JP2000256007A - Production of proton conductive material - Google Patents

Production of proton conductive material

Info

Publication number
JP2000256007A
JP2000256007A JP11064160A JP6416099A JP2000256007A JP 2000256007 A JP2000256007 A JP 2000256007A JP 11064160 A JP11064160 A JP 11064160A JP 6416099 A JP6416099 A JP 6416099A JP 2000256007 A JP2000256007 A JP 2000256007A
Authority
JP
Japan
Prior art keywords
acid
mol
proton
tetraalkoxysilane
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064160A
Other languages
Japanese (ja)
Inventor
Tsutomu Minami
努 南
Masahiro Tatsumisuna
昌弘 辰巳砂
Seiji Tadanaga
清治 忠永
Atsunori Matsuda
厚範 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP11064160A priority Critical patent/JP2000256007A/en
Publication of JP2000256007A publication Critical patent/JP2000256007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Silicon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a proton conductor having excellent proton conductivity and showing no decrease in the proton conductivity even in a dry environment by bringing an acid aq. soln. having specified mol or more concn. of an acid having a group selected from phosphate group, perchlorate group and sulfonate group into contact with a silica nanotube. SOLUTION: A silica nanotube is impregnated with an acid aq. soln. such as sulfuric acid for 1 to 5 hours under the conditions of >=0.5 mol concn. of the acid aq. soln., 20 ml of the contact amt. per 1 g of silica and <=80 deg.C contact temp. to obtain a proton conductor suitable for a fuel cell, capacitor or the like. The silica nanotube is obtd., for example, by adding 1 to 3 mol of water with its pH controlled to 1 to 4 to 1 mol of tetraalkoxysilane to partially decompose the tetraalkoxysilane, adding a surfactant such as a cationic alkylammonium salt by 0.01 to 0.3 mol to 1 mol of the tetraalkoxysilane to the partially decomposed produce, stirring at 10 to 100 rpm, drying a reaction system and calcining at 600 to 700 deg.C for 4 to 10 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプロトン導電性を発
現する材料の製造方法に関する。
The present invention relates to a method for producing a material exhibiting proton conductivity.

【0002】[0002]

【従来の技術】固体中をイオンが移動する物質は、電池
をはじめとする電気化学素子を構成する材料として精力
的に研究されており、現在Li+、Ag+、H+、F-など
様々な伝導イオン種のイオン伝導体が見出されている。
中でもプロトン(H+)を伝導イオン種とするものは、
燃料電池、キャパシター、エレクトロクロミック表示素
子など様々な電気化学素子への応用が期待されている。
上記のような電気化学素子の電解質としてプロトン伝導
体を用いることができる。プロトン伝導体は、室温付近
で高いプロトン伝導性を示すことが必要であり、このよ
うなプロトン伝導体としては、ウラニルリン酸水和物あ
るいはモリブゴリン酸水和物などの無機物、あるいはフ
ッ化ビニル系高分子にパーフルオロスルホン酸基を含む
側鎖のついた高分子イオン交換膜などの有機物が知られ
ている。しかしながら、上記の無機プロトン伝導体は、
結晶水中のプロトンが伝導に寄与しているため、高温下
では結晶水が脱離し、プロトン伝導性が低下する問題点
がある。一方有機プロトン伝導体は複雑な有機合成によ
り作成するために収率等製造技術上の問題が多く高価な
材料となってしまう問題点があった。
2. Description of the Related Art Substances in which ions move in a solid have been energetically studied as materials for electrochemical devices such as batteries, and currently various materials such as Li + , Ag + , H + , and F are used. Ionic conductors of various conductive ionic species have been found.
Among them, those using proton (H +) as a conductive ion species
It is expected to be applied to various electrochemical devices such as fuel cells, capacitors, and electrochromic display devices.
A proton conductor can be used as an electrolyte of the electrochemical device as described above. It is necessary that the proton conductor has high proton conductivity at around room temperature. Examples of such a proton conductor include inorganic substances such as uranyl phosphate hydrate and molybgophosphate hydrate, and vinyl fluoride type Organic substances such as a polymer ion exchange membrane having a side chain containing a perfluorosulfonic acid group in a molecule are known. However, the above-mentioned inorganic proton conductor is
Since the protons in the crystallization water contribute to conduction, there is a problem that the crystallization water is desorbed at a high temperature and the proton conductivity is reduced. On the other hand, since the organic proton conductor is produced by complicated organic synthesis, there are many problems in production technology such as yield, and there is a problem that it becomes an expensive material.

【0003】[0003]

【発明が解決しようとする課題】発明者らは、以上の問
題点を解決し、プロトン伝導性に優れ、乾燥雰囲気下で
もプロトン伝導性の低下のないプロトン伝導体を容易に
得られる製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present inventors have solved a problem described above, and have developed a production method which can easily obtain a proton conductor which has excellent proton conductivity and does not decrease in proton conductivity even in a dry atmosphere. The purpose is to provide.

【0004】[0004]

【発明を解決するための手段】本発明は、リン酸基、過
塩素酸基およびスルホン酸基から選ばれる基を有する酸
の濃度が0.5M以上である酸水溶液をシリカナノチュ
ーブに接触させることを特徴とするプロトン伝導性材料
の製造方法を提供するものである。シリカナノチューブの製造 本発明において、シリカナノチューブとは、平均直径1
〜5nm、好ましくは2〜3nm、平均長さ10〜50
nm、好ましくは30〜50nmのチューブ状シリカで
あるシリカナノチューブは、酸性雰囲気下の水でテトラ
アルコキシシランを部分加水分解および必要によりさら
に部分縮合した後、界面活性剤を加え、攪拌することに
より製造することができる。ここで使用できるテトラア
ルコキシシランとしては、テトラメトキシシラン、テト
ラエトキシシランなどを挙げることができる。また、水
の酸性度はpHで1〜4程度が好ましく、酸性度の調整
は硫酸で行うことが好ましい。
According to the present invention, there is provided a method of contacting a silica nanotube with an aqueous acid solution having a concentration of an acid having a group selected from a phosphoric acid group, a perchloric acid group and a sulfonic acid group of 0.5 M or more. And a method for producing a proton conductive material characterized by the following. Production of Silica Nanotube In the present invention, silica nanotube is defined as having an average diameter of 1
~ 5 nm, preferably 2-3 nm, average length 10-50
The silica nanotube, which is a tubular silica having a thickness of 30 nm, preferably 30 to 50 nm, is produced by partially hydrolyzing and optionally further condensing tetraalkoxysilane with water in an acidic atmosphere, then adding a surfactant and stirring. can do. Examples of the tetraalkoxysilane that can be used here include tetramethoxysilane and tetraethoxysilane. The acidity of water is preferably about 1 to 4 in terms of pH, and the adjustment of the acidity is preferably performed with sulfuric acid.

【0005】テトラアルコキシシランに添加する水の量
は、テトラアルコキシシラン1モルに対して0.1〜1
0モル、好ましくは1〜3モルである。
The amount of water to be added to tetraalkoxysilane is 0.1 to 1 per mole of tetraalkoxysilane.
0 mol, preferably 1 to 3 mol.

【0006】次にこのテトラアルコキシシランの部分分
解物に界面活性剤を添加する。界面活性剤としてはCn
2n+1+(CH3)3- (ここでn=8〜16、X=C
l、Br、OH)で表されるイオン性の(カチオン型)
アルチルアンモニウム塩類、Cn2n+1NH2 (n=4
〜18)で表される非イオン性のアルキルアミン類など
を用いることができる。本発明において、界面活性剤の
添加量はテトラアルコキシシラン1モルに対して通常
0.05〜0.5モル、好ましくは0.01〜0.3モ
ルである。テトラアルコキシシランに界面活性剤を添加
した後、反応系を攪拌するが、このときの攪拌速度は通
常10〜100rpmである。攪拌終了後、得られた反
応系を風乾や真空乾燥で乾燥し、微粉末化した後焼成す
ることによってシリカナノチューブが得られる。ここ
で、焼成温度は通常600〜700℃、焼成時間は4〜
10時間である。
Next, a surfactant is added to the partially decomposed product of the tetraalkoxysilane. As a surfactant, C n
H 2n + 1 N + (CH 3) 3 X - ( where n = 8~16, X = C
Ionic (cationic) represented by (1, Br, OH)
Alkylammonium salts, C n H 2n + 1 NH 2 (n = 4
To 18) can be used. In the present invention, the amount of the surfactant is usually 0.05 to 0.5 mol, preferably 0.01 to 0.3 mol, per 1 mol of the tetraalkoxysilane. After adding the surfactant to the tetraalkoxysilane, the reaction system is stirred, and the stirring speed at this time is usually 10 to 100 rpm. After completion of the stirring, the obtained reaction system is dried by air drying or vacuum drying, pulverized, and then calcined to obtain silica nanotubes. Here, the firing temperature is usually 600 to 700 ° C, and the firing time is 4 to
10 hours.

【0007】プロトン伝導体の製造 本発明では、上記で得られたシリカナノチューブに酸水
溶液を接触させる。本発明で使用する酸としては、リン
酸、過塩素酸、硫酸等のリン酸基、過塩素酸基またはス
ルホン酸基を有する酸を使用することができるが、高い
導電性が得られかつ乾燥雰囲気下での導電性の安定性か
ら硫酸が最も好ましい。本発明では酸水溶液の濃度を
0.5M以上、好ましくは0.5〜7Mに調整する。本
発明において、酸濃度が0.5M未満であるとプロトン
導電性が発現しにくくなる。また、酸濃度が高くなるに
つれ、徐々にプロトン伝導性は向上するが、7M以上で
は、プロトン伝導性向上効果は無くなり、プロトン伝導
体作成後の遊離スルホン酸基が増えるため、ペレット化
する際使用する結着剤ポリマーを腐食し易くなり好まし
くない。シリカナノチューブと接触させる酸水溶液の量
は、通常シリカ1g当たり20mlである。
[0007] In manufacturing the present invention proton conductor, it is contacted with an aqueous acid solution to a silica nanotubes obtained above. As the acid used in the present invention, an acid having a phosphoric acid group such as phosphoric acid, perchloric acid and sulfuric acid, a perchloric acid group or a sulfonic acid group can be used, but high conductivity is obtained and drying is performed. Sulfuric acid is most preferred because of its stability in conductivity under an atmosphere. In the present invention, the concentration of the aqueous acid solution is adjusted to 0.5M or more, preferably 0.5 to 7M. In the present invention, if the acid concentration is less than 0.5 M, it becomes difficult to exhibit proton conductivity. Also, as the acid concentration increases, the proton conductivity gradually increases. However, when the concentration is 7 M or more, the effect of improving the proton conductivity is lost, and the amount of free sulfonic acid groups after the preparation of the proton conductor increases. It is not preferable because the binder polymer easily corrodes. The amount of the acid aqueous solution to be brought into contact with the silica nanotube is usually 20 ml per g of silica.

【0008】本発明では、シリカナノチューブに接触さ
せる酸水溶液の温度を80℃以下にすることが、酸水溶
液を一定の条件に保つために好ましい。本発明におい
て、酸水溶液はシリカナノチューブに含浸させることが
好ましい。酸水溶液の接触時間については特に限定され
るものではないが、1時間以上5時間以内で十分な含浸
効果が得られる。
In the present invention, it is preferable to keep the temperature of the aqueous acid solution to be brought into contact with the silica nanotube at 80 ° C. or lower in order to keep the aqueous acid solution at a constant condition. In the present invention, it is preferable to impregnate the silica nanotube with the acid aqueous solution. The contact time of the acid aqueous solution is not particularly limited, but a sufficient impregnation effect can be obtained within 1 hour to 5 hours.

【0009】上記のとおり得られたプロトン伝導体は、
通常、乾燥し粉末化して使用する。本発明のプロトン伝
導体は粉末化した後、ポリビニルアルコール、ゴムなど
の結着剤により結着し、成形することにより使用するこ
とができる。
The proton conductor obtained as described above is
Usually, it is dried and powdered before use. The proton conductor of the present invention can be used by pulverizing, binding with a binder such as polyvinyl alcohol or rubber, and molding.

【0010】[0010]

【実施例】以下実施例に即し本発明について述べる。 [実施例1]出発原料として、テトラメトキシシラン(S
i(OCH3)4)(東京化成工業株式会社製、以下TMO
Sと略す)、硫酸(和光純薬工業株式会社製 精密分析
用)を、また界面活性剤にはヘキサデシルトリメチルア
ンモニウムクロリド(和光純薬工業株式会社製 一級
以下C16TAC と略す)を用いた。水はイオン交換
水を蒸留したものを用いた。 (1)シリカナノチューブの製造 水2モルを硫酸を用いてPH2の酸性条件に調製し、こ
れにTMOS1モルを滴下し数分間攪拌しTMOSを部
分的に加水分解させた。ついで界面活性剤であるC16
TAC0.2モルを加えて、室温で5分間攪拌してゾル
を調整した。得られたゾルをガラス製のバットに展開
し、35℃の恒温槽で12時間乾燥させた後、バットよ
り剥がし、めのう製のモルターグラインダーにて粉砕
し、ゲル微粉末を得た。このゲル微粉末を磁性皿上に展
開し、600℃、4時間の熱処理をマッフル炉で行い、
C16TACを燃焼させたシリカナノチューブ粉末50
g作製した。 (2)プロトン伝導体の製造 得られたシリカナノチューブ5gを25℃に調節した濃
度0.5Mの50mlの硫酸に添加し、3時間攪拌した
後、ろ過、乾燥し、本発明のプロトン伝導性材料を作製
した。 (3)評価 得られたプロトン伝導性材料1gに、ポリビニルアルコ
ール0.2を少量の水とともに混練りし、錠剤成型器
にて厚さ0.3mmのペレットに成形した。評価1該ペ
レットを室温で5時間真空乾燥した後白金電極に挟持
し、窒素気流下乾燥状態での導電率を交流法により評価
した。結果を表2に示す。評価2該ペレットの測定雰囲
気の影響と導電性の安定性を調べるため、25℃の温度
で相対湿度を0%(窒素気流下)から80%まで変化さ
せ導電率の変化を評価した。この相対湿度の変化で0%
→80%→0%の変化を1サイクルとして10サイクル
繰り返し導電率の安定性を評価した。
The present invention will be described below with reference to examples. Example 1 As a starting material, tetramethoxysilane (S
i (OCH3) 4) (Tokyo Chemical Industry Co., Ltd., hereinafter referred to as TMO
S), sulfuric acid (for precision analysis, manufactured by Wako Pure Chemical Industries, Ltd.), and hexadecyltrimethylammonium chloride (first grade, manufactured by Wako Pure Chemical Industries, Ltd.) for the surfactant
(Hereinafter abbreviated as C16TAC). Water used was distilled ion-exchanged water. (1) Production of Silica Nanotubes Two moles of water were prepared under acidic conditions of PH2 using sulfuric acid, and 1 mole of TMOS was added dropwise thereto and stirred for several minutes to partially hydrolyze the TMOS. Next, C16 which is a surfactant
The sol was prepared by adding 0.2 mol of TAC and stirring at room temperature for 5 minutes. The obtained sol was spread on a glass vat, dried in a thermostat at 35 ° C. for 12 hours, peeled off from the vat, and pulverized with an agate mortar grinder to obtain a fine gel powder. This gel fine powder is spread on a magnetic dish and heat-treated at 600 ° C. for 4 hours in a muffle furnace.
Silica Nanotube Powder 50 Burned with C16TAC
g was produced. (2) Production of Proton Conductor 5 g of the obtained silica nanotube was added to 50 ml of sulfuric acid having a concentration of 0.5 M adjusted to 25 ° C., stirred for 3 hours, then filtered and dried, and the proton conductive material of the present invention was obtained. Was prepared. (3) Evaluation 1 g of the obtained proton conductive material was kneaded with 0.2 g of polyvinyl alcohol together with a small amount of water, and formed into a 0.3 mm-thick pellet using a tablet molding machine. Evaluation 1 The pellets were vacuum-dried at room temperature for 5 hours, then sandwiched between platinum electrodes, and the conductivity in a dried state under a stream of nitrogen was evaluated by an alternating current method. Table 2 shows the results. Evaluation 2 In order to examine the influence of the measurement atmosphere of the pellets and the stability of the conductivity, the relative humidity was changed from 0% (under a nitrogen stream) to 80% at a temperature of 25 ° C., and the change in conductivity was evaluated. 0% by this relative humidity change
The stability of the conductivity was evaluated by repeating the cycle of → 80% → 0% as one cycle and repeating 10 cycles.

【0011】[実施例2〜15および比較例1〜3]実施
例1(2)において使用する酸水溶液の種類、濃度およ
び接触時間を表1のとおりとした以外は実施例1と同様
にしてプロトン伝導性材料を作製し評価を行った。な
お、比較例1は実施例(2)における工程なしで評価を
行った。結果を表2に示す。
[Examples 2 to 15 and Comparative Examples 1 to 3] In the same manner as in Example 1 except that the type, concentration and contact time of the acid aqueous solution used in Example 1 (2) were as shown in Table 1. A proton conductive material was prepared and evaluated. In addition, the comparative example 1 evaluated without the process in Example (2). Table 2 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】本発明のプロトン伝導性固体材料の製造
方法は簡便であり、本発明の製造方法により得られるプ
ロトン伝導性材料はプロセスでプロトン伝導性に優れ、
乾燥条件下においても劣化を起こさない。本発明の方法
により得られるプロトン伝導体は、燃料電池、キャパシ
ター、エレクトロクロミック表示素子など様々な電気化
学素子の電解質として有用である。
The method for producing the proton conductive solid material of the present invention is simple, and the proton conductive material obtained by the production method of the present invention has excellent proton conductivity in the process.
Does not deteriorate even under dry conditions. The proton conductor obtained by the method of the present invention is useful as an electrolyte for various electrochemical devices such as fuel cells, capacitors, and electrochromic display devices.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA28 BB16 CC13 DD07 DD08 GG03 HH30 JJ11 JJ13 JJ15 JJ17 KK01 LL06 LL07 MM01 MM21 PP17 RR05 TT01 UU30 5G301 CA30 CD01 CD04 5H026 AA01 BB03 EE12 5H029 AJ02 AM14 CJ02  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G072 AA28 BB16 CC13 DD07 DD08 GG03 HH30 JJ11 JJ13 JJ15 JJ17 KK01 LL06 LL07 MM01 MM21 PP17 RR05 TT01 UU30 5G301 CA30 CD01 CD04 5H026 AA01 BB29 AJ025H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リン酸基、過塩素酸基およびスルホン酸
基から選ばれる基を有する酸の濃度が0.5M以上であ
る酸水溶液をシリカナノチューブに接触させることを特
徴とするプロトン伝導性材料の製造方法。
1. A proton conductive material, wherein an acid aqueous solution having a concentration of an acid having a group selected from a phosphoric acid group, a perchloric acid group and a sulfonic acid group of 0.5 M or more is brought into contact with a silica nanotube. Manufacturing method.
【請求項2】 酸水溶液として硫酸水溶液を用いること
を特徴とする請求項1記載のプロトン伝導性材料の製造
方法。
2. The method for producing a proton conductive material according to claim 1, wherein a sulfuric acid aqueous solution is used as the acid aqueous solution.
【請求項3】 シリカナノチューブが平均直径1〜5n
m、平均長さ10〜50nmであることを特徴とする請求
項1記載のプロトン伝導性材料の製造方法。
3. The silica nanotube has an average diameter of 1 to 5 n.
2. The method for producing a proton conductive material according to claim 1, wherein the average length is 10 to 50 nm.
JP11064160A 1999-03-11 1999-03-11 Production of proton conductive material Pending JP2000256007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064160A JP2000256007A (en) 1999-03-11 1999-03-11 Production of proton conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064160A JP2000256007A (en) 1999-03-11 1999-03-11 Production of proton conductive material

Publications (1)

Publication Number Publication Date
JP2000256007A true JP2000256007A (en) 2000-09-19

Family

ID=13250052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064160A Pending JP2000256007A (en) 1999-03-11 1999-03-11 Production of proton conductive material

Country Status (1)

Country Link
JP (1) JP2000256007A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006519A1 (en) * 1999-07-19 2001-01-25 Sony Corporation Proton conducting material and method for preparing the same, and electrochemical device using the same
WO2002058079A1 (en) * 2001-01-18 2002-07-25 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
WO2002058177A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Proton conductor film and method for preparation thereof, and fuel cell having proton conductor film and method for manufacturing the cell
US6495290B1 (en) 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6890676B2 (en) 2002-02-05 2005-05-10 Sony Corporation Fullerene based proton conductive materials
US7153608B2 (en) 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
JP2012148965A (en) * 2010-12-28 2012-08-09 Adeka Corp Method for producing silica nanotube
US20160211530A1 (en) * 2015-01-15 2016-07-21 GM Global Technology Operations LLC Caged Nanoparticle Electrocatalyst with High Stability and Gas Transport Property

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153608B2 (en) 1999-07-19 2006-12-26 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
US6821665B2 (en) 1999-07-19 2004-11-23 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
WO2001006519A1 (en) * 1999-07-19 2001-01-25 Sony Corporation Proton conducting material and method for preparing the same, and electrochemical device using the same
US6495290B1 (en) 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US7157183B2 (en) 1999-07-19 2007-01-02 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US6777133B2 (en) 1999-07-19 2004-08-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US7771891B2 (en) 1999-07-19 2010-08-10 Sony Corporation Ionic conductor, process for production thereof, and electrochemical device
WO2002058079A1 (en) * 2001-01-18 2002-07-25 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
US7485391B2 (en) 2001-01-18 2009-02-03 Sony Corporation Proton conductor, process for producing the same, and electrochemical device
JPWO2002058177A1 (en) * 2001-01-19 2004-05-27 ソニー株式会社 PROTON CONDUCTOR MEMBRANE, PROCESS FOR PRODUCING THE SAME, FUEL CELL WITH PROTON CONDUCTOR MEMBRANE, AND PROCESS FOR PRODUCING THE SAME
JP4670219B2 (en) * 2001-01-19 2011-04-13 ソニー株式会社 PROTON CONDUCTOR MEMBRANE AND ITS MANUFACTURING METHOD, FUEL CELL HAVING PROTON CONDUCTOR MEMBRANE, AND ITS MANUFACTURING METHOD
US7226699B2 (en) 2001-01-19 2007-06-05 Sony Corporation Proton conductor film, manufacturing method therefor, fuel cell provided with proton conductor film and manufacturing method therefor
WO2002058177A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Proton conductor film and method for preparation thereof, and fuel cell having proton conductor film and method for manufacturing the cell
US7198863B2 (en) 2002-02-05 2007-04-03 Sony Corporation Fullerene based proton conductive materials
US7008713B2 (en) 2002-02-05 2006-03-07 Sony Corporation Fullerene-based proton conductive materials
US6890676B2 (en) 2002-02-05 2005-05-10 Sony Corporation Fullerene based proton conductive materials
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US7081385B2 (en) 2002-03-06 2006-07-25 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6858891B2 (en) 2002-03-06 2005-02-22 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
US7989117B2 (en) 2004-09-03 2011-08-02 The Gillette Company Fuel compositions
JP2012148965A (en) * 2010-12-28 2012-08-09 Adeka Corp Method for producing silica nanotube
US20160211530A1 (en) * 2015-01-15 2016-07-21 GM Global Technology Operations LLC Caged Nanoparticle Electrocatalyst with High Stability and Gas Transport Property
US11121379B2 (en) * 2015-01-15 2021-09-14 GM Global Technology Operations LLC Caged nanoparticle electrocatalyst with high stability and gas transport property

Similar Documents

Publication Publication Date Title
JP3535942B2 (en) Proton conductor and electrochemical device using the same
Colomer et al. High porosity silica xerogels prepared by a particulate sol–gel route: pore structure and proton conductivity
JP2000256007A (en) Production of proton conductive material
JP2017109903A (en) Silica aerogel, heat insulating material and method for producing silica aerogel
WO2016011970A1 (en) Use of tungsten-containing material
CA2460891C (en) Proton conducting material, proton conducting membrane, and fuel cell
JP3687038B2 (en) Proton conducting gel, proton conductor, and production method thereof
JP4642342B2 (en) Proton conductor and fuel cell
CN101901917B (en) Proton conductive composite glass film and preparation method thereof
Klein Sol-gel processing of ionic conductors
CN103996861B (en) A kind of purposes of the polymerizate that aromatic nitrile compounds polymerize to obtain as oxygen reduction catalyst
Yaroslavtsev et al. Ion conductivity of hybrid ion exchange membranes incorporating nanoparticles
JP2006324144A (en) Cation conduction medium using ionic liquid and improvement method for cation conductance in ionic liquid
JP2002080214A (en) Phosphosilicate gel and proton conductive material and their manufacturing methods
CN106629691B (en) A kind of preparation method of sulfonated redox graphene
JP2004146164A (en) Proton conduction membrane and its manufacturing method
JPWO2005092794A1 (en) Porous alumina particles, method for producing the same, and method for using the same
CN110783611B (en) Perfluorosulfonic acid hybrid ion exchange membrane and preparation method and application thereof
JP4008183B2 (en) Composite electrolyte
CN101786793A (en) Proton conducting glass material and hydro-thermal treatment preparation method thereof
CN109818050B (en) NASICON structure sodium ion solid electrolyte/sodium halide composite material and preparation method and application thereof
JP2004247253A (en) Manufacturing method of proton conductor
JP4958072B2 (en) Solid electrolyte
JP2005032454A (en) Ion conductive electrolyte membrane and its manufacturing method as well as fuel cell
JP2007073475A (en) Composite type ion conductor