JP2000256348A - Production of epsilon-caprolactone - Google Patents

Production of epsilon-caprolactone

Info

Publication number
JP2000256348A
JP2000256348A JP11066049A JP6604999A JP2000256348A JP 2000256348 A JP2000256348 A JP 2000256348A JP 11066049 A JP11066049 A JP 11066049A JP 6604999 A JP6604999 A JP 6604999A JP 2000256348 A JP2000256348 A JP 2000256348A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
reaction
caprolactone
cyclohexanone
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11066049A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Asahi Chemical Industry Co Ltd
Original Assignee
Noguchi Institute
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute, Asahi Chemical Industry Co Ltd filed Critical Noguchi Institute
Priority to JP11066049A priority Critical patent/JP2000256348A/en
Publication of JP2000256348A publication Critical patent/JP2000256348A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyrane Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ε-caprolactone from cyclohexanone in high yield by using a hydrogen peroxide solution as oxidizing agent. SOLUTION: This method for producing ε-caprolactone from cyclohexanone by using a hydrogen peroxide solution is characterized by using as catalyst a rare earth element salt of a perfluoroalkyl-bearing compound represented by the formula [(RfSO2)nX]3M(Rf is a 1-8C perfluoroalkyl group; X is O, N or C; (n) is 1 when X is O, being 2 when X is N, or 3 when X is C; M is a rare earth element).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シクロヘキサノン
と過酸化水素からε−カプロラクトンを製造する方法に
関する。
[0001] The present invention relates to a method for producing ε-caprolactone from cyclohexanone and hydrogen peroxide.

【0002】[0002]

【従来の技術】環状ケトン類を種々の触媒の存在下、過
酸化水素によって酸化し、カルボキン化合物を合成する
方法は従来より知られている。例えば、特公昭44−1
0243号公報等には砒素化合物を触媒に用いケトン類
を過酸化水素によって酸化する方法が開示されている。
特公平1−35814号公報にはフッ化アンチモン、フ
ッ化錫、フッ化水素等のフリーデルクラフト触媒を用
い、反応中に水を連続的に除去し、実質的に無水の状態
で環状ケトン等を過酸化水素と反応させ、カルボキシ化
合物を製造する方法が開示されている。特開平8−59
649号公報には、有機ハロゲン化合物により処理され
たゼオライト触媒を用いて水を留出除去しながらシクロ
ヘキサノンと過酸化水素を反応させ、カプロラクトンを
製造する方法が開示されている。
2. Description of the Related Art A method for synthesizing a carboquine compound by oxidizing cyclic ketones with hydrogen peroxide in the presence of various catalysts has been known. For example, Japanese Patent Publication No. 44-1
No. 0243 discloses a method of oxidizing ketones with hydrogen peroxide using an arsenic compound as a catalyst.
Japanese Patent Publication No. 1-35814 discloses a method in which a Friedel-craft catalyst such as antimony fluoride, tin fluoride or hydrogen fluoride is used, water is continuously removed during the reaction, and a cyclic ketone or the like is obtained in a substantially anhydrous state. Is reacted with hydrogen peroxide to produce a carboxy compound. JP-A-8-59
No. 649 discloses a method for producing caprolactone by reacting cyclohexanone with hydrogen peroxide while distilling and removing water using a zeolite catalyst treated with an organic halogen compound.

【0003】しかしながら、極めて有毒な砒素化合物を
触媒に用いたり、水の除去をする等の煩雑な反応プロセ
スを用い、無水条件近くで反応させることが必要である
等の問題を有していた。また、これらの方法では十分な
収率が得られないという問題も有していた。
[0003] However, there have been problems that it is necessary to use a very toxic arsenic compound as a catalyst or to use a complicated reaction process such as removal of water to carry out the reaction under almost anhydrous conditions. In addition, these methods have a problem that a sufficient yield cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、シクロヘキ
サノンから過酸化水素水を酸化剤として用い、高い収率
でε−カプロラクトンを製造する方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing .epsilon.-caprolactone from cyclohexanone in high yield using aqueous hydrogen peroxide as an oxidizing agent.

【0005】[0005]

【課題を解決するための手段】本発明は、シクロヘキサ
ノンと過酸化水素からε−カプロラクトンを製造する方
法において、次式で示されるパーフルオロアルキル基を
有する化合物の希土類塩を触媒に用いることを特徴とす
る方法である。 [(RfSO2 n X]3 M (式中、Rfは炭素数1〜8のパーフルオロアルキル基
を表す。XはO,N,C元素のいずれかであって、nは
XがOの時は1を、Nの時は2を、Cの時は3を表す。
Mは希土類元素を示す。)以下、本発明を詳細に説明す
る。
The present invention provides a method for producing ε-caprolactone from cyclohexanone and hydrogen peroxide, wherein a rare earth salt of a compound having a perfluoroalkyl group represented by the following formula is used as a catalyst. It is a method. [(RfSO 2 ) n X] 3 M (wherein, Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms. X is any of O, N and C elements, and n is Hour represents 1; N represents 2; and C represents 3.
M represents a rare earth element. Hereinafter, the present invention will be described in detail.

【0006】本発明に用いる触媒は、パーフルオロアル
キルスルホン酸の希土類塩((RfSO3 3 M)、ビ
ス(パーフルオロアルキルスルホニル)イミドの希土類
塩([(RfSO22N]3M)、及びトリス(パーフ
ルオロアルキル)メチドの希土類塩([(RfSO23
C]3M)から選ばれる1種又は2種以上からなる(但
し、上記式中、Rfは炭素数1〜8のパーフルオロアル
キル基、Mは希土類元素を表す。)。中でもパーフルオ
ロアルキル基を多数有するイミドあるいはメチドの希土
類塩が好ましい。
The catalyst used in the present invention is a rare earth salt of perfluoroalkylsulfonic acid ((RfSO 3 ) 3 M) or a rare earth salt of bis (perfluoroalkylsulfonyl) imide ([(RfSO 2 ) 2 N] 3 M). And tris (perfluoroalkyl) methide rare earth salts ([(RfSO 2 ) 3
C] 3 M) (wherein, Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms, and M represents a rare earth element). Among them, rare earth salts of imides or methides having a large number of perfluoroalkyl groups are preferred.

【0007】本発明に用いる触媒のパ−フルオロアルキ
ル基は、炭素数1〜8のパーフルオロアルキル基であ
り、具体例としてトリフルオロメチル基、ペンタフルオ
ロエチル基、ヘプタフルオロプロピル基、ノナフルオロ
ブチル基、ウンデカフルオロペンチル基、トリデカフル
オロヘキシル基、ペンタデカフルオロヘプチル基、ヘプ
タデカフルオロオクチル基等が挙げられる。nが2又は
3の時には該パ−フルオロアルキル基は同一であっても
異なったパーフルオロアルキル基であっても良い。中で
も炭素数2〜6のパーフルオロアルキル基を含むものが
が好ましい。
The perfluoroalkyl group of the catalyst used in the present invention is a perfluoroalkyl group having 1 to 8 carbon atoms, and specific examples thereof include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group and a nonafluorobutyl group. Group, undecafluoropentyl group, tridecafluorohexyl group, pentadecafluoroheptyl group, heptadecafluorooctyl group and the like. When n is 2 or 3, the perfluoroalkyl groups may be the same or different. Among them, those containing a perfluoroalkyl group having 2 to 6 carbon atoms are preferable.

【0008】本発明に用いられる希土類元素としてはス
カンジウム、イットリウム、ランタン、セリウム、プラ
セオジウム、ネオジウム、プロメチウム、サマリウム、
ユーロビウム、ガドリニウム、テルビウム、ジスプロシ
ウム、ホルミウム、エルビウム、ツリウム、イッテルビ
ウム、ルテチウムである。中でもスカンジウム、イット
リウム、イッテルビウムが好ましい。
The rare earth elements used in the present invention include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium,
Eurobium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. Among them, scandium, yttrium, and ytterbium are preferred.

【0009】本発明に用いる触媒の合成法を以下に述べ
る。本発明に用いる触媒であるパーフルオロアルキルス
ルホン酸の希土類塩はパーフルオロアルキルスルホン酸
と希土類金属酸化物、あるいは希土類金属の炭酸塩等と
反応させて合成できる。本発明に用いる触媒であるビス
(パーフルオロアルキルスルホニル)イミドの希土類塩
は、特開平10−17541号公報等に準拠し、前駆体
であるビス(パーフルオロアルキルスルホニル)イミド
はパーフルオロアルキルスルホニルフロライドとアルカ
リ金属−ビス(トリメチルシリル)アミドの反応により
ビスパーフルオロアルキルスルホニルイミドアルカリ金
属塩を合成し、ついで該アルカリ金属塩を濃硫酸を用い
処理、あるいは該アルカリ金属塩の水性溶液を水素型の
強酸性イオン交換樹脂等を用いイオン交換で処理するこ
とにより、ビス(パーフルオロアルキルスルホニル)イ
ミドとする。ついで該ビス(パーフルオロアルキルスル
ホニル)イミドを水性溶媒中で希土類金属酸化物あるい
は炭酸塩等と反応させることで本発明の化合物は合成で
きる。
The method for synthesizing the catalyst used in the present invention is described below. The rare earth salt of perfluoroalkyl sulfonic acid, which is a catalyst used in the present invention, can be synthesized by reacting perfluoroalkyl sulfonic acid with a rare earth metal oxide or a rare earth metal carbonate. The rare earth salt of bis (perfluoroalkylsulfonyl) imide which is a catalyst used in the present invention is based on Japanese Patent Application Laid-Open No. 10-17541, and the precursor bis (perfluoroalkylsulfonyl) imide is perfluoroalkylsulfonylfuro. A bisperfluoroalkylsulfonylimide alkali metal salt is synthesized by reacting the alkali metal salt with an alkali metal-bis (trimethylsilyl) amide, and then the alkali metal salt is treated with concentrated sulfuric acid, or the aqueous solution of the alkali metal salt is converted to a hydrogen-based solution. Bis (perfluoroalkylsulfonyl) imide is obtained by ion exchange treatment using a strongly acidic ion exchange resin or the like. Next, the compound of the present invention can be synthesized by reacting the bis (perfluoroalkylsulfonyl) imide with a rare earth metal oxide or carbonate in an aqueous solvent.

【0010】トリス(パーフルオロアルキル)メチドの
希土類塩は米国特許第5554664号明細書等に準拠
し、前駆体であるトリス(パーフルオロアルキルスルホ
ニル)メチドはパーフルオロスルホニルフロライドとメ
チルマグネシュウムクロライドを反応させ該メチドを合
成し、次いで炭酸セシウムと反応させ、セシウム塩とし
精製後、濃硫酸で処理して精製メチドを得る。これと希
土類の炭酸塩あるいは酢酸塩等との反応によってトリス
(パーフルオロアルキルスルホニル)メチドの希土類塩
を合成することができる。更にメチド合成の中間体であ
る該メチレンを昇華精製により分離し、更にメチルマグ
ネシュウムクロライドおよびパーフルオロスルホニルフ
ロライドと反応させ該メチドとする方法で収率よく合成
することもできる。
The rare earth salt of tris (perfluoroalkyl) methide is based on US Pat. No. 5,554,664 and the like, and the precursor, tris (perfluoroalkylsulfonyl) methide, is obtained by reacting perfluorosulfonyl fluoride with methylmagnesium chloride. Then, the methide is synthesized, and then reacted with cesium carbonate to obtain a cesium salt, which is purified and then treated with concentrated sulfuric acid to obtain a purified methide. By reacting this with a rare earth carbonate or acetate, a rare earth salt of tris (perfluoroalkylsulfonyl) methide can be synthesized. Further, the methylene, which is an intermediate for the synthesis of methide, can be separated by purification by sublimation, and further reacted with methylmagnesium chloride and perfluorosulfonyl fluoride to produce the methide.

【0011】酸化剤として用いる過酸化水素は、通常用
いられている10wt%〜60wt%の過酸化水素水を
用いることができる。反応に用いる過酸化水素の割合
は、シクロヘキサノンに対して2〜0.1モル比、好ま
しくは1〜0.2モル比が用いられる。反応温度として
は40℃〜140℃、好ましくは50℃〜120℃が用
いられる。触媒の使用量はシクロヘキサノンに対して
0.1〜20wt%、好ましくは0.5〜5wt%であ
る。
As the hydrogen peroxide used as the oxidizing agent, generally used 10 wt% to 60 wt% aqueous hydrogen peroxide can be used. The ratio of hydrogen peroxide used in the reaction is 2 to 0.1 mole ratio, preferably 1 to 0.2 mole ratio, relative to cyclohexanone. The reaction temperature is from 40 ° C to 140 ° C, preferably from 50 ° C to 120 ° C. The amount of the catalyst to be used is 0.1 to 20% by weight, preferably 0.5 to 5% by weight, based on cyclohexanone.

【0012】反応系としてはシクロヘキサノンと過酸化
水素水に溶媒としてアルコール、ジオキサン、アセトニ
トリル、酢酸等の極性溶媒を加え用いても良い、もちろ
ん溶媒を用いない系で実施することもできる。触媒の使
用形態としてはスラリー懸濁方式あるいは成型触媒とし
て固定層流通方式等通常固体触媒を用いる方法が適用で
きる。
As a reaction system, a polar solvent such as alcohol, dioxane, acetonitrile, acetic acid or the like may be added to cyclohexanone and aqueous hydrogen peroxide as a solvent. Of course, the reaction can be carried out without using a solvent. As a form of use of the catalyst, a method using an ordinary solid catalyst such as a slurry suspension method or a fixed bed flow method as a molded catalyst can be applied.

【0013】本発明に用いられる触媒は、水による触媒
活性阻害の影響が少なく、比較的薄い過酸化水素水でも
反応に用いることができ、また反応系に水の存在がシク
ロヘキサノンのアルドール縮合によって生成する副生物
の生成を抑制する効果もある。本発明方法によってシク
ロヘキサノンから高い収率、高い過酸化水素選択率でε
−カプロラクトンを製造することができる。
The catalyst used in the present invention has little effect on the inhibition of the catalytic activity by water, and can be used for the reaction even with a relatively thin aqueous hydrogen peroxide solution. The presence of water in the reaction system is caused by the aldol condensation of cyclohexanone. It also has the effect of suppressing the generation of by-products. According to the method of the present invention, ε is obtained from cyclohexanone with high yield and high hydrogen peroxide selectivity.
-Caprolactone can be produced.

【0014】[0014]

【発明の実施の形態】以下に実施例を挙げて本発明を具
体的に説明する。酸化反応の分析は、島津製作所製GC
9A型ガスクロマトグラフィを用い測定し、酸化生成物
の収率は原料のシクロヘキサノン基準で示した。過酸化
水素の反応率はヨードメトリー法で求め、減少した過酸
化水素の内ε−カプロラクトン生成に用いられた割合を
有効利用率とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to examples. The analysis of the oxidation reaction was performed by GC manufactured by Shimadzu Corporation.
The yield of the oxidation product was measured by using a 9A-type gas chromatography, and the yield was shown based on the starting material cyclohexanone. The reaction rate of hydrogen peroxide was determined by an iodometry method, and the ratio of the reduced hydrogen peroxide used for the production of ε-caprolactone was defined as the effective utilization rate.

【0015】[0015]

【実施例1】パーフルオロアルカンスルホニルイミド希
土類塩の合成例 1.N−トリメチルシリルパーフルオロブタンスルホニ
ルアミドNa塩(A)の合成 滴下ロート付きの300mlのビーカーに窒素置換後パ
ーフルオロブタンスルホニルフロライド36.2g(1
20mmol)を入れ、撹拌、氷冷下にビストリメチル
シリルアミドナトリウム塩の1モル濃度のテトラヒドロ
フラン溶液60mlを30分間で滴下し、氷冷下3時
間、次いで室温下一夜反応させた。反応液から未反応の
ノナフルオロブタンスルホニルフロライドおよびTHF
溶媒等を減圧下(60℃,30mmHg次いで1mmH
g)に除去し、粗N−トリメチルシリルパーフルオロブ
タンスルホニルアミドナトリウム塩(A)を得た。 2.ビスパーフルオロブタンスルホニルイミドNa塩
(B)の合成 次いでこのAおよびパーフルオロブタンスルホニルフロ
ライド26g(90mmol),ジオキサン35mlを
ドライボックスを用い窒素雰囲気下に200mlのオー
トクレーブ(テフロン内筒入り)に仕込み撹拌下120
℃,8時間反応させた。この反応液から未反応のパーフ
ルオロブタンスルホニルフロライド、ジオキサン溶媒等
を減圧下(80℃,40mmHg、次いで1mmHg)
除去し薄茶色固体(B)25gを得た。
Example 1 Synthesis Example of Rare Earth Salt of Perfluoroalkanesulfonylimide Synthesis of N-trimethylsilyl perfluorobutanesulfonylamide Na salt (A) After replacing with nitrogen in a 300 ml beaker with a dropping funnel, perfluorobutanesulfonyl fluoride 36.2 g (1
20 mmol), 60 ml of a 1 mol solution of bistrimethylsilylamide sodium salt in tetrahydrofuran was added dropwise over 30 minutes under stirring and ice cooling, and the reaction was allowed to proceed under ice cooling for 3 hours and then at room temperature overnight. Non-reacted nonafluorobutanesulfonyl fluoride and THF from the reaction solution
Solvent etc. under reduced pressure (60 ° C, 30mmHg, then 1mmH
g) to give crude N-trimethylsilyl perfluorobutanesulfonylamide sodium salt (A). 2. Synthesis of bisperfluorobutanesulfonylimide Na salt (B) Next, 26 g (90 mmol) of A and perfluorobutanesulfonyl fluoride and 35 ml of dioxane were charged into a 200 ml autoclave (with a Teflon inner cylinder) under a nitrogen atmosphere using a dry box. 120 with stirring
The reaction was performed at 8 ° C. for 8 hours. Unreacted perfluorobutanesulfonyl fluoride, dioxane solvent and the like are removed from this reaction solution under reduced pressure (80 ° C., 40 mmHg, then 1 mmHg).
This was removed to obtain 25 g of a light brown solid (B).

【0016】固体(B)の赤外吸収スペクトルは135
8cm-1,1140cm-1,1083cm-1近辺にSO
2基に起因する吸収ピークが見られた。 3.ビスパーフルオロブタンスルホニルイミド(C)へ
の転化 この固体Bの10gを水500mlに溶解させ、強酸性
イオン交換樹脂(アンバーライトIR−120B)20
mlを充填したイオン交換カラム(20mmφガラスカ
ラム)に流し粗イミドの水溶液を得た。この流出液のP
Hは2.4を示した。この水溶液をロータリーエバポレ
ーターを用いウォータバス温度80℃,160mmHg
から6OmmHgの減圧下で水を留去し、8.6gの薄
茶色の固体(C)を得た。(C)の0.1gを水に溶解
し0.1規定の苛性ソーダ水溶液で滴定したところ強酸
成分は1.7×10-1meqであった。 4.高純度精製 固体Cを真空乾燥機を用い60℃,1mmHg下、1時
間処理し、次いで高真空下、(105℃,6×10-2
mHg)にて昇華させ白色結晶を得た。
The infrared absorption spectrum of the solid (B) is 135
SO around 8cm -1 , 1140cm -1 , 1083cm -1
An absorption peak due to two groups was observed. 3. Conversion to bisperfluorobutanesulfonylimide (C) 10 g of this solid B was dissolved in 500 ml of water, and the solution was added to a strongly acidic ion exchange resin (Amberlite IR-120B) 20
The solution was passed through an ion-exchange column (20 mmφ glass column) filled with the solution to obtain a crude imide aqueous solution. P of this effluent
H showed 2.4. This aqueous solution was water-bathed at 80 ° C. and 160 mmHg using a rotary evaporator.
The water was distilled off under reduced pressure of 60 mmHg to obtain 8.6 g of a light brown solid (C). 0.1 g of (C) was dissolved in water and titrated with a 0.1 N aqueous solution of caustic soda to find that the strong acid component was 1.7 × 10 −1 meq. 4. High Purity The solid C is treated with a vacuum dryer at 60 ° C. and 1 mmHg for 1 hour, and then under high vacuum (105 ° C., 6 × 10 -2 m
mHg) to obtain white crystals.

【0017】この結晶の赤外吸収スペクトルには135
8cm-1,1140cm-1,1083cm-1近辺にSO
2基に起因する吸収ピークが見られた。 5.該イミドのイッテルビウム塩の合成 上記方法により合成したビスパーフルオロブタンスルホ
ニルイミド5gを蒸留水20mlとアセトニトリル80
mlの混合溶媒に溶解させた溶液に酸化イッテルビウム
0.63g添加し撹拌下60℃、1時間反応させた。次
いで濾過により未反応の酸化イッテルビウムを除去し濾
液からロータリーエバポレータを用い溶媒を除去後12
0℃,1mmHg,1時間真空乾燥し、白色粉末状の該
イミドのイッテルビウム塩4.6gを得た。この化合物
は吸湿性を有しているが水に対する溶解性は小さい。合
成したトリス[ビス(パーフルオロブタンスルホニル)
イミド]イッテルビウムの赤外吸収スペクトルは114
0cm-1近辺にSO2基に、1085cm-1近辺にC−
F基に帰属する吸収ピークが見られた。 蛍光X線分析による組成分析(括弧内は理論値):F/
S/Yb=57/5.6/1原子比(54/6/1)
The infrared absorption spectrum of this crystal shows 135
SO around 8cm -1 , 1140cm -1 , 1083cm -1
An absorption peak due to two groups was observed. 5. Synthesis of ytterbium salt of imide 5 g of bisperfluorobutanesulfonylimide synthesized by the above method was mixed with 20 ml of distilled water and acetonitrile 80
0.63 g of ytterbium oxide was added to the solution dissolved in ml of the mixed solvent, and reacted at 60 ° C. for 1 hour with stirring. Then, unreacted ytterbium oxide was removed by filtration, and the solvent was removed from the filtrate using a rotary evaporator.
Vacuum drying was performed at 0 ° C. and 1 mmHg for 1 hour to obtain 4.6 g of the ytterbium salt of the imide as a white powder. This compound is hygroscopic, but has low solubility in water. Synthesized tris [bis (perfluorobutanesulfonyl)
[Imido] ytterbium has an infrared absorption spectrum of 114.
To 2 groups SO to 0 cm -1 vicinity, near 1085 cm -1 C-
An absorption peak attributed to the F group was observed. Composition analysis by fluorescent X-ray analysis (the values in parentheses are theoretical values): F /
S / Yb = 57 / 5.6 / 1 atomic ratio (54/6/1)

【0018】[0018]

【実施例2】パーフルオロアルカンスルホニルメチドの
希土類塩の合成例 1.パーフルオロブタンスルホニルメチドの合成 1.1 (C49SO22CH2の合成 滴下ロート付きの500mlのビーカーに窒素置換後メ
チルマグネシュウムクロライドのTHF溶液(3mol
濃度)173mlを加え、撹拌、氷冷下にパーフルオロ
ブタンスルホニルフロライド143gを5時間かけ徐々
に滴下し、次いで65℃に昇温し、45時間反応を続け
た。ついで反応液をドライアップ(70℃、32mmH
g)、真空乾燥(70℃,1mmHg)し、茶色の固体
を得た。
Example 2 Synthesis Example of Rare Earth Salt of Perfluoroalkanesulfonylmethide Synthesis of perfluorobutanesulfonyl methide 1.1 Synthesis of (C 4 F 9 SO 2 ) 2 CH 2 After replacing the nitrogen in a 500 ml beaker with a dropping funnel, a THF solution of methylmagnesium chloride (3 mol)
173 ml), 143 g of perfluorobutanesulfonyl fluoride was slowly added dropwise over 5 hours under stirring and cooling with ice, then the temperature was raised to 65 ° C., and the reaction was continued for 45 hours. Then, the reaction solution was dried up (70 ° C., 32 mmH
g) and vacuum drying (70 ° C., 1 mmHg) to obtain a brown solid.

【0019】ついで氷冷、攪拌下で35%硫酸を30分
かけ添加し、ついで室温下、16時間反応させた。つい
でイソプロピルエーテル(225mlづつ2回)を用い
抽出し、ドライアップ(40℃,32mmHg)、真空
乾燥(40℃,8時間)し、70gの茶褐色の湿っぽい
固体を得た。この固体を昇華精製(75℃,5mmH
g)することで、34gの(C49SO22CH
2(A)を得た。このサンプルの赤外吸収スペクトルは
2999cm-1,2930cm-1にC−Hの伸縮吸収が
認められた。
Then, 35% sulfuric acid was added over 30 minutes under ice-cooling and stirring, and the mixture was reacted at room temperature for 16 hours. Then, extraction was carried out using isopropyl ether (225 ml × 2), dried up (40 ° C., 32 mmHg), and dried under vacuum (40 ° C., 8 hours) to obtain 70 g of a brownish moist solid. This solid is purified by sublimation (75 ° C, 5 mmH
g) to give 34 g of (C 4 F 9 SO 2 ) 2 CH
2 (A) was obtained. In the infrared absorption spectrum of this sample, C-H stretching absorption was observed at 2999 cm -1 and 2930 cm -1 .

【0020】1.2(C49SO23CHの合成 試料(A)30gをTHF120mlに溶解させ、氷
冷、攪拌下、メチルマグネシュウムクロライドのTHF
溶液(3mol溶液)120mlを10分間で滴下し、
次いで室温下24時間反応させた、続いてパーフルオロ
ブタンスルホニルフロライド31.2gを5分間で滴
下、室温1時間反応後オートクレーブに移し、100
℃、24時間反応、反応液を取り出し、ドライアップ
(60℃,28mmHg),真空乾燥(60℃,8時
間)し56.4gの粉末を得た。次いで35%硫酸14
0ml中にこの粉末を加え、室温下、24時間処理、次
いでイソプロピルエーテル100 mlを用い抽出、ド
ライアップ(40℃,28mmHg)、真空乾燥(40
℃,5時間)し、40gの粗パーフルオロブタンスルホ
ニルメチドを得た。精製のため、これを塩化メチレンに
溶解、50%炭酸セシウム水溶液を加え、セシウム塩と
して沈殿させ、水洗、トルエン洗、塩化メチレン洗浄
し、真空乾燥(120℃,5時間)44gの灰白色の粉
末を得た。次いで同様に35%硫酸で処理、抽出、ドラ
イアップ、真空乾燥し、次いで昇華(75℃−2mmH
g,次いで110℃−2mmHg)し、原料(A)の回
収44%、精製該メチド収量15g(41%)、(B)
を得た。
1.2 Synthesis of (C 4 F 9 SO 2 ) 3 CH A sample (A) (30 g) was dissolved in THF (120 ml), and the mixture was cooled with ice and stirred with THF of methyl magnesium chloride.
120 ml of the solution (3 mol solution) is dropped in 10 minutes,
Then, the reaction was carried out at room temperature for 24 hours. Subsequently, 31.2 g of perfluorobutanesulfonyl fluoride was added dropwise over 5 minutes, and after 1 hour at room temperature, the mixture was transferred to an autoclave.
The mixture was reacted at 24 ° C. for 24 hours, and the reaction solution was taken out, dried up (60 ° C., 28 mmHg), and dried in vacuum (60 ° C., 8 hours) to obtain 56.4 g of powder. Then 35% sulfuric acid 14
This powder was added to 0 ml, treated at room temperature for 24 hours, extracted with 100 ml of isopropyl ether, dried up (40 ° C., 28 mmHg), and vacuum dried (40 ml).
C., 5 hours) to obtain 40 g of crude perfluorobutanesulfonyl methide. For purification, this was dissolved in methylene chloride, a 50% cesium carbonate aqueous solution was added to precipitate as a cesium salt, washed with water, washed with toluene, washed with methylene chloride, and vacuum-dried (120 ° C., 5 hours) to obtain 44 g of an off-white powder. Obtained. Next, similarly treated with 35% sulfuric acid, extracted, dried up, vacuum dried, and then sublimated (75 ° C.-2 mmH
g, then 110 ° C.-2 mmHg), 44% recovery of raw material (A), 15 g (41%) of purified methide, (B)
I got

【0021】合成したパーフルオロブタンスルホニルメ
チド(B)をエタノール−水(2/1)溶液とし、0.
01NのNaOH水溶液の中和滴定を行った結果860
g/eqの値が得られた(理論値は862)。 2.該メチドの希土類塩の合成 パーフルオロブタンスルホニルメチド 3.26gをア
セトニトリル−水(1/1)混合溶液に溶かし、炭酸イ
ッテルビウム2水塩0.43gを添加、室温下1時間攪
拌、ついで60℃、1時間反応させた。未反応の炭酸イ
ッテルビウムを濾過により除去後、ドライアップ(70
℃,25mmHg),真空乾燥(70℃,6時間)し、
3.13gの該メチドのイッテルビウム塩を得た。
The synthesized perfluorobutanesulfonyl methide (B) was converted into an ethanol-water (2/1) solution, and the solution was added in a concentration of 0.1%.
Neutralization titration of 01N NaOH aqueous solution resulted in 860
A value of g / eq was obtained (theoretical value is 862). 2. Synthesis of Rare Earth Salt of Methide 3.26 g of perfluorobutanesulfonylmethide was dissolved in a mixed solution of acetonitrile-water (1/1), and 0.43 g of ytterbium carbonate dihydrate was added, followed by stirring at room temperature for 1 hour, and then at 60 ° C. The reaction was performed for 1 hour. After removing unreacted ytterbium carbonate by filtration, dry-up (70
℃, 25mmHg), vacuum drying (70 ℃, 6 hours)
3.13 g of the ytterbium salt of the methide were obtained.

【0022】合成したトリス(パーフルオロブタンスル
ホニル)メチドのイッテルビウム塩の赤外吸収スペクト
ルは1140cm-1近辺にSO2基に、1031cm-1
近辺にC−F基に帰属する吸収ピークが見られた。組成
分析の結果Yb/C比は0.364(理論値0.37
1)であった。
The infrared absorption spectrum of the synthesized tris (perfluorobutanesulfonyl) ytterbium salts methide to 2 groups SO near 1140cm -1, 1031cm -1
An absorption peak attributable to the CF group was observed in the vicinity. As a result of the composition analysis, the Yb / C ratio was 0.364 (theoretical 0.37).
1).

【0023】[0023]

【実施例3】冷却管、スターラー付の50mlの三口フ
ラスコにシクロヘキサノン9.8g、触媒としてトリフ
ルオロメタンスルホン酸のイッテルビウム塩(東京化成
工業(株)製)を0.5ggおよび過酸化水素水(濃度
30wt%)5.5gを添加し、所定温度、60℃に昇
温したオイルバスに入れ、酸化反応を行った。反応時間
2時間目のε−カプロラクトンの収率は11モル%であ
った。過酸化水素の有効利用率は95%であった。
Example 3 9.8 g of cyclohexanone, 0.5 g of ytterbium salt of trifluoromethanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.5 g of hydrogen peroxide (concentration) were placed in a 50 ml three-necked flask equipped with a condenser and a stirrer. (30 wt%) was added, and the mixture was placed in an oil bath heated to a predetermined temperature of 60 ° C. to perform an oxidation reaction. The yield of ε-caprolactone after a reaction time of 2 hours was 11 mol%. The effective utilization rate of hydrogen peroxide was 95%.

【0024】[0024]

【実施例4】実施例3と同様に、但し、触媒として実施
例1同様にして得たビス(トリフルオロメタンスルホニ
ル)イミドのイッテルビウム塩を用いシクロヘキサノン
のカプロラクトン化反応を行った。結果、反応時間2時
間目のε−カプロラクトンの収率は14モル%であっ
た。過酸化水素の有効利用率は98%であった。
Example 4 A caprolactonization reaction of cyclohexanone was carried out in the same manner as in Example 3 except that the ytterbium salt of bis (trifluoromethanesulfonyl) imide obtained as in Example 1 was used as a catalyst. As a result, the yield of ε-caprolactone after 2 hours of the reaction time was 14 mol%. The effective utilization rate of hydrogen peroxide was 98%.

【0025】[0025]

【実施例5】実施例3と同様に、但し、触媒としてトリ
フルオロメタンスルホン酸のスカンジウム塩(東京化成
工業(株)製)を用い40℃で酸化反応を行った。結
果、反応時間2時間目のε−カプロラクトンの収率は1
2モル%であった。過酸化水素の有効利用率は98%で
あった。
Example 5 An oxidation reaction was carried out at 40 ° C. in the same manner as in Example 3, except that a scandium salt of trifluoromethanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a catalyst. As a result, the yield of ε-caprolactone at the second reaction time was 1
It was 2 mol%. The effective utilization rate of hydrogen peroxide was 98%.

【0026】[0026]

【実施例6】実施例3と同様に、但し、触媒として実施
例1で得たビス(パーフルオロブタンスルホニル)イミ
ドのイッテルビウム塩を用い過酸化水素水の量を11g
とし、60℃条件で酸化反応を行った。結果、反応時間
2時間目のε−カプロラクトンの収率は17モル%であ
った。過酸化水素の有効利用率は68%であった。
Example 6 As in Example 3, except that the catalyst used was the ytterbium salt of bis (perfluorobutanesulfonyl) imide obtained in Example 1 and the amount of aqueous hydrogen peroxide was 11 g.
The oxidation reaction was carried out at 60 ° C. As a result, the yield of ε-caprolactone after 2 hours of the reaction time was 17 mol%. The effective utilization rate of hydrogen peroxide was 68%.

【0027】[0027]

【実施例7】実施例3と同様に、但し、触媒として実施
例1と同様にして得たビス(パーフルオロオクタンスル
ホニル)イミドのイットリウム塩を用い、過酸化水素水
の量を11gとし、60℃条件で酸化反応を行った。結
果、反応時間2時間目のε−カプロラクトンの収率は2
0モル%であった。過酸化水素の有効利用率は75%で
あった。
Example 7 As in Example 3, except that the catalyst used was the yttrium salt of bis (perfluorooctanesulfonyl) imide obtained in the same manner as in Example 1, and the amount of hydrogen peroxide solution was 11 g. The oxidation reaction was performed under the condition of ° C. As a result, the yield of ε-caprolactone at the second reaction time was 2
It was 0 mol%. The effective utilization rate of hydrogen peroxide was 75%.

【0028】[0028]

【実施例8】実施例3と同様に、但し、触媒として実施
例1同様にして得たビス(トリフルオロメタンスルホニ
ル)イミドのイッテルビウム塩を用い過酸化水素水(濃
度10wt%)を16.5gとし、60℃条件でシクロ
ヘキサノンのカプロラクトン化反応を行った。結果、反
応時間2時間目のε−カプロラクトンの収率は10モル
%であった。過酸化水素の有効利用率は78%であっ
た。
Example 8 As in Example 3, but using the ytterbium salt of bis (trifluoromethanesulfonyl) imide obtained as in Example 1 as a catalyst, the amount of hydrogen peroxide solution (concentration: 10 wt%) was adjusted to 16.5 g. The caprolactonization reaction of cyclohexanone was carried out at 60 ° C. As a result, the yield of ε-caprolactone at a reaction time of 2 hours was 10 mol%. The effective utilization rate of hydrogen peroxide was 78%.

【0029】[0029]

【実施例9】実施例3と同様に、但し、触媒として実施
例2で得たトリス(パーフルオロブタンスルホニル)メ
チドのイッテルビウム塩を用い、40℃条件でシクロヘ
キサノンのカプロラクトン化反応を行った。結果、反応
時間2時間目のε−カプロラクトンの収率は13モル%
であった。過酸化水素の有効利用率は98%であった。
Example 9 In the same manner as in Example 3, except that the ytterbium salt of tris (perfluorobutanesulfonyl) methide obtained in Example 2 was used as a catalyst, caprolactonization of cyclohexanone was carried out at 40 ° C. As a result, the yield of ε-caprolactone at the second reaction time was 13 mol%.
Met. The effective utilization rate of hydrogen peroxide was 98%.

【0030】[0030]

【実施例10】実施例3と同様に、但し、触媒として実
施例2と同様にして得たトリス(パーフルオロブタンス
ルホニル)メチドのスカンジウム塩を用い、40℃条件
でシクロヘキサノンのカプロラクトン化反応を行った。
結果、反応時間2時間目のε−カプロラクトンの収率は
16モル%であった。過酸化水素の有効利用率は99%
であった。
Example 10 A caprolactonization reaction of cyclohexanone was carried out at 40 ° C. using the scandium salt of tris (perfluorobutanesulfonyl) methide obtained in the same manner as in Example 2 except that the catalyst was the same as in Example 3. Was.
As a result, the yield of ε-caprolactone after 2 hours of the reaction time was 16 mol%. Effective use rate of hydrogen peroxide is 99%
Met.

【0031】[0031]

【実施例11】実施例3と同様の方法で、但し、溶媒と
してアセトニトリルを100ml添加し、40℃でシク
ロヘキサノンのカプロラクトン化反応を行った。結果、
反応時間2時間目のε−カプロラクトンの収率は11モ
ル%であった。過酸化水素の有効利用率は98%であっ
た。
Example 11 In the same manner as in Example 3, except that 100 ml of acetonitrile was added as a solvent, cyclohexanone was subjected to caprolactonation at 40 ° C. result,
The yield of ε-caprolactone after a reaction time of 2 hours was 11 mol%. The effective utilization rate of hydrogen peroxide was 98%.

【0032】[0032]

【比較例1】実施例3と同様に、但し、触媒としてプロ
トン型のZSM−5ゼオライト(シリカ/アルミナ比4
2)2gを用いシクロヘキサノンのカプロラクトン化反
応をおこなった。結果2時間反応のε−カプロラクトン
の収率は5.5モル%であった。過酸化水素の有効利用
率は45%であった。
Comparative Example 1 As in Example 3, except that a proton type ZSM-5 zeolite (silica / alumina ratio 4
2) A caprolactonization reaction of cyclohexanone was performed using 2 g. As a result, the yield of ε-caprolactone in a 2-hour reaction was 5.5 mol%. The effective utilization rate of hydrogen peroxide was 45%.

【0033】[0033]

【比較例2】実施例3と同様に、但し、過酸化水素水の
量を11g、触媒として無水塩化アルミニウム(和光純
薬工業(株)製)4.4gを用い反応温度60℃で、シ
クロヘキサノンのカプロラクトン化反応を行った。結果
4時間反応のε−カプロラクトンの収率は5.5%であ
った。過酸化水素の有効利用率は42%であった。
COMPARATIVE EXAMPLE 2 As in Example 3, except that the amount of hydrogen peroxide solution was 11 g, anhydrous aluminum chloride (manufactured by Wako Pure Chemical Industries, Ltd.) 4.4 g as a catalyst, the reaction temperature was 60 ° C., and cyclohexanone was used. Was subjected to a caprolactonization reaction. As a result, the yield of ε-caprolactone in the 4-hour reaction was 5.5%. The effective utilization rate of hydrogen peroxide was 42%.

【0034】[0034]

【比較例3】実施例3と同様に、但し、過酸化水素水の
量を11g、触媒としてプロトン型のZSM−5ゼオラ
イト(シリカ/アルミナ比36)2gを用い、反応温度
60℃で、シレクロヘキサノンのラクトン化反応を行っ
た。結果2時間反応のε−カプロラクトンの収率は8.
5モル%であった。過酸化水素の有効利用率は38%で
あった。
Comparative Example 3 As in Example 3, except that the amount of hydrogen peroxide solution was 11 g, the proton type ZSM-5 zeolite (silica / alumina ratio: 36) was used as a catalyst, and the reaction temperature was 60 ° C. A lactonization reaction of clohexanone was performed. Result The yield of ε-caprolactone in the 2-hour reaction was 8.
It was 5 mol%. The effective utilization rate of hydrogen peroxide was 38%.

【0035】[0035]

【比較例4】実施例3と同様に、但し、触媒として塩化
錫(和光純薬工業(株)製)を0.5gを用い、40℃
でシクロヘキサノンのカプロラクトン化反応をおこなっ
た。結果2時間反応のε−カプロラクトンの収率は8モ
ル%であった。過酸化水素の有効利用率は65%であっ
た。
Comparative Example 4 As in Example 3, except that 0.5 g of tin chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a catalyst at 40 ° C.
The caprolactonization reaction of cyclohexanone was carried out. As a result, the yield of ε-caprolactone in the 2-hour reaction was 8 mol%. The effective utilization rate of hydrogen peroxide was 65%.

【0036】[0036]

【発明の効果】本発明方法によれば酸化剤として過酸化
水素水を用い容易に高い収率でシクロヘキサノンからε
−カプロラクトンを製造することができる。
According to the method of the present invention, hydrogen peroxide solution is used as an oxidizing agent to easily convert cyclohexanone into ε in high yield.
-Caprolactone can be produced.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C062 JJ05 4G069 AA06 AA08 BA27A BA27B BC39A BC39B BC40A BC42A BC43A BC44A BE34A BE34B BE40A BE40B CB07 CB67 4H039 CA42 CH90  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C062 JJ05 4G069 AA06 AA08 BA27A BA27B BC39A BC39B BC40A BC42A BC43A BC44A BE34A BE34B BE40A BE40B CB07 CB67 4H039 CA42 CH90

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンと過酸化水素からε−
カプロラクトンを製造する方法において、次式で示され
るパーフルオロアルキル基を有する化合物の希土類塩を
触媒に用いることを特徴とする方法。 [(RfSO2 n X]3 M (式中、Rfは炭素数1〜8のパーフルオロアルキル基
を示す。XはO,N,C元素のいずれかであって、nは
XがOの時は1を、Nの時は2を、Cの時は3を示す。
Mは希土類元素を示す。)
1. An ε-cyclohexanone and hydrogen peroxide
A method for producing caprolactone, wherein a rare earth salt of a compound having a perfluoroalkyl group represented by the following formula is used as a catalyst. [(RfSO 2 ) n X] 3 M (wherein, Rf represents a perfluoroalkyl group having 1 to 8 carbon atoms. X is any of O, N and C elements, and n is Hour indicates 1; N indicates 2; C indicates 3.
M represents a rare earth element. )
JP11066049A 1999-03-12 1999-03-12 Production of epsilon-caprolactone Withdrawn JP2000256348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11066049A JP2000256348A (en) 1999-03-12 1999-03-12 Production of epsilon-caprolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11066049A JP2000256348A (en) 1999-03-12 1999-03-12 Production of epsilon-caprolactone

Publications (1)

Publication Number Publication Date
JP2000256348A true JP2000256348A (en) 2000-09-19

Family

ID=13304641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11066049A Withdrawn JP2000256348A (en) 1999-03-12 1999-03-12 Production of epsilon-caprolactone

Country Status (1)

Country Link
JP (1) JP2000256348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075672A1 (en) * 2006-12-20 2008-06-26 Central Glass Company, Limited Method for producing tris(perfluoroalkanesulfonyl)methide acid salt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075672A1 (en) * 2006-12-20 2008-06-26 Central Glass Company, Limited Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
JP2009155206A (en) * 2006-12-20 2009-07-16 Central Glass Co Ltd Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
US20100022803A1 (en) * 2006-12-20 2010-01-28 Central Glass Company, Limited Method for Producing Tris(Perfluoroalkanesulfonyl)Methide Acid Salt
KR101030639B1 (en) 2006-12-20 2011-04-20 샌트랄 글래스 컴퍼니 리미티드 Method for producing trisperfluoroalkanesulfonylmethide acid salt
US8304580B2 (en) 2006-12-20 2012-11-06 Central Glass Company, Limited Method for producing tris(perfluoroalkanesulfonyl)methide acid salt

Similar Documents

Publication Publication Date Title
US3342858A (en) Preparation of alkoxy-alkanoic acids by the oxidation of alkoxy-alkanols
US8915989B2 (en) Porous coordination polymer, process for producing same, gas storage method, and gas separation method
WO2003014087A1 (en) Process for preparation of 5-methyl-1-phenyl-2(1h) -pyridinone
JP2000256348A (en) Production of epsilon-caprolactone
JP3899834B2 (en) Method for producing 2- (4-pyridyl) ethanethiol
JPH11228540A (en) Production of 2-(4-pyridyl)ethanethiol
KR100199335B1 (en) Process for the synthesis of nabumetone
JP3780581B2 (en) Organic compound conversion catalyst
Causey et al. A Practical Synthesis of Azetidine
JPH026414A (en) Preparation of isobutylene
JP2000086617A (en) Production of bisperfluoroalkylsulfonimide compound
JP3949481B2 (en) Method for producing sulfonic acid amine salt
JPS591448A (en) Hydrogenation of perhalogenated terephthalonitrile
JPH09169688A (en) Production of isophorone
JP4397990B2 (en) Purification method of 3-alkylflavanonol derivatives
JP3924027B2 (en) Sodium orthohydroxymandelate / phenol / water complex, process for its preparation and use for the separation of sodium orthohydroxymandelate
KR20190038842A (en) Process for producing perfluoroalkyl compounds starting from monohydroperfluoroalkane as starting material
JP3278925B2 (en) Process for producing octadienols and palladium complex
JPH09176171A (en) Rare earth element salt of tis(bis(perfluoroalkylsulfonyl)imide)
JPH0563478B2 (en)
JP3899626B2 (en) Preparation of 2-mercaptothiazol
JPH10230167A (en) Catalyst of tris(bis(perfluoroalkylsulfonyl))imide-rare earth element salt
JPS5858327B2 (en) Glycol Luino Seizouhou
JPH0159266B2 (en)
US20040167345A1 (en) Method for preparing bismuth tris-trifluoromethanesulphonate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606