジアミン、フェニレンジアミ
ン、トルイレンジアミン、キシリレンジアミン、ナフタ
レンジアミン、ジキクロヘキシルメタンジアミン、4,
4’−ジアミノジフェニルメタン、4,4’−ジアミノ
ジフェニルエーテル、4,4’−ジアミノジフェニルス
ルホン、4,4’−ジアミノベンズアニリド、3,3’
−ジアミノジフェニルスルホン、3,3’−ジアミノベ
ンゾフェノン、3,3’−ジメチルジフェニル−4,
4’−ジアミン、3,3’,5,5’−テトラメチル−
4,4’−ジアミノジフェニルメタン、3,3’,5,
5’−テトライソプロピル−4,4’−ジアミノジフェ
ニルメタン、1,4−ビス(4−アミノクミル)ベンゼ
ン、1,3−ビス(4−アミノクミル)ベンゼン、1,
4−ビス(4−アミノフェノキシ)ベンゼン、1,4−
ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス
(3−アミノフェノキシ)ベンゼン、2,2−ビス[4
−(4−アミノフェノキシ)フェニル]プロパン、2,
2−ビス[4−(3−アミノフェノキシ)フェニル]プ
ロパン、ビス[4−(4−アミノフェノキシ)フェニ
ル]スルホン、ビス[4−(3−アミノフェノキシ)フ
ェニル]スルホン、ビス[4−(4−アミノフェノキ
シ)フェニル]エーテル、2,2−ビス[4−(4−ア
ミノフェノキシ)フェニル]ビフェニル等の芳香族ジア
ミン、化1で表されるシロキサンジアミン、
Examples of monomer B include 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diamino-2-methylpropane, 1,4-diaminobutane,
6-diaminohexane, 1,7-diaminoheptane, 1,
Alkylenediamines such as 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, etc., isophoronediamine, phenylenediamine, toluylenediamine, xylylenediamine, naphthalenediamine, dicyclohexyl Methanediamine, 4,
4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, 4,4'-diaminodiphenylsulfone, 4,4'-diaminobenzanilide, 3,3 '
-Diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,3'-dimethyldiphenyl-4,
4'-diamine, 3,3 ', 5,5'-tetramethyl-
4,4'-diaminodiphenylmethane, 3,3 ', 5
5′-tetraisopropyl-4,4′-diaminodiphenylmethane, 1,4-bis (4-aminocumyl) benzene, 1,3-bis (4-aminocumyl) benzene, 1,
4-bis (4-aminophenoxy) benzene, 1,4-
Bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4
-(4-aminophenoxy) phenyl] propane, 2,
2-bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4 Aromatic diamines such as -aminophenoxy) phenyl] ether and 2,2-bis [4- (4-aminophenoxy) phenyl] biphenyl; siloxane diamines represented by Chemical Formula 1;

【0013】[0013]

【化1】 (式中、R1及びR2は2価の有機基、R3及びR4は
1価の有機基を示し、mは1〜100の整数を示す。)
等があり、これらは2種類以上併用してもよい。また、
用いることが出来るジイソシアナートとしては、上に示
したジアミンにおいて、「アミノ」を「イソシアナー
ト」と読み替えたものを挙げることが出来る。これら塩
基成分は単独で用いても二種類以上を併用してもよい。
Embedded image (In the formula, R1 and R2 represent a divalent organic group, R3 and R4 represent a monovalent organic group, and m represents an integer of 1 to 100.)
These may be used in combination of two or more. Also,
Examples of the diisocyanate that can be used include those obtained by replacing “amino” with “isocyanate” in the diamine shown above. These base components may be used alone or in combination of two or more.

【0014】モノマAおよびモノマBのどちらか一方は
2個以上のエポキシ基を有するモノマであっても良く、
例えばポリプロピレングリコールジグリシジルエーテ
ル、1,4−ブタンジオールジグリシジルエーテル、
1,2,7,8−ジエポキシオクタン、エチレングリコ
ールジグリシジルエーテルなどの他、ビスフェノール
A、ビスフェノールF、ビスフェノールADなどとエピ
クロロヒドリンとから誘導されるエポキシ樹脂、例えば
AER−X8501(旭化成工業製商品名)、YDF−
170(東都化成社製商品名)、R−710(三井石油
化学社製商品名)、ノボラック型エポキシ樹脂N−73
0S(大日本インキ社製商品名)、フェノールノボラッ
ク型エポキシ樹脂Quatrex−2010(ダウ・ケ
ミカル社製商品名)、クレゾールノボラック型エポキシ
樹脂YDCN−702S(東都化成社製商品名)、EO
CN−100(日本化薬社製商品名)、ビスフェノール
A型エポキシ樹脂R−301、YL−980(油化シェ
ルエポキシ社製商品名)、多官能エポキシ樹脂EPPN
−501(日本化薬社製商品名)、TACTIX−74
2(ダク・ケミカル社製商品名)、VG−3010(三
井石油化学社製商品名)、1032S(油化シェルエポ
キシ社製商品名商品名)、ナフタレン骨格を有するエポ
キシ樹脂HP−4032(大日本インキ社製商品名商品
名)、脂環式エポキシ樹脂EHPEー3150(ダイセ
ル化学社製商品名)などが挙げられる。
One of the monomers A and B may be a monomer having two or more epoxy groups,
For example, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether,
In addition to 1,2,7,8-diepoxyoctane, ethylene glycol diglycidyl ether and the like, epoxy resins derived from bisphenol A, bisphenol F, bisphenol AD and the like and epichlorohydrin, for example, AER-X8501 (Asahi Kasei Corporation) Product name), YDF-
170 (trade name, manufactured by Toto Kasei Co., Ltd.), R-710 (trade name, manufactured by Mitsui Petrochemical Co., Ltd.), novolak epoxy resin N-73
OS (trade name, manufactured by Dainippon Ink Co., Ltd.), phenol novolak type epoxy resin Quatrex-2010 (trade name, manufactured by Dow Chemical Company), cresol novolak type epoxy resin YDCN-702S (trade name, manufactured by Toto Kasei Co., Ltd.), EO
CN-100 (trade name, manufactured by Nippon Kayaku Co., Ltd.), bisphenol A type epoxy resin R-301, YL-980 (trade name, manufactured by Yuka Shell Epoxy), polyfunctional epoxy resin EPPN
-501 (trade name, manufactured by Nippon Kayaku Co., Ltd.), TACTIX-74
2 (trade name of Daku Chemical Co., Ltd.), VG-3010 (trade name of Mitsui Petrochemical Co., Ltd.), 1032S (trade name of Yuka Shell Epoxy Co., Ltd.), epoxy resin HP-4032 having a naphthalene skeleton (Dainippon) Ink Co., Ltd. trade name, alicyclic epoxy resin EHPE-3150 (Daicel Chemical Co., Ltd. trade name) and the like.

【0015】本発明において、特に高分子量のポリマを
得る場合には、ポリエステルまたはポリエーテルとカル
ボン酸二無水物等はジアミンまたはジイソシアナート等
とは、実質的にほぼ等モルの使用を基本とし、30モル
%以内の過剰量が好ましい。
In the present invention, particularly when a polymer having a high molecular weight is obtained, the use of a polyester or polyether and a carboxylic dianhydride or the like with a diamine or a diisocyanate or the like is based on the use of substantially equimolar amounts. , An excess within 30 mol% is preferred.

【0016】ポリマ合成反応に用いられる有機溶媒は、
N−メチル−2−ピロリドン、N,N−ジメチルアセト
アミド、N,N−ジメチルホルムアミド、スルホラン等
の非プロトン性極性溶媒、テトラヒドロフラン、ジオキ
サン、モノグライム、ジグライム等のエーテル系溶媒等
が挙げられる。また、原料モノマや反応物の溶解のた
め、ベンゼン、トルエン、キシレン、メチルエチルケト
ン、メチルセロソルブ、セロソルブアセテート等の有機
溶媒を適量用いることも出来る。
The organic solvent used in the polymer synthesis reaction is
Aprotic polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and sulfolane; and ether solvents such as tetrahydrofuran, dioxane, monoglyme, and diglyme. Further, for dissolving the raw material monomers and the reactants, an appropriate amount of an organic solvent such as benzene, toluene, xylene, methyl ethyl ketone, methyl cellosolve, cellosolve acetate and the like can be used.

【0017】得られたポリマに有機溶媒を加えてワニス
等の液状の樹脂組成物とする場合に用いられる有機溶媒
としては、N−メチル−2−ピロリドン、N,N−ジメ
チルアセトアミド、N,N−ジメチルホルムアミド、ス
ルホラン等の非プロトン性極性溶媒、テトラヒドロフラ
ン、ジオキサン、モノグライム、ジグライム等のエーテ
ル系溶媒、ベンゼン、トルエン、キシレン、メチルエチ
ルケトン、メチルセロソルブ、セロソルブアセテート、
シクロヘキサノン等、あるいはこれらの混合溶媒等が挙
げられる。
When an organic solvent is added to the obtained polymer to form a liquid resin composition such as a varnish, the organic solvent includes N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N -Aprotic polar solvents such as dimethylformamide and sulfolane, ether solvents such as tetrahydrofuran, dioxane, monoglyme, diglyme, benzene, toluene, xylene, methyl ethyl ketone, methyl cellosolve, cellosolve acetate,
Examples thereof include cyclohexanone and the like and a mixed solvent thereof.

【0018】ポリマの重合反応後に残存する結合性を有
する官能基としては、例えば−OH、−COOH、−N
H2、−NCO、(−CO)2O などが挙げられる。
これらを修飾するためには−OH基またはエポキシ基な
どの反応性の官能基を有する低分子量化合物を用いれば
よく、−OH基を有する低分子量化合物としては例え
ば、アニシルアルコール、イソブチルアルコール、イソ
プロピルアルコール、イソプロピルベンジルアルコー
ル、イソペンチルアルコール、ウンデシルアルコール、
エイコシルアルコール、2−エチルヘキシルアルコー
ル、エナントアルコール、オクタデシルアルコール、オ
クチルアルコール、クミンアルコール、ジアセトンアル
コール、3,4−ジメトキシベンジルアルコール、ステ
アリルアルコール、デシルアルコール、テトラデシルア
ルコール、ドデシルアルコール、トリデシルアルコー
ル、ノニルアルコール、2−フェニルエチルアルコー
ル、フェニルプロピルアルコール、フェネチルアルコー
ル、ブチルアルコール、プロピルアルコール、イソプロ
ピルベンジルアルコール、ヘキサデシルアルコール、ヘ
キシルアルコール、ヘプチルアルコール、ベンジルアル
コール、ペンタデシルアルコール、ペンチルアルコー
ル、3−メチルブチルアルコール、1−メチルベンジル
アルコール、メトキシベンジルアルコール、ラウリルア
ルコール、1−オクテン−3−オール、α−テルピネオ
ール、N−アセチルアミノエタノール、2−アニリノエ
タノール、2−(ベンジルアミノ)エタノール、2−
(4−ビフェニリル)−2−プロパノール、ブタノー
ル、2−n−ブトキシエタノール、2−(2−n−ブト
キシエトキシ)エタノール、シクロドデカノール、シク
ロヘプタノール、シクロヘキサンエタノール、シクロヘ
キサンメタノール、シクロヘキサノール、2−シクロヘ
キシルエタノール、シクロオクタノール、シクロヘプタ
ノール、シクロプロピルメタノール、デカノール、1,
3−ジエトキシ−2−プロパノール、2−ジエチルアミ
ノエタノール、1−ジメチルアミノ−2−プロパノー
ル、3−ジエチルアミノ−1−プロパノール、2,3−
ジメチルシクロヘキサノール、2,2−ジメチル−1,
3−ジオキソラン−4−メタノール、ジフェニルメタノ
ール、ドコサノール、ドデカノール、1−エイコサノー
ル、エタノール、2−エトキシエタノール、2−(2−
エトキシエトキシ)エタノール、2−エトキシアミノエ
タノール、2−エチル−1−ブタノール、2−エチルヘ
キサノール、ヘプタノール、1−ヘキサデカノール、ヘ
キサノール、インダノール、メタノール、4−メトキシ
−1−ブタノール、2−メトキシエタノール、2−(2
−メトキシエトキシ)エタノール、2−(メチルアミ
ノ)エタノール、2−メチル−1−ブタノール、2−メ
チル−2−ブタノール、3−メチル−1−ブタノール、
4−メチルシクロヘキサノール、3−メチル−3−メト
キシブタノール、2−メチル−1−プロパノール、2−
メチル−2−プロパノール、2−モルホリノエタノー
ル、ノナノール、オクタノール、ペンタデカノール、ペ
ンタノール、2−フェノキシエタノール、N−フェニル
−2−アミノエタノール、フェニルエタノール、1−フ
ェニル−1−プロパノール、2−フェニル−1−プロパ
ノール、3−フェニルプロパノール、N−ピペリジンエ
タノール、プロパノール、ピリジルメタノール、2−
(2−ピリジル)エタノール、テトラデカノール、トリ
フェニルメタノール、トリフェニルシラノール、ウンデ
カノールなどを利用することが出来る。
Examples of the functional group having a binding property remaining after the polymerization reaction of the polymer include -OH, -COOH, -N
H2, -NCO, (-CO) 2O and the like.
In order to modify them, a low molecular weight compound having a reactive functional group such as an -OH group or an epoxy group may be used. Examples of the low molecular weight compound having a -OH group include anisyl alcohol, isobutyl alcohol, and isopropyl. Alcohol, isopropylbenzyl alcohol, isopentyl alcohol, undecyl alcohol,
Eicosyl alcohol, 2-ethylhexyl alcohol, enanthate alcohol, octadecyl alcohol, octyl alcohol, cumin alcohol, diacetone alcohol, 3,4-dimethoxybenzyl alcohol, stearyl alcohol, decyl alcohol, tetradecyl alcohol, dodecyl alcohol, tridecyl alcohol, Nonyl alcohol, 2-phenylethyl alcohol, phenylpropyl alcohol, phenethyl alcohol, butyl alcohol, propyl alcohol, isopropylbenzyl alcohol, hexadecyl alcohol, hexyl alcohol, heptyl alcohol, benzyl alcohol, pentadecyl alcohol, pentyl alcohol, 3-methylbutyl Alcohol, 1-methylbenzyl alcohol, methoxyben Alcohol, lauryl alcohol, 1-octen-3-ol, alpha-terpineol, N- acetyl-aminoethanol, 2-anilinoethanol, 2- (benzylamino) ethanol, 2-
(4-biphenylyl) -2-propanol, butanol, 2-n-butoxyethanol, 2- (2-n-butoxyethoxy) ethanol, cyclododecanol, cycloheptanol, cyclohexaneethanol, cyclohexanemethanol, cyclohexanol, 2- Cyclohexylethanol, cyclooctanol, cycloheptanol, cyclopropylmethanol, decanol, 1,
3-diethoxy-2-propanol, 2-diethylaminoethanol, 1-dimethylamino-2-propanol, 3-diethylamino-1-propanol, 2,3-
Dimethylcyclohexanol, 2,2-dimethyl-1,
3-dioxolan-4-methanol, diphenylmethanol, docosanol, dodecanol, 1-eicosanol, ethanol, 2-ethoxyethanol, 2- (2-
(Ethoxyethoxy) ethanol, 2-ethoxyaminoethanol, 2-ethyl-1-butanol, 2-ethylhexanol, heptanol, 1-hexadecanol, hexanol, indanol, methanol, 4-methoxy-1-butanol, 2-methoxyethanol , 2- (2
-Methoxyethoxy) ethanol, 2- (methylamino) ethanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol,
4-methylcyclohexanol, 3-methyl-3-methoxybutanol, 2-methyl-1-propanol, 2-
Methyl-2-propanol, 2-morpholinoethanol, nonanol, octanol, pentadecanol, pentanol, 2-phenoxyethanol, N-phenyl-2-aminoethanol, phenylethanol, 1-phenyl-1-propanol, 2-phenyl- 1-propanol, 3-phenylpropanol, N-piperidineethanol, propanol, pyridylmethanol, 2-
(2-pyridyl) ethanol, tetradecanol, triphenylmethanol, triphenylsilanol, undecanol and the like can be used.

【0019】またエポキシ基を有する低分子量化合物と
しては、スチレンオキシド、エポキシシクロオクタン、
1,2−エポキシ−3−フェノキシプロパン、1,2−
エポキシプロパン、2,3−エポキシプロピルイソプロ
ピルエーテル、2,3−エポキシプロピルフェニルエー
テル、グリシジルフェニルエーテル、シクロドデカンエ
ポキシド、ブチルグリシジルエーテルなどを利用するこ
とが出来る。
The low molecular weight compounds having an epoxy group include styrene oxide, epoxycyclooctane,
1,2-epoxy-3-phenoxypropane, 1,2-
Epoxy propane, 2,3-epoxypropyl isopropyl ether, 2,3-epoxypropyl phenyl ether, glycidyl phenyl ether, cyclododecane epoxide, butyl glycidyl ether and the like can be used.

【0020】本発明による方法では、ポリマ中に残存し
ている活性基を修飾してこれ以上の反応を抑制するこ
と、極性を低く制御すること、立体障害を導入するこ
と、これらの結果として会合性を低下させることなどを
目的としているため、添加する低分子量化合物はポリマ
中の活性基と反応した後は他のポリマやその原料、重合
途中のオリゴマ、他の低分子量化合物とは反応しないこ
とが望ましい。このため反応性の官能基を有する低分子
量化合物は、−OH基やエポキシ基などの比較的反応性
の高い官能基を一分子中に一つだけ有していて、これが
ポリマ中の活性基と効率的に反応することが好ましい。
ここで、ポリマ中に残存している官能基が−OH、−C
OOH、−NH2などの場合、エポキシ基との反応によ
って新たな−OHを生じるため、条件によってはこれが
副反応や会合の原因となることもある。このため一般的
には反応性の官能基として−OH基を有する低分子量化
合物を利用することが望ましい。特にポリマ合成を10
0℃以上の高温で行う場合や、反応停止後に水洗浄など
の方法によってポリマを精製する場合、もしくはポリマ
を固形物として得るために水やアルコールなどの溶媒に
沈殿させる場合などでは、沸点が高くて水溶性が高く、
毒性が低いベンジルアルコール系の化合物を利用すると
便利である。この方法によると、少量の低沸点化合物の
みで特別な装置を使わず簡単に処理出来、廃液処理も容
易なことから工業的にも有利である。低沸点の低分子量
化合物を用いる場合は反応液を低分子量化合物の沸点未
満まで低下させた後、反応容器に還流装置を取付けたう
えで反応液に低分子量化合物を添加し、しばらく還流し
ながら撹拌するなどの方法で対応出来る。
In the method according to the present invention, the active groups remaining in the polymer are modified to suppress further reactions, the polarity is controlled to be low, steric hindrance is introduced, and as a result, The low-molecular-weight compound to be added does not react with other polymers or its raw materials, oligomers in the course of polymerization, or other low-molecular-weight compounds after reacting with the active group in the polymer because the purpose is to reduce the reactivity. Is desirable. For this reason, a low molecular weight compound having a reactive functional group has only one relatively reactive functional group such as an -OH group or an epoxy group in one molecule, and this is the active group in the polymer. It is preferable to react efficiently.
Here, the functional groups remaining in the polymer are -OH, -C
In the case of OOH, -NH2, etc., a new -OH is generated by a reaction with an epoxy group, and this may cause a side reaction or association depending on conditions. For this reason, it is generally desirable to use a low molecular weight compound having an —OH group as a reactive functional group. Especially for polymer synthesis
When the reaction is performed at a high temperature of 0 ° C. or higher, when the polymer is purified by a method such as water washing after the reaction is stopped, or when the polymer is precipitated in a solvent such as water or alcohol to obtain the polymer as a solid, the boiling point is high. High water solubility,
It is convenient to use a benzyl alcohol compound having low toxicity. According to this method, it can be easily treated with only a small amount of a low-boiling compound without using a special apparatus, and the waste liquid can be easily treated, which is industrially advantageous. When using a low-molecular-weight compound having a low boiling point, after lowering the reaction solution to a temperature lower than the boiling point of the low-molecular-weight compound, attach a reflux device to the reaction vessel, add the low-molecular-weight compound to the reaction solution, and stir while refluxing for a while. It can be handled by such methods as doing.

【0021】不活性化処理に用いる低分子量化合物の添
加量は特に制限するものではないが、反応液に直接低分
子量化合物添加する場合は、ポリマ合成の原料に含まれ
ている結合性を有する官能基の総モル数に相当する分量
だけ低分子量化合物を加えれば充分なことが多い。また
ポリマの合成反応において、残存している未反応または
反応性を残した官能基は必ずしも全てが構造修飾される
必要はないため、単に反応液を低分子量化合物の中に直
接注加するだけでも効果を上げることが出来る。この場
合は反応液の全部が充分に浸るだけの低分子量化合物中
に反応液を注加することが望ましい。
The amount of the low molecular weight compound used for the deactivation treatment is not particularly limited. However, when the low molecular weight compound is added directly to the reaction solution, the functional group having the binding property contained in the raw material for polymer synthesis is used. It is often sufficient to add the low molecular weight compound in an amount corresponding to the total number of moles of the group. In addition, in the polymer synthesis reaction, all the remaining unreacted or reactive functional groups do not necessarily need to be structurally modified, so simply pouring the reaction solution directly into a low molecular weight compound is sufficient. The effect can be improved. In this case, it is desirable to pour the reaction solution into a low molecular weight compound in which the entire reaction solution is sufficiently immersed.

【0022】以上に述べた方法で不活性化処理した反応
液は空気中の湿気や酸素による反応を起こしにくいた
め、ポリマの性質が長時間変化しにくい。このため反応
液をそのまま樹脂溶液として保存することが可能になる
ほか、反応液をそのままワニスとして塗工したり、紡糸
して繊維化することも出来るようになる。また、樹脂の
精製や樹脂を固形物として得ることを目的として反応液
を水に沈殿させた場合でも、これらの沈殿溶媒を介した
反応が起こりにくいためポリマの物性を変化させずに処
理することができる。これは例えばポリマ中に−NCO
基が残存していた場合、水を介したポリマ同士の反応で
尿素結合を生じて高分子量化することがある。これによ
ってポリマの物性変化を招くほか溶媒に対するポリマの
溶解性が著しく低下してゲルを生じ易くなるため、反応
液の段階で不活性化処理を施しておくことは極めて有効
な方法である。
The reaction solution deactivated by the above-described method hardly causes a reaction due to moisture or oxygen in the air, so that the properties of the polymer hardly change for a long time. For this reason, the reaction solution can be stored as a resin solution as it is, and the reaction solution can be applied as it is as a varnish, or can be spun into a fiber. In addition, even when the reaction solution is precipitated in water for the purpose of purifying the resin or obtaining the resin as a solid, it is difficult to cause a reaction via these precipitation solvents, so that the treatment is performed without changing the physical properties of the polymer. Can be. This is for example -NCO in the polymer
If the group remains, a urea bond may be formed by the reaction between the polymers via water to increase the molecular weight. This causes a change in the physical properties of the polymer, and also significantly lowers the solubility of the polymer in a solvent to easily form a gel. Therefore, performing an inactivation treatment at the stage of a reaction solution is an extremely effective method.

【0023】本発明の方法は一度形成されたポリマの会
合を任意の程度まで解消し、再び会合することを防ぐ方
法としても利用できる。一般に、ポリマの高分子量化反
応はポリマ自体の重合反応の他にポリマ同士の会合も起
こることが多い。会合体の生成量は原料の仕込比率、反
応液濃度、反応温度などの合成条件によって影響されや
すい。また反応液の粘度は会合体の生成量に影響され易
いため、反応液粘度を重合の終点判断の基準としたと
き、合成ロットごとで会合体の生成量が異なった場合は
ポリマ自体の分子量も一定のものが得られなくなる。ま
たGPC法による測定で得られるデータは会合体を含め
たポリマの分子量分布であるため、ポリマ自体の正確な
分子量分布は得られにくい。本発明の方法でポリマ中に
残存した未反応または反応性を残した官能基を修飾し、
反応性や極性を低下させると同時にポリマ鎖中に部分的
な立体障害を起こさせることによって、ほとんどゴム状
になるまで反応させた反応液でも溶液状にまで戻すこと
が出来、樹脂溶液として利用出来るほか、水やアルコー
ルなどの溶媒への沈殿操作も極めて容易になる。また、
ポリマの会合性が低下することによって重量平均分子量
と数平均分子量の比(Mw/Mn)が小さくなり、ポリ
マ自体の分子量が測定しやすくなると同時に、ポリマ自
体の性質が現れやすくなる。重量平均分子量と数平均分
子量の比(Mw/Mn)はポリマの分子構造や処理時間
に依存するが、生成するポリマが直鎖で架橋構造を持た
ない場合、Mw/Mn=2.5〜1.3の範囲に調整こ
とが出来る。
The method of the present invention can also be used as a method for resolving once formed polymer association to any extent and preventing re-association. Generally, the polymerization reaction of a polymer often causes an association between the polymers in addition to the polymerization reaction of the polymer itself. The amount of aggregate formed is likely to be affected by synthesis conditions such as the raw material charge ratio, reaction solution concentration, and reaction temperature. In addition, since the viscosity of the reaction solution is easily affected by the amount of aggregates formed, when the viscosity of the reaction solution is used as a criterion for judging the end point of polymerization, when the amount of aggregates formed differs for each synthesis lot, the molecular weight of the polymer itself also increases. You can't get a certain thing. Further, since the data obtained by the measurement by the GPC method is the molecular weight distribution of the polymer including the aggregate, it is difficult to obtain an accurate molecular weight distribution of the polymer itself. Modifying the unreacted or reactive functional groups remaining in the polymer by the method of the present invention,
By reducing reactivity and polarity and causing partial steric hindrance in the polymer chain, even a reaction solution that has reacted almost to a rubbery state can be returned to a solution state and can be used as a resin solution In addition, the precipitation operation in a solvent such as water or alcohol becomes extremely easy. Also,
As the associative properties of the polymer decrease, the ratio (Mw / Mn) between the weight average molecular weight and the number average molecular weight decreases, and the molecular weight of the polymer itself can be easily measured, and at the same time, the properties of the polymer itself can easily appear. The ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) depends on the molecular structure and processing time of the polymer, but when the resulting polymer is linear and has no crosslinked structure, Mw / Mn = 2.5 to 1 .3 can be adjusted.

【0024】さらに、本方法を利用するとポリマ合成に
おいて目的の平均分子量が得られるように原料の仕込み
比率を調整しておくと、その条件でのポリマ自体の重合
反応が終了するのに充分なだけの時間をあらかじめ測定
しておけば、その時間だけ反応させたあと不活性化処理
を行うことで、常に一定の分子量分布を持つポリマを得
ることが出来る。すなわち、重合反応を途中の反応液粘
度や分子量変化を測定することなく時間制御のみで取り
扱うことが出来るようになる。
Further, if the feed ratio of the raw materials is adjusted so that the desired average molecular weight can be obtained in the polymer synthesis by using the present method, it is sufficient that the polymerization reaction of the polymer itself under the conditions is completed. If the time is measured in advance, a polymer having a constant molecular weight distribution can be always obtained by performing the inactivation treatment after reacting for the time. That is, the polymerization reaction can be handled only by controlling the time without measuring the viscosity of the reaction solution or the change in the molecular weight during the polymerization reaction.

【0025】不活性化処理に要する時間は使用する低分
子量化合物や反応条件、目的とする会合解消の程度によ
って異なるため特に規定するものではないが、反応液に
直接低分子量化合物を添加する場合で概ね10分間〜2
時間程度、好ましくは1時間以上である。多くの場合、
ポリマの会合はポリマ自体の重合がある程度以上進行し
た状態で起こり易くなり、それに伴って反応液の粘度は
ある時点から急速に上昇する。しかし、反応液が数10
0P以上の相当な高粘度になっても本発明による処理を
加えることで会合は比較的簡単に解消されるため、ごく
短時間のうちに低粘度の溶液に戻すことが出来る。
The time required for the inactivation treatment is not particularly defined because it depends on the low-molecular weight compound used, the reaction conditions, and the desired degree of dissociation of the association. About 10 minutes to 2
It is about an hour, preferably one hour or more. In many cases,
Polymer association is likely to occur in a state where polymerization of the polymer itself has progressed to a certain degree or more, and accordingly, the viscosity of the reaction solution rapidly increases from a certain point. However, the reaction solution is several tens.
Even if the viscosity becomes considerably higher than 0 P, the association is relatively easily eliminated by the treatment according to the present invention, so that the solution can be returned to a low-viscosity solution in a very short time.

【0026】構造修飾され反応性と極性を低下させると
同時に任意の程度まで会合体を解消させたポリマは、一
般的に溶媒に対する溶解性が向上している。このため、
得られたポリマを使って樹脂溶液を調製した場合、処理
を施さないものを使った場合と較べて樹脂溶液中に占め
る樹脂分の比率を高めることが出来る。これによって例
えば樹脂溶液をワニスとして塗工に用いる場合には、ワ
ニス粘度や樹脂濃度の調整幅を広げることが出来るよう
になる。これによって塗工面の平滑性や乾燥の膜厚を調
製することが出来る。構造修飾されたポリマは再び会合
することが少なくなるため、樹脂溶液にした場合でも凝
集が起こりにくくなる。このため粘度変化を始めとする
樹脂溶液の経時安定性が高くなり、保存寿命が長くする
ことが出来る。
Polymers that have been structurally modified to reduce reactivity and polarity and at the same time to dissociate to any extent have improved solubility in solvents. For this reason,
When a resin solution is prepared using the obtained polymer, the ratio of the resin component in the resin solution can be increased as compared with the case where a resin solution is not used. Thus, for example, when a resin solution is used as a varnish for coating, the adjustment range of the varnish viscosity and the resin concentration can be widened. This makes it possible to adjust the smoothness of the coated surface and the thickness of the dried film. Since the structurally modified polymer is less likely to reassociate, aggregation is less likely to occur even in a resin solution. For this reason, the stability over time of the resin solution including the change in viscosity is increased, and the storage life can be extended.

【0027】すでに他の方法で固形物として得られてい
る樹脂に対して新たに不活性化処理を行う場合は、樹脂
を溶剤に溶かした後、反応性の官能基を有する低分子量
化合物を添加し、必要に応じて還流しながら加熱、撹拌
することで処理することが出来る。
When a deactivation treatment is newly performed on a resin already obtained as a solid by another method, the resin is dissolved in a solvent, and then a low molecular weight compound having a reactive functional group is added. If necessary, the mixture can be treated by heating and stirring while refluxing.

【0028】本発明のポリマ合成方法は、ポリマ合成後
の反応液を溶媒中に沈殿させる際に生じる副反応を防ぐ
ことができる。重合反応後に処理を行うことにより、ゲ
ルパーミエーションクロマトグラフィ(GPC)法で測
定される重量平均分子量と数平均分子量の比(Mw/M
n)を小さくすることができる。ポリマ合成で所定の時
間だけ重合を行った後に反応液の不活性化処理を行うこ
とにより、合成ロットに依存せず一定の分子量分布を有
するポリマを得ることができる。既存のポリマを、反応
性の官能基を有する低分子量化合物によって構造修飾す
ることによりゲルパーミエーションクロマトグラフィ
(GPC)法で測定されるポリマの重量平均分子量と数
平均分子量の比(Mw/Mn)を小さくすることができ
る。本発明により得られたポリマを利用することによ
り、樹脂溶液中の樹脂分比率を向上させることができ、
また樹脂溶液の保存寿命を向上させることができる。
The method for synthesizing a polymer according to the present invention can prevent a side reaction occurring when a reaction solution after polymer synthesis is precipitated in a solvent. By performing the treatment after the polymerization reaction, the ratio (Mw / M) of the weight average molecular weight to the number average molecular weight measured by the gel permeation chromatography (GPC) method is obtained.
n) can be reduced. By inactivating the reaction solution after polymerizing for a predetermined time in polymer synthesis, a polymer having a constant molecular weight distribution can be obtained regardless of the synthesis lot. By modifying the structure of an existing polymer with a low molecular weight compound having a reactive functional group, the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight of the polymer measured by the gel permeation chromatography (GPC) method is calculated. Can be smaller. By utilizing the polymer obtained according to the present invention, it is possible to improve the resin component ratio in the resin solution,
Further, the storage life of the resin solution can be improved.

【0029】[0029]

【実施例】実施例1 反応液中の固形分比率23.3%、反応時間3時間、水
およびメタノールに沈殿3リットル・セパラブルフラス
コにスルホラン2452gと3−メチル−1−フェニル
−3−ホスホレン 1−オキシド 0.86gを量り取
った。減圧アダプタを介して100ミリリットル・ナス
フラスコを接続した冷却管、窒素吸入栓、撹拌翼を3つ
口セパラブルカバに付け、セパラブルフラスコに取付け
て容器内に窒素を通しながら容器をオイルバス中200
℃で撹拌した。溶液温度がほぼ200℃になったらヘキ
サメチレンジイソシアナート(Mw=168.2)4
5.98gと3,3’,4,4’−ベンゾフェノンテト
ラカルボン酸二無水物(Mw=322.2)70.56
g、両末端カルボキシル基のポリエステル(アジピン酸
と1,6−ヘキサンジオールの共重合体,Mn=164
5)387.2g、4,4’−ジフェニルメタンジイソ
シアナート(Mw=250.3)68.43gを加えて
200℃で撹拌した。3時間後、反応液を容器ごと氷水
で冷却した。反応液が100℃くらいまで温度降下した
ら反応液の半分を水5リットル中に、残り半分をメタノ
ール5リットル中に注加して固化させた。得られた樹脂
固形分は各々純水と共にミキサで粉砕して濾過した。こ
れを45℃で減圧乾燥し、乾燥した樹脂粉を合計36
8.6g得た。水への沈殿を行った樹脂粉でMw/Mn
=8.04(Mw=530,205,Mn=65,91
0)、メタノールへの沈殿を行った樹脂粉でMw/Mn
=4.59(Mw=289,893,Mn=63,09
3)であった。それぞれのGPCチャートを図1に示す
(展開液:DMF、流速:1ml/min、検出波長:
280nm、以下同じ)。
EXAMPLE 1 A solid content ratio of 23.3% in a reaction solution, a reaction time of 3 hours, precipitation in water and methanol in a 3-liter separable flask, 2452 g of sulfolane and 3-methyl-1-phenyl-3-phospholene in a separable flask. 0.86 g of 1-oxide was weighed out. A cooling tube connected to a 100 ml eggplant flask via a decompression adapter, a nitrogen suction plug, and a stirring blade were attached to a three-port separable cover, and the container was attached to a separable flask and passed through a container in an oil bath while passing nitrogen through the container.
Stirred at ° C. When the solution temperature reaches approximately 200 ° C., hexamethylene diisocyanate (Mw = 168.2) 4
5.98 g and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (Mw = 322.2) 70.56
g, polyester having carboxyl groups at both terminals (copolymer of adipic acid and 1,6-hexanediol, Mn = 164)
5) 387.2 g and 68.43 g of 4,4′-diphenylmethane diisocyanate (Mw = 250.3) were added, and the mixture was stirred at 200 ° C. After 3 hours, the reaction solution was cooled with ice water together with the container. When the temperature of the reaction solution dropped to about 100 ° C., half of the reaction solution was poured into 5 liters of water and the other half was poured into 5 liters of methanol and solidified. Each of the obtained resin solids was ground with a mixer together with pure water and filtered. This was dried under reduced pressure at 45 ° C.
8.6 g were obtained. Mw / Mn with resin powder precipitated in water
= 8.04 (Mw = 530,205, Mn = 65,91)
0), Mw / Mn with resin powder precipitated in methanol
= 4.59 (Mw = 289,893, Mn = 63,09)
3). Each GPC chart is shown in FIG. 1 (developing solution: DMF, flow rate: 1 ml / min, detection wavelength:
280 nm, the same applies hereinafter).

【0030】実施例2 反応液中の固形分比率18.4%、反応時間2時間30
分3リットル・セパラブルフラスコにビスフェノール−
A ビストリメリテート 二無水物(Mw=576.
5)94.2g、両末端カルボキシル基のポリエステル
(アジピン酸と1,6−ヘキサンジオールの共重合体、
Mn=892)350.0gを量り取り、スルホラン2
587gをこれに注いだ。減圧アダプタを介して100
ミリリットル・ナスフラスコを接続した冷却管、窒素吸
入栓、撹拌翼を3つ口セパラブルカバに付け、セパラブ
ルフラスコに取付けた。容器をオイルバス中170℃で
撹拌し原料が全部溶解して反応溶液温度がほぼ170℃
になったら4,4’−ジフェニルメタンジイソシアナー
ト(Mw=250.3)166.9gを加えた。4,
4’−ジフェニルメタンジイソシアナートが溶解したら
3−メチル−1−フェニル−3−ホスホレン 1−オキ
シドを0.9gを加え撹拌を続けた。2時間30分後、
反応液を容器ごと氷水で冷却した。反応液が100℃く
らいまで温度降下したら反応液の半分を水5リットル中
に注加して固化させた。また、残り半分はメタノール5
リットル中に注加し薬匙でかき混ぜたのち室温で一晩放
置した。これに水2リットルを加えて樹脂を析出させ
た。得られた樹脂固形分は各々純水と共にミキサで粉砕
して濾過した。これを45℃で減圧乾燥し、乾燥した樹
脂粉を合計565.2g得た。水への沈殿を行った樹脂
粉でMw/Mn=6.40(Mw=312,345,M
n=48,784)、メタノールへの沈殿を行った樹脂
粉でMw/Mn=3.60(Mw=177,588,M
n=49,335)であった。それぞれのGPCチャー
トを図2に示す。
Example 2 The solid content in the reaction solution was 18.4%, and the reaction time was 2 hours and 30 hours.
Bisphenol in a 3-liter separable flask
A bistrimellitate dianhydride (Mw = 576.
5) 94.2 g of a polyester having carboxyl groups at both terminals (copolymer of adipic acid and 1,6-hexanediol,
Mn = 892) 350.0 g was weighed and sulfolane 2
587 g was poured into this. 100 via decompression adapter
A cooling tube connected to a milliliter eggplant flask, a nitrogen inlet cock, and a stirring blade were attached to a three-port separable cover and attached to the separable flask. The vessel was stirred at 170 ° C in an oil bath, and all the raw materials were dissolved.
When it became, 166.9 g of 4,4'-diphenylmethane diisocyanate (Mw = 250.3) was added. 4,
When 4'-diphenylmethane diisocyanate was dissolved, 0.9 g of 3-methyl-1-phenyl-3-phospholene 1-oxide was added, and stirring was continued. Two and a half hours later,
The reaction solution was cooled with ice water together with the container. When the temperature of the reaction solution dropped to about 100 ° C., half of the reaction solution was poured into 5 liters of water and solidified. The other half is methanol 5
The mixture was poured into a liter, stirred with a spoon, and allowed to stand at room temperature overnight. To this was added 2 liters of water to precipitate the resin. Each of the obtained resin solids was ground with a mixer together with pure water and filtered. This was dried under reduced pressure at 45 ° C. to obtain 565.2 g of the dried resin powder in total. Mw / Mn = 6.40 (Mw = 312,345, M
n = 48,784), and Mw / Mn = 3.60 (Mw = 177,588, M
n = 49,335). Each GPC chart is shown in FIG.

【0031】実施例3 実施例2で水およびメタノールに沈殿して得た樹脂と、
別途サンプル作成したベンジルアルコール処理して得た
樹脂とでシクロヘキサノンへの溶解性を測定した。水に
沈殿させて得た樹脂は室温では一昼夜撹拌しても溶け残
りがあった。これを70℃に加熱して2時間撹拌したと
ころ完全に溶解した。メタノールに沈殿させて得た樹脂
は室温で一昼夜撹拌したところ完全に溶解した。ベンジ
ルアルコール処理した樹脂は室温で3時間程度の撹拌で
完全に溶解した。
Example 3 The resin obtained in Example 2 by precipitation in water and methanol,
The solubility in cyclohexanone was measured with a benzyl alcohol-treated resin prepared separately. The resin obtained by precipitation in water remained undissolved at room temperature even after stirring all day and night. This was heated to 70 ° C. and stirred for 2 hours to completely dissolve. The resin obtained by precipitation in methanol was completely dissolved when stirred at room temperature for 24 hours. The resin treated with benzyl alcohol was completely dissolved by stirring at room temperature for about 3 hours.

【0032】実施例4 反応液中の固形分比率50.0%、反応時間30分、ベ
ンジルアルコール処理200ミリリットル・セパラブル
フラスコにスルホラン29.4gと3−メチル−1−フ
ェニル−3−ホスホレン 1−オキシド 0.06gを
量り取った。減圧アダプタを介して100ミリリットル
・ナスフラスコを接続した冷却管、窒素吸入栓、撹拌翼
を3つ口セパラブルカバに付け、セパラブルフラスコに
取付けて容器内に窒素を通しながら容器をオイルバス中
170℃で撹拌した。溶液温度がほぼ170℃になった
らヘキサメチレンジイソシアナート(Mw=168.
2)2.88gと3,3’,4,4’−ベンゾフェノン
テトラカルボン酸二無水物(Mw=322.2)2.4
3gを加えて間撹拌した。20分後、両末端カルボキシ
ル基のポリエステル(アジピン酸と1,6−ヘキサンジ
オールの共重合体,Mn=1441)20.0gと4,
4’−ジフェニルメタンジイソシアナート(Mw=25
0.3)3.07gを加えて撹拌を続けた。30分後、
ベンジルアルコール(Mw=108.1)11.7gを
加えて1時間撹拌した。得られた反応液はミキサで氷水
と一緒に粉砕して濾過した。得られた樹脂粉はミキサで
純水と一緒に再粉砕して濾過した。この操作を3回繰り
返した後、45℃で減圧乾燥した。これによって乾燥し
た樹脂粉27.71gを得た。ベンジルアルコール添加
直前の反応液でMw/Mn=11.21(Mw=34
8,610,Mn=31,108)、ベンジルアルコー
ル処理1時間後でMw/Mn=1.74(Mw=31,
647,Mn=18,209)であった。それぞれのG
PCチャートを図3に示す。
Example 4 29.4 g of sulfolane and 3-methyl-1-phenyl-3-phospholene were placed in a 200 ml separable flask treated with benzyl alcohol at a solid content ratio of 50.0% in a reaction solution for a reaction time of 30 minutes. 0.06 g of the oxide was weighed out. A cooling tube connected to a 100-ml eggplant flask via a decompression adapter, a nitrogen suction plug, and a stirring blade were attached to a three-port separable cover. The container was attached to the separable flask and the container was placed in an oil bath at 170 ° C. while passing nitrogen through the container. And stirred. When the solution temperature reaches approximately 170 ° C., hexamethylene diisocyanate (Mw = 168.
2) 2.88 g and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (Mw = 322.2) 2.4
3 g was added and stirred for a while. After 20 minutes, 20.0 g of a polyester having carboxyl groups at both ends (copolymer of adipic acid and 1,6-hexanediol, Mn = 1441) was added to
4'-diphenylmethane diisocyanate (Mw = 25
0.3) 3.07 g was added and stirring was continued. 30 minutes later,
11.7 g of benzyl alcohol (Mw = 108.1) was added, and the mixture was stirred for 1 hour. The obtained reaction solution was pulverized with ice water using a mixer and filtered. The obtained resin powder was reground with a pure water with a mixer and filtered. After repeating this operation three times, it was dried at 45 ° C. under reduced pressure. As a result, 27.71 g of a dried resin powder was obtained. In the reaction solution immediately before the addition of benzyl alcohol, Mw / Mn = 11.21 (Mw = 34
8,610, Mn = 31,108), Mw / Mn = 1.74 (Mw = 31,
647, Mn = 18,209). Each G
FIG. 3 shows the PC chart.

【0033】実施例5 反応液中の固形分比率30.0%、反応時間2時間30
分、ベンジルアルコール処理2リットル・セパラブルフ
ラスコにスルホラン671gと3−メチル−1−フェニ
ル−3−ホスホレン 1−オキシド 0.58gを量り
取った。減圧アダプタを介して100ミリリットル・ナ
スフラスコを接続した冷却管、窒素吸入栓、撹拌翼を3
つ口セパラブルカバに付け、セパラブルフラスコに取付
けて容器内に窒素を通しながら容器をオイルバス中17
0℃で撹拌した。溶液温度がほぼ170℃になったらヘ
キサメチレンジイソシアナート(Mw=168.2)2
1.9gと3,3’,4,4’−ベンゾフェノンテトラ
カルボン酸二無水物(Mw=322.2)36.1gを
加えて間撹拌した。20分後、両末端カルボキシル基の
ポリエステル(アジピン酸と1,6−ヘキサンジオール
の共重合体,Mn=1605)200.0gと4,4’
−ジフェニルメタンジイソシアナート(Mw=250.
3)29.6gを加えて撹拌を続けた。2時間30分
後、ベンジルアルコール(Mw=108.1)104.
9gを加えて1時間撹拌した。得られた反応液はミキサ
で氷水と一緒に粉砕して濾過した。得られた樹脂粉はミ
キサで純水と一緒に再粉砕して濾過した。この操作を3
回繰り返した後、45℃で減圧乾燥した。これによって
乾燥した樹脂粉268.6gを得た。ベンジルアルコー
ル添加直前の反応液でMw/Mn=8.69(Mw=3
00,051,Mn=34,538)、ベンジルアルコ
ール処理1時間後でMw/Mn=2.83(Mw=7
9,928,Mn=28,262)であった。それぞれ
のGPCチャートを図4に示す。
Example 5 The solid content in the reaction mixture was 30.0%, and the reaction time was 2 hours and 30 hours.
Then, 671 g of sulfolane and 0.58 g of 3-methyl-1-phenyl-3-phospholene 1-oxide were weighed and placed in a 2-liter separable flask treated with benzyl alcohol. A cooling tube connected to a 100 ml eggplant flask via a decompression adapter, a nitrogen suction plug, and a stirring blade
Attach to a separable cover, attach to a separable flask and place the container in an oil bath while passing nitrogen through the container.
Stirred at 0 ° C. When the solution temperature reaches approximately 170 ° C., hexamethylene diisocyanate (Mw = 168.2) 2
1.9 g and 36.1 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (Mw = 322.2) were added, and the mixture was stirred. After 20 minutes, 200.0 g of a polyester having a carboxyl group at both terminals (copolymer of adipic acid and 1,6-hexanediol, Mn = 1605) and 4,4 ′
-Diphenylmethane diisocyanate (Mw = 250.
3) 29.6 g was added and stirring was continued. After 2 hours and 30 minutes, benzyl alcohol (Mw = 108.1).
9 g was added and stirred for 1 hour. The obtained reaction solution was pulverized with ice water using a mixer and filtered. The obtained resin powder was reground with a pure water with a mixer and filtered. This operation 3
After repeating this process, it was dried under reduced pressure at 45 ° C. As a result, 268.6 g of a dried resin powder was obtained. In the reaction solution immediately before the addition of benzyl alcohol, Mw / Mn = 8.69 (Mw = 3
00,051, Mn = 34,538), 1 hour after benzyl alcohol treatment, Mw / Mn = 2.83 (Mw = 7)
9,928, Mn = 28,262). Each GPC chart is shown in FIG.

【0034】実施例6 実施例5でベンジルアルコール処理して得た樹脂と、別
途少量づつサンプル作成した、水およびメタノールに沈
殿させて得た樹脂とでNMPへの溶解性を測定した。水
に沈殿させて得た樹脂は室温ではほとんど溶解しなかっ
た。これを150℃に加熱して2時間撹拌したところ、
ごく一部が溶解したものの大部分が半透明のゲルとして
溶け残った。メタノールに沈殿させて得た樹脂は室温で
部分的に溶解したが完全には溶解せず、70℃に加熱し
て1時間撹拌したところ完全に溶解した。ベンジルアル
コール処理して得た樹脂は室温で完全に溶解した。樹脂
のNMP溶液の粘度が70Pになる時点での固形分比率
を求めたところ、ベンジルアルコール処理の樹脂で5
2.8%、メタノールに沈殿させて得た樹脂で41.0
%であった。二つのNMP溶液を密封容器に入れ室温で
放置したところ、ベンジルアルコール処理の樹脂では一
箇月以上、均一な溶液状態を維持していたがメタノール
に沈殿させて得た樹脂は約二週間後に寒天状になった。
粘度の経日変化を図5に示す。
Example 6 The solubility in NMP of a resin obtained in Example 5 by benzyl alcohol treatment and a resin separately prepared in small amounts and prepared by precipitation in water and methanol were measured. The resin obtained by precipitation in water hardly dissolved at room temperature. When this was heated to 150 ° C. and stirred for 2 hours,
Although only a small part was dissolved, most of it remained dissolved as a translucent gel. The resin obtained by precipitation in methanol was partially dissolved at room temperature but not completely dissolved, and was completely dissolved when heated to 70 ° C. and stirred for 1 hour. The resin obtained by benzyl alcohol treatment was completely dissolved at room temperature. The solid content ratio at the time when the viscosity of the NMP solution of the resin became 70P was determined.
2.8%, 41.0% of the resin obtained by precipitation in methanol.
%Met. When the two NMP solutions were placed in a sealed container and allowed to stand at room temperature, the benzyl alcohol-treated resin maintained a uniform solution state for at least one month, but the resin obtained by precipitation in methanol became agar-like after about two weeks. Became.
FIG. 5 shows the change over time in viscosity.

【0035】[0035]

【発明の効果】本発明のポリマの合成方法により、重合
反応の停止および樹脂同士の会合解消、得られた樹脂の
溶解性向上、再会合の抑制などを効果的に行うことがで
きる。ポリマ合成において、原料の仕込み段階で目的の
平均分子量が得られるよう成分比率を調整しておけば、
反応途中で粘度変化や分子量変化に注意を払うことなく
反応終点を時間のみで規定することが出来るようにな
る。その後、本発明による不活性化処理を行うことによ
ってポリマの会合を任意の水準まで低下させた、経時安
定性の高い樹脂溶液を得ることが出来る。この樹脂溶液
はそのまま塗工や紡糸に用いることが出来る。さらに、
この樹脂溶液を洗浄・精製して得られる樹脂固形分は溶
剤に対する溶解性が高く、高濃度の樹脂溶液を調製する
ことが出来るようになる。
According to the method for synthesizing the polymer of the present invention, it is possible to effectively stop the polymerization reaction, eliminate the association between the resins, improve the solubility of the obtained resin, and suppress the re-association. In polymer synthesis, if the component ratio is adjusted so that the desired average molecular weight is obtained at the stage of charging the raw materials,
The reaction end point can be defined only by time without paying attention to a change in viscosity or a change in molecular weight during the reaction. Thereafter, by performing the inactivation treatment according to the present invention, it is possible to obtain a resin solution having reduced aging of the polymer to an arbitrary level and having high stability over time. This resin solution can be used for coating and spinning as it is. further,
The resin solid content obtained by washing and purifying the resin solution has high solubility in a solvent, so that a high-concentration resin solution can be prepared.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 GPCのチャート。反応液中の固形分比率2
3.3%、反応時間3時間、水およびメタノールに沈殿
して得た樹脂粉で測定。(横軸:保持時間、縦軸:検出
比、以下同じ。)
FIG. 1 is a GPC chart. Solid content ratio in reaction liquid 2
3.3%, reaction time 3 hours, measured with resin powder obtained by precipitation in water and methanol. (Horizontal axis: retention time, vertical axis: detection ratio, the same applies hereinafter.)

【図2】 GPCのチャート。反応液中の固形分比率1
8.4%、反応時間2時間30分、水およびメタノール
に沈殿して得た樹脂粉で測定。
FIG. 2 is a GPC chart. Solid content ratio in reaction liquid 1
8.4%, reaction time 2 hours 30 minutes, measured with resin powder obtained by precipitation in water and methanol.

【図3】 GPCのチャート。反応液中の固形分比率5
0.0%、反応時間30分、ベンジルアルコール処理直
前の反応液と処理後に得た樹脂粉で測定。
FIG. 3 is a chart of GPC. Solid content ratio in reaction liquid 5
0.0%, reaction time 30 minutes, measured with the reaction liquid immediately before the benzyl alcohol treatment and the resin powder obtained after the treatment.

【図4】 GPCのチャート。反応液中の固形分比率3
0.0%、反応時間2時間30分、ベンジルアルコール
処理直前の反応液と処理後に水に沈殿させて得た樹脂粉
で測定。
FIG. 4 is a chart of GPC. Solid content ratio in reaction liquid 3
0.0%, reaction time 2 hours 30 minutes, measured with the reaction liquid immediately before the benzyl alcohol treatment and the resin powder obtained by precipitation in water after the treatment.

【図5】 反応液をメタノールに沈殿させて得た樹脂粉
と、反応液をベンジルアルコール処理したあと水に沈殿
させて得た樹脂粉について、初期粘度70Pに調製した
ワニスの粘度経日変化を示すグラフ。
FIG. 5 shows the change over time in the viscosity of a varnish prepared to have an initial viscosity of 70P for a resin powder obtained by precipitating a reaction solution in methanol and a resin powder obtained by precipitating the reaction solution in water after benzyl alcohol treatment. The graph shown.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08F 8/00 C08F 8/00 Fターム(参考) 4F071 AA60 AC05 AC12 AC19 AE19 BC00 4J002 CM041 EC037 EL027 EP016 EU026 EU047 EV306 HA03 HA06 4J031 CA06 CD09 CD10 4J043 PB22 PB23 PB24 PC015 QB15 QB26 QB31 QB32 QB33 QB58 QB68 RA05 RA06 RA24 RA35 SA06 SA11 SA42 SA43 SA44 SA71 SA78 SB01 TA02 TA12 TA13 TA22 TA38 TB03 UA041 UA081 UA121 UA122 UA131 UA132 UA141 UA151 UA152 UA261 UA262 UA662 UA672 UA761 UA762 UB011 UB021 UB022 UB062 UB121 UB122 UB132 UB151 UB152 UB172 UB221 UB301 UB302 UB351 UB401 UB402 VA012 VA021 VA022 VA031 VA032 VA041 VA042 VA051 VA052 VA061 VA062 VA071 VA081 VA082 VA092 WA03 WA16 WA22 WA23 XA15 XA16 XA19 XB06 YB22 YB29 ZA23 ZB03 ZB04 4J100 HC09 HC38 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) // C08F 8/00 C08F 8/00 F term (reference) 4F071 AA60 AC05 AC12 AC19 AE19 BC00 4J002 CM041 EC037 EL027 EP016 EU026 EU047 EV306 HA03 HA06 4J031 CA06 CD09 CD10 4J043 PB22 PB23 PB24 PC015 QB15 QB26 QB31 QB32 QB33 QB58 QB68 RA05 RA06 RA24 RA35 SA06 SA11 SA42 SA43 SA44 SA71 SA78 SB01 TA02 TA12 TA13 TA22 TA38 TB03 UA041 UA121 UA121 UA121 UA121 UA121 UA121 UAUA UA760

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 モノマを重合させ、ポリマが目的とする
分子量付近まで高分子量化した反応液に、反応性の官能
基を有する低分子量化合物を添加して残存活性基を修飾
することを特徴とするポリマの合成方法。
A low molecular weight compound having a reactive functional group is added to a reaction solution in which a monomer is polymerized to increase the molecular weight of a polymer to around a target molecular weight, thereby modifying the remaining active group. Polymer synthesis method.
【請求項2】 第1のモノマ(A)と、これと反応性を
有する第2のモノマ(B)を、それぞれ目的とする平均
分子量によって規定される当量ずつ反応させて高分子量
化した後、反応液に反応性の官能基を有する低分子量化
合物を添加して残存活性基を修飾することを特徴とする
ポリマの合成方法。
2. After the first monomer (A) and the second monomer (B) having reactivity with the first monomer (A) are reacted with each other by an equivalent defined by an intended average molecular weight to obtain a high molecular weight, A method for synthesizing a polymer, comprising adding a low molecular weight compound having a reactive functional group to a reaction solution to modify the remaining active group.
【請求項3】 モノマ(A)は結合性を有する官能基と
して(−CO)2O、−COOH、−OH、又は−CH
OCH2を、モノマ(B)は結合性を有する官能として
−NH2、−NCO又は−CHOCH2をそれぞれ有して
いる請求項2記載のポリマの合成方法。
3. The monomer (A) has a functional group having a binding property of (—CO) 2 O, —COOH, —OH, or —CH.
The OCH 2, monomer (B) is -NH 2 as a functional capable of binding, -NCO or -CHOCH2 2 methods of synthesis polymers of which claim 2 has respectively.
【請求項4】 請求項1〜3各項記載の方法で使用され
る、反応性の官能基を有する低分子量化合物を添加して
残存活性基を修飾した反応液を含む樹脂組成物。
4. A resin composition used in the method according to any one of claims 1 to 3, which comprises a reaction solution in which a low molecular weight compound having a reactive functional group is added to modify a remaining active group.
【請求項5】 請求項1〜3各項記載の反応性の官能基
を有する低分子量化合物を添加して残存活性基を修飾し
た反応液をそのまま樹脂溶液として成形品を製造する成
形品の製造法。
5. Production of a molded article in which a reaction solution obtained by adding a low-molecular weight compound having a reactive functional group according to any one of claims 1 to 3 to modify a remaining active group is used as a resin solution as it is to produce a molded article. Law.
JP11059550A 1999-03-08 1999-03-08 Synthesis of polymer, resin composition, and production of molded article Pending JP2000256467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11059550A JP2000256467A (en) 1999-03-08 1999-03-08 Synthesis of polymer, resin composition, and production of molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11059550A JP2000256467A (en) 1999-03-08 1999-03-08 Synthesis of polymer, resin composition, and production of molded article

Publications (1)

Publication Number Publication Date
JP2000256467A true JP2000256467A (en) 2000-09-19

Family

ID=13116488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11059550A Pending JP2000256467A (en) 1999-03-08 1999-03-08 Synthesis of polymer, resin composition, and production of molded article

Country Status (1)

Country Link
JP (1) JP2000256467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004491A1 (en) * 2006-07-04 2008-01-10 Sumitomo Electric Industries, Ltd. Heat-resistant resin varnish, heat-resistant resin films, heat-resistant resin composites, and insulated wire
JP2008013635A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd Heat-resistant resin varnish, heat-resistant resin film and heat-resistant resin composite
JP2008016266A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd Insulated wire
JP2010150506A (en) * 2008-10-08 2010-07-08 Eternal Chemical Co Ltd Photosensitive polyimide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004491A1 (en) * 2006-07-04 2008-01-10 Sumitomo Electric Industries, Ltd. Heat-resistant resin varnish, heat-resistant resin films, heat-resistant resin composites, and insulated wire
JP2008013635A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd Heat-resistant resin varnish, heat-resistant resin film and heat-resistant resin composite
JP2008016266A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd Insulated wire
JP2010150506A (en) * 2008-10-08 2010-07-08 Eternal Chemical Co Ltd Photosensitive polyimide

Similar Documents

Publication Publication Date Title
JP5878710B2 (en) Amide group-containing alicyclic tetracarboxylic dianhydride and resin using the same
EP2803702B1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
KR101299651B1 (en) Low temperature curable Polyimide resin and method of preparing the same
US7019104B1 (en) Diamine novel acid dianhydride and novel polyimide composition formed therefrom
EP2395040A1 (en) Fluorinated dicarboxylic acid derivative and polymer obtained therefrom
JP5985977B2 (en) Polyimide resin solution
US20090082543A1 (en) Method of preparing poly(amic acid) and method of preparing polyimide
CN111373318B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN104822444B (en) Gas separation membrane
JP2000256467A (en) Synthesis of polymer, resin composition, and production of molded article
JP6930530B2 (en) Polyimide resin composition, its manufacturing method, and polyimide film
JP2012236788A (en) Amide group-containing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
AU601778B2 (en) Polyetherimide esters
JP2008007623A (en) Nanoimprint composition
EP1832618A1 (en) Fluorinated diamine and polymer made from the same
JP2014177554A (en) Composite resin composition
JP2019157078A (en) Polyester resin and method for producing polyester resin
JP5768348B2 (en) Thermal base generator, polymer precursor composition, and article using the composition
JP3780534B2 (en) Polyimide varnish
Huang et al. Amphiphilic Thermoresponsive Poly (Hydroxyaminoethers) as Effective Emulsifiers for Preparation of Waterborne Epoxy Resins
Pooladian et al. Synthesis and characterization of novel water-based poly (urethane-imide) nanodispersions
JP5200317B2 (en) Aqueous dispersion of terminal acid-modified hyperbranched polyester and method for producing the same
JP2006206879A (en) Fluorodiamine and polymer obtained using the same
KR101775138B1 (en) Reactive monomers, preparation thereof, and positive-type photosensitive polyimide precursor obtained therefrom
JP3847579B2 (en) Alicyclic fluorinated dicarboxylic acid and polymer or photosensitive material composition using the same