JP2004247253A - Manufacturing method of proton conductor - Google Patents

Manufacturing method of proton conductor Download PDF

Info

Publication number
JP2004247253A
JP2004247253A JP2003038453A JP2003038453A JP2004247253A JP 2004247253 A JP2004247253 A JP 2004247253A JP 2003038453 A JP2003038453 A JP 2003038453A JP 2003038453 A JP2003038453 A JP 2003038453A JP 2004247253 A JP2004247253 A JP 2004247253A
Authority
JP
Japan
Prior art keywords
proton
silica gel
hydrogen sulfate
proton conductor
cesium hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038453A
Other languages
Japanese (ja)
Inventor
Junichiro Otomo
順一郎 大友
Hiroshi Takahashi
高橋  宏
Keiko Waki
慶子 脇
Masaru Ogura
賢 小倉
Takeshi Kobayashi
武史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003038453A priority Critical patent/JP2004247253A/en
Publication of JP2004247253A publication Critical patent/JP2004247253A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive proton conductor excellent in durability at high temperatures, containing a sufficient quantity of proton conducting compound, and having stable and high proton conductivity. <P>SOLUTION: The manufacturing method of this proton conductor is characterized by bringing silica having a specific surface area of 200-1,000 m<SP>2</SP>/g, the most frequent pore size of 2-20 nm, and a pore capacity of 0.3-3 ml/g in contact with a cesium hydrogen sulfate aqueous solution. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池の電解質材料等に用いられるプロトン導電体の製造方法に関する。特に、150〜200℃の高温下に於いても動作可能な、プロトン導電体の製造方法に関する。
【0002】
【従来の技術】
プロトン導電体は、燃料電池、Li電池(リチウム電池)等の二次電池、空気電池等の電解質や、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等の電気化学的デバイスに用いられる電解質等として用いられている。
【0003】
水素−酸素燃料電池に代表される燃料電池は、その反応生成物が原理的には水のみであり、地球環境への悪影響がほとんどない発電システムとして知られている。特にパーフルオロスルホン酸型陽イオン交換樹脂を用いた固体高分子電解質形燃料電池は、近年の研究が進んで高密度、高出力が可能となりつつあり、自動車等の車載用電源や家庭用電源、更には携帯機器用電源としての実用化が大いに期待されている。
【0004】
固体高分子電解質を用いた燃料電池に用いる電解質板としては、通常厚さ50〜200μmのプロトン伝導性イオン交換樹脂が用いられている。特に、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が、基本特性に優れていることから、広く研究されている。しかし、かかるイオン交換膜は、高温条件での耐久性が不十分であるという欠点や、フッ素系電解質は製造が困難であるため、非常に高価であるという欠点がある。
【0005】
そこで、より高温での耐久性に優れ、且つより安価な無機系プロトン伝導体、中でもシリカゲルを用いたプロトン伝導体の研究が盛んである。
【0006】
【発明が解決しようとする課題】
しかし、シリカゲルを用いたプロトン導電体においては、シリカゲルにおける細孔特性等の物性をプロトン導電体用途に制御する事が困難なために、得られるプロトン伝導体の性能が低く、その品質も不安定であった。また、従来用いられていたシリカゲルは細孔容積が概して小さく、細孔内に担持できるイオン伝導性化合物の量が限られてしまい、更には、含有されているプロトン導電性化合物においてはプロトン導電相が安定しておらず、実用的に十分な程度の、安定性と高プロトン伝導度を有するものを得ることは困難であった。
【0007】
よって高温での耐久性に優れ、安価で、充分な量のプロトン導電性化合物を含有し、安定した高いプロトン導電度を有するプロトン導電体の提供が強く望まれていた。
【0008】
【課題を解決するための手段】
本発明者らは、この様な課題について鋭意検討した。その結果、特定物性を満足するシリカゲルをプロトン導電体の基体として用い、プロトン導電性材料として硫酸水素セシウムを用いると、意外にも極めて簡単な製造方法によって、充分な量のプロトン導電性化合物を含有したシリカゲルが得られることを見出した。
【0009】
そしてこのプロトン導電性化合物含有シリカゲルの表面においては、プロトン導電体として機能する硫酸水素セシウムの相転移が好ましく制御され、低温度領域においても、高プロトン伝導相が安定化されており、プロトン導電体として耐久性に優れ、従来にない高いプロトン導電性を示すことを見出し、本発明を完成させた。
【0010】
即ち本発明の要旨は、比表面積200〜1000m/g、細孔の最頻直径2〜20nm、細孔容量0.3〜3ml/gのシリカと硫酸水素セシウム水溶液とを接触させることを特徴とするプロトン導電体の製造方法に存する。
【0011】
【発明実施の形態】
以下、本発明を詳細に説明する。
本発明は、プロトン導電体の製造方法において、比表面積200〜1000m/g、細孔の最頻直径2〜20nm、細孔容量0.3〜3ml/gのシリカと、硫酸水素セシウム水溶液とを接触させることを特徴とする。この様な特定のシリカゲルと、特定のプロトン導電性化合物(硫酸水素セシウム)を用い、硫酸水素セシウムを水溶液としてシリカゲルと接触させ、シリカゲルに含有させることによって高プロトン伝導相の安定化を実現化させ、その結果、高い伝導率を安定に示すプロトン伝導体を得ることが出来た。
【0012】
本発明に用いるシリカゲルとしては、比表面積が200〜1000m/g、細孔の最頻直径が2〜20nm、且つ細孔容量が0.3〜3ml/gのシリカであればよい。
本発明のイオン伝導体用シリカゲルは、比表面積と細孔容積が通常のものより大きい範囲にあることを特徴の一つとする。具体的には比表面積の値は、通常200m/g以上、好ましくは300m/g以上、更に好ましくは400m/g以上であり、また通常1000m/g以下、好ましくは900mm/g以下、更に好ましくは800m/g以下の範囲に存在する。
【0013】
そして細孔容積の値は、通常0.3ml/g以上、好ましくは0.5ml/g以上、更に好ましくは0.8ml/g以上、また、通常3ml/g以下、好ましくは2.5ml/g以下、更に好ましくは2ml/g以下の範囲に存在する。これらの細孔容積及び比表面積の値は、窒素ガス吸脱着によるBET法で測定される。
【0014】
また、本発明のプロトン導電体に用いるシリカゲルの細孔の最頻直径(Dmax)は2〜20nmであることを特徴とする。最頻直径(Dmax)は、気体や液体の吸着や吸収に関する特性に影響を及ぼすことが知られており、最頻直径(Dmax)が小さいほど吸着や吸収性能が高い。従って、種々の特性の中で最頻直径(Dmax)は、イオン伝導体用シリカゲルにとって重要な物性である。本発明のイオン伝導体用シリカゲルの好ましい最頻直径最頻直径(Dmax)は、触媒成分との兼ね合いにより決められるが、中でも18nm以下、更には16nm以下である。また、下限は特に制限されないが、通常は2nm以上、好ましくは3nm以上、更に好ましくは4nm以上である。
【0015】
なお、上記の最頻直径(Dmax)は、窒素ガス吸脱着で測定した等温脱着曲線から、E. P. Barrett, L. G. Joyner, P. H. Haklenda, J. Amer. Chem. Soc., vol. 73, 373 (1951) に記載のBJH法により算出される細孔分布曲線をプロットして求められる。ここで、細孔分布曲線とは、微分細孔容積、すなわち、細孔直径d(nm)に対する微分窒素ガス吸着量(ΔV/Δ(logd))を言う。上記のVは、窒素ガス吸着容積を表す。
【0016】
尚、本発明に用いるシリカゲルの製造方法は任意であり、従来公知の沈降法やゾル−ゲル法等により得ることが出来る。中でもゾル−ゲル法によるものが好ましく、特に、シリコンアルコキシドを原料とするゾル−ゲル法によるものが、不純物等が少なく、諸物性の制御が比較的容易にできるので好ましい。
本発明においては、プロトン導電体として硫酸水素セシウムを用いる。これを先述のシリカゲルに含有させるに際し、硫酸水素セシウムを水溶液としてシリカゲルと接触させ、シリカゲルの細孔内部に含浸させることを特徴とする。
【0017】
この様な方法、及び上述した様な特定のシリカゲルを用いることによって、硫酸水素セシウム水溶液を含浸させ、水等の溶媒を除去し、乾燥させることで、プロトン導電体として耐久性に優れ、従来にない高いプロトン導電性を示す、プロトン導電体を得ることが出来る。この理由は、その基体である多孔体シリカゲルの細孔特性が上述した特定条件下に於いては、その細孔表面における硫酸水素セシウムの相転移が抑制され、安定化しているためと推察される。
【0018】
本発明のプロトン導電体の製造方法において硫酸水素セシウム水溶液とシリカゲルとを接触させる際、その量比は任意だが、一般的には硫酸水素セシウム1モルに対してシリカが0.1モル以上、中でも0.5モル以上、特に1モル以上でることが好ましく、また通常5モル以下、中でも3モル以下、特に1.5モル以下であることが好ましい。
【0019】
シリカゲルと接触させる硫酸水素セシウム水溶液の温度は任意だが、通常、室温〜200℃、更には50〜190℃、中でも100〜190℃、特に140〜180℃であることが好ましい。また硫酸水素セシウムとシリカゲルとを接触させる際には、減圧下にて行うことが好ましい。
硫酸水素セシウム水溶液の濃度は任意であり、所望のプロトン導電体の特性に応じて適宜調整すればよい。またシリカゲルと硫酸水素セシウム水溶液の接触時間は通常5分以上、中でも30分以上、特に60分以上であることが好ましく、通常300分以下、中でも150分以下、特に120分以下であることが好ましい。
【0020】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に制約されるものではない。
(実施例1〜3)
硫酸水素セシウム(水溶液)と、表1に記載の特定のシリカ(M1〜M3)を所定のモル比で混合して調製し、170℃で乾燥後、硫酸水素セシウム含有シリカゲル粉末を得た。この粉末を錠剤成型器を用いてペレット(直径10mmφ ;厚み約1.5mm)に成型した。その後ペレットは大気中で200℃にて1時間熱処理を行った。続いて、熱処理後のペレット両面にスパッタコーティングによって金電極を蒸着し、試料とした。
【0021】
【表1】

Figure 2004247253
【0022】
(比較例1)
実施例3と同様のシリカゲル(M3)と、固体の硫酸水素セシウムとを、乳鉢を用いて混合し、硫酸水素セシウム含有シリカゲル粉末を得た。そして上述の実施例と同様にして試料を形成した。
これらの試料について、交流インピーダンス法により、アルゴン雰囲気中(1atm)でプロトン導電率を測定した。結果を表2に示す。
【0023】
測定結果を表2に示す。測定には、実施例3の硫酸水素セシウム含有シリカゲルを用いた。比較例1に比べて本発明により製造されたプロトン導電体は、各温度域においてプロトン伝導率の顕著な上昇が確認された。特に低温領域での伝導率の上昇が著しいことが明白である。
これは本発明の製造方法によって、硫酸水素セシウムを効率よくシリカ細孔内に導入させたことにより、高プロトン伝導相の安定化を可能にしたためである。すなわち本発明の製造方法である「蒸発乾固法」によって、特にシリカゲル細孔内の表面に於いて、硫酸水素セシウムの相転移を制御し、従来の製造方法では低プロトン伝導相が出現する低温度領域においても、高プロトン伝導相を維持できたため、高いプロトン伝導率を有するプロトン伝導体となったと考えられる。
【0024】
【表2】
Figure 2004247253
【0025】
また、実施例1〜3のプロトン導電体について、プロトン導電率の温度依存性を測定した。結果を図1に示す。
昇温時と降温時の両方においてプロトン導電率を測定した。昇温過程と降温過程の両方において、低プロトン伝導相ではM3(細孔径15nm)の性能が極めて良く、M2と比べて約1桁、M1と比べて約2桁の伝導率の改善が観測された。
【0026】
即ち、細孔直径2〜15nmの範囲に於いて、細孔直径が大きくなるに連れて、プロトン導電率が上昇していることが明白である。またシリカゲルの細孔容量においても、0.35ml/gから1.29ml/gへ増加するに従い、伝導率が上昇していることが明白であり、実施例3のプロトン導電体が高プロトン伝導相が安定化されており、より低い温度でも最も高いプロトン伝導率を有することが判る。
【0027】
そして、本発明の製造方法においてプロトン導電体を製造する際、得られるプロトン導電体のプロトン導電体率と、硫酸水素セシウム水溶液とシリカとの接触時間の関係(依存性)を測定した。結果を図2に示す
この結果から、接触時間が5分のものに比べ、120分間接触させた場合には、プロトン伝導率の上昇が確認された。
【0028】
【発明の効果】
本発明の製造方法によって、簡便な製造方法にもかかわらず、硫酸水素セシウムの相転移を制御することが可能となり、低プロトン伝導相が出現する低温領域においても、硫酸水素セシウムの高プロトン伝導相が安定化され、高い伝導率が得られるプロトン導電体を得ることが出来る。
【0029】
そして、従来、100℃付近で機能する固体高分子膜を使用した固体高分子形燃料電池(PEFC)用のプロトン導電体に比べ、本発明で得られたプロトン伝導体は、150〜200℃の高温で機能するので、PEFCと比較して、▲1▼電極反応速度促進とそれに伴う過電圧の抑制;▲2▼一酸化炭素による触媒の被毒の軽減;▲3▼白金以外の触媒の使用可能性;▲4▼廃熱利用による総合効率の向上;▲5▼水管理の容易性(加湿の必要なし)等の利点を同時に奏することが出来る。
【図面の簡単な説明】
【図1】シリカゲル粒子の特性とプロトン伝導率の関係を示す図。
【図2】硫酸水素セシウム水溶液とシリカゲル粒子との接触時間がプロトン伝導率に及ぼす影響を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a proton conductor used as an electrolyte material of a solid oxide fuel cell. In particular, the present invention relates to a method for producing a proton conductor that can operate even at a high temperature of 150 to 200 ° C.
[0002]
[Prior art]
Proton conductors are used for electrolytes such as fuel cells, secondary batteries such as Li batteries (lithium batteries), and air batteries, and for electricity such as water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, and gas sensors. It is used as an electrolyte used in chemical devices.
[0003]
A fuel cell represented by a hydrogen-oxygen fuel cell has a reaction product of only water in principle, and is known as a power generation system having almost no adverse effect on the global environment. In particular, solid polymer electrolyte fuel cells using perfluorosulfonic acid-type cation exchange resins have been studied in recent years, and high densities and high outputs have become possible. Furthermore, practical application as a power supply for portable devices is greatly expected.
[0004]
As an electrolyte plate used for a fuel cell using a solid polymer electrolyte, a proton conductive ion exchange resin having a thickness of 50 to 200 μm is usually used. In particular, ion exchange membranes made of perfluorocarbon polymers having sulfonic acid groups have been widely studied because of their excellent basic characteristics. However, such ion-exchange membranes have a drawback of insufficient durability under high-temperature conditions, and have a drawback of being very expensive because fluorine-based electrolytes are difficult to produce.
[0005]
Therefore, studies on inorganic proton conductors that are more durable at higher temperatures and are less expensive, especially proton conductors using silica gel, have been actively conducted.
[0006]
[Problems to be solved by the invention]
However, in the case of proton conductors using silica gel, it is difficult to control the physical properties such as the pore characteristics of silica gel for proton conductor applications, and the resulting proton conductors have low performance and unstable quality. Met. In addition, the silica gel conventionally used has a generally small pore volume, which limits the amount of the ion conductive compound that can be supported in the pores. Is not stable, and it is difficult to obtain those having stability and high proton conductivity that are practically sufficient.
[0007]
Therefore, it has been strongly desired to provide a proton conductor that is excellent in durability at high temperatures, inexpensive, contains a sufficient amount of a proton conductive compound, and has stable and high proton conductivity.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied such a problem. As a result, when silica gel that satisfies the specified physical properties is used as the base of the proton conductor and cesium hydrogen sulfate is used as the proton conductive material, a sufficient amount of the proton conductive compound is contained by an unexpectedly simple manufacturing method. Silica gel was obtained.
[0009]
And, on the surface of this proton conductive compound-containing silica gel, the phase transition of cesium hydrogen sulfate functioning as a proton conductor is preferably controlled, and even in a low temperature region, the high proton conductive phase is stabilized, and the proton conductor As a result, the present invention has been found to be excellent in durability and exhibit high proton conductivity that has never been seen before.
[0010]
That is, the gist of the present invention is that silica having a specific surface area of 200 to 1000 m 2 / g, a mode diameter of pores of 2 to 20 nm, and a pore volume of 0.3 to 3 ml / g is brought into contact with a cesium hydrogen sulfate aqueous solution. In the method for producing a proton conductor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention relates to a method for producing a proton conductor, comprising a silica having a specific surface area of 200 to 1000 m 2 / g, a mode diameter of pores of 2 to 20 nm, a pore volume of 0.3 to 3 ml / g, and a cesium hydrogen sulfate aqueous solution. Are brought into contact with each other. By using such a specific silica gel and a specific proton conductive compound (cesium hydrogen sulfate), the cesium hydrogen sulfate is brought into contact with the silica gel as an aqueous solution, and is contained in the silica gel to realize the stabilization of the high proton conductive phase. As a result, a proton conductor stably exhibiting a high conductivity could be obtained.
[0012]
The silica gel used in the present invention may be any silica having a specific surface area of 200 to 1000 m 2 / g, a mode diameter of pores of 2 to 20 nm, and a pore volume of 0.3 to 3 ml / g.
One of the characteristics of the silica gel for an ion conductor of the present invention is that the specific surface area and the pore volume are in ranges larger than those of ordinary silica gel. Specifically, the value of the specific surface area is usually 200 m 2 / g or more, preferably 300 m 2 / g or more, more preferably 400 m 2 / g or more, and usually 1000 m 2 / g or less, preferably 900 mm 2 / g. And more preferably in the range of 800 m 2 / g or less.
[0013]
The value of the pore volume is usually 0.3 ml / g or more, preferably 0.5 ml / g or more, more preferably 0.8 ml / g or more, and usually 3 ml / g or less, preferably 2.5 ml / g. And more preferably in the range of 2 ml / g or less. The values of the pore volume and the specific surface area are measured by the BET method using nitrogen gas adsorption / desorption.
[0014]
Further, the mode diameter (Dmax) of the pores of the silica gel used for the proton conductor of the present invention is 2 to 20 nm. It is known that the mode diameter (Dmax) affects the characteristics related to adsorption and absorption of gas and liquid, and the smaller the mode diameter (Dmax), the higher the adsorption and absorption performance. Therefore, the mode diameter (Dmax) is an important physical property for silica gel for an ion conductor among various properties. The preferred mode diameter (Dmax) of the silica gel for an ion conductor of the present invention is determined depending on the balance with the catalyst component, but is preferably 18 nm or less, more preferably 16 nm or less. The lower limit is not particularly limited, but is usually 2 nm or more, preferably 3 nm or more, and more preferably 4 nm or more.
[0015]
The above-mentioned mode diameter (Dmax) was obtained from the isothermal desorption curve measured by nitrogen gas adsorption / desorption from E.C. P. Barrett, L .; G. FIG. Joyner, P .; H. Haklenda, J .; Amer. Chem. Soc. , Vol. 73, 373 (1951), which is obtained by plotting a pore distribution curve calculated by the BJH method. Here, the pore distribution curve refers to the differential pore volume, that is, the differential nitrogen gas adsorption amount (ΔV / Δ (logd)) with respect to the pore diameter d (nm). The above V represents the nitrogen gas adsorption volume.
[0016]
The method for producing silica gel used in the present invention is arbitrary, and can be obtained by a conventionally known precipitation method, sol-gel method, or the like. Among them, a sol-gel method is preferable, and a sol-gel method using silicon alkoxide as a raw material is particularly preferable since it has few impurities and the like and can relatively easily control various physical properties.
In the present invention, cesium hydrogen sulfate is used as the proton conductor. When this is contained in the above-mentioned silica gel, it is characterized in that cesium hydrogen sulfate is brought into contact with the silica gel as an aqueous solution to impregnate the inside of the pores of the silica gel.
[0017]
By using such a method and the specific silica gel as described above, by impregnating with an aqueous solution of cesium hydrogen sulfate, removing a solvent such as water, and drying, it has excellent durability as a proton conductor, and is conventionally used. A proton conductor showing no high proton conductivity can be obtained. The reason is presumed that the pore characteristics of the porous silica gel, which is the base material, are stabilized under the above-mentioned specific conditions because the phase transition of cesium hydrogen sulfate on the pore surface is suppressed. .
[0018]
When the aqueous solution of cesium hydrogen sulfate and silica gel are brought into contact with each other in the method for producing a proton conductor of the present invention, the amount ratio is arbitrary, but generally 0.1 mol or more of silica per 1 mol of cesium hydrogen sulfate, especially It is preferably at least 0.5 mol, especially at least 1 mol, and usually at most 5 mol, especially at most 3 mol, particularly preferably at most 1.5 mol.
[0019]
The temperature of the aqueous cesium hydrogen sulfate solution to be brought into contact with the silica gel is arbitrary, but is usually room temperature to 200 ° C, preferably 50 to 190 ° C, more preferably 100 to 190 ° C, particularly preferably 140 to 180 ° C. When bringing cesium hydrogen sulfate and silica gel into contact, it is preferable to carry out the reaction under reduced pressure.
The concentration of the aqueous cesium hydrogen sulfate solution is arbitrary, and may be appropriately adjusted according to the desired properties of the proton conductor. The contact time between the silica gel and the aqueous cesium hydrogen sulfate solution is usually 5 minutes or more, preferably 30 minutes or more, particularly preferably 60 minutes or more, and is usually 300 minutes or less, especially 150 minutes or less, particularly preferably 120 minutes or less. .
[0020]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
(Examples 1 to 3)
Cesium hydrogen sulfate (aqueous solution) and the specific silicas (M1 to M3) shown in Table 1 were mixed at a predetermined molar ratio, prepared and dried at 170 ° C. to obtain a silica gel powder containing cesium hydrogen sulfate. This powder was formed into pellets (diameter 10 mmφ; thickness about 1.5 mm) using a tablet press. Thereafter, the pellets were heat-treated at 200 ° C. for 1 hour in the air. Subsequently, gold electrodes were vapor-deposited on both surfaces of the heat-treated pellet by sputter coating to obtain samples.
[0021]
[Table 1]
Figure 2004247253
[0022]
(Comparative Example 1)
Silica gel (M3) similar to that in Example 3 and solid cesium hydrogen sulfate were mixed using a mortar to obtain a silica gel powder containing cesium hydrogen sulfate. Then, a sample was formed in the same manner as in the above embodiment.
For these samples, proton conductivity was measured by an AC impedance method in an argon atmosphere (1 atm). Table 2 shows the results.
[0023]
Table 2 shows the measurement results. The silica gel containing cesium hydrogen sulfate of Example 3 was used for the measurement. Compared with Comparative Example 1, the proton conductor manufactured according to the present invention showed a remarkable increase in proton conductivity in each temperature range. It is apparent that the conductivity is significantly increased particularly in a low temperature region.
This is because the production method of the present invention efficiently stabilizes a high proton conducting phase by efficiently introducing cesium hydrogen sulfate into the pores of silica. That is, by the production method of the present invention, the “evaporation to dryness method”, the phase transition of cesium hydrogen sulfate is controlled, particularly on the surface within the pores of the silica gel, and in the conventional production method, a low proton conducting phase appears. It is considered that a proton conductor having a high proton conductivity was obtained because the high proton conducting phase was maintained even in the temperature region.
[0024]
[Table 2]
Figure 2004247253
[0025]
Further, the temperature dependence of the proton conductivity of the proton conductors of Examples 1 to 3 was measured. The results are shown in FIG.
The proton conductivity was measured both at the time of temperature increase and at the time of temperature decrease. In both the heating process and the cooling process, the performance of M3 (pore diameter: 15 nm) was very good in the low proton conducting phase, and the conductivity was improved by about one digit compared to M2 and by about two digits compared to M1. Was.
[0026]
That is, in the range of the pore diameter of 2 to 15 nm, it is apparent that the proton conductivity increases as the pore diameter increases. It is also evident that the conductivity increases as the pore volume of silica gel increases from 0.35 ml / g to 1.29 ml / g. Are stabilized and have the highest proton conductivity even at lower temperatures.
[0027]
Then, when producing a proton conductor in the production method of the present invention, the relationship (dependency) between the proton conductor rate of the obtained proton conductor and the contact time between the cesium hydrogen sulfate aqueous solution and silica was measured. From the results shown in FIG. 2, it was confirmed that the proton conductivity increased when the contact was performed for 120 minutes as compared with the case where the contact time was 5 minutes.
[0028]
【The invention's effect】
According to the production method of the present invention, it is possible to control the phase transition of cesium hydrogen sulfate despite the simple production method, and even in a low temperature region where a low proton conduction phase appears, the high proton conduction phase of cesium hydrogen sulfate is obtained. Is stabilized, and a proton conductor with high conductivity can be obtained.
[0029]
The proton conductor obtained by the present invention has a temperature of 150 to 200 ° C., compared to a proton conductor for a polymer electrolyte fuel cell (PEFC) using a solid polymer membrane that functions at around 100 ° C. Since it functions at high temperatures, compared to PEFC, (1) promotes electrode reaction rate and suppresses overvoltage associated therewith; (2) reduction of catalyst poisoning by carbon monoxide; (3) use of a catalyst other than platinum (4) Improving overall efficiency by utilizing waste heat; (5) Simultaneous advantages such as easy water management (no need for humidification) can be achieved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the characteristics of silica gel particles and proton conductivity.
FIG. 2 is a graph showing the effect of the contact time between a cesium hydrogen sulfate aqueous solution and silica gel particles on proton conductivity.

Claims (1)

比表面積200〜1000m/g、細孔の最頻直径2〜20nm、細孔容量0.3〜3ml/gのシリカと硫酸水素セシウム水溶液とを接触させることを特徴とするプロトン導電体の製造方法。Production of a proton conductor characterized by contacting silica having a specific surface area of 200 to 1000 m 2 / g, a mode diameter of pores of 2 to 20 nm, and a pore volume of 0.3 to 3 ml / g with an aqueous solution of cesium hydrogen sulfate. Method.
JP2003038453A 2003-02-17 2003-02-17 Manufacturing method of proton conductor Pending JP2004247253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038453A JP2004247253A (en) 2003-02-17 2003-02-17 Manufacturing method of proton conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038453A JP2004247253A (en) 2003-02-17 2003-02-17 Manufacturing method of proton conductor

Publications (1)

Publication Number Publication Date
JP2004247253A true JP2004247253A (en) 2004-09-02

Family

ID=33022985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038453A Pending JP2004247253A (en) 2003-02-17 2003-02-17 Manufacturing method of proton conductor

Country Status (1)

Country Link
JP (1) JP2004247253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107799A (en) * 2004-10-01 2006-04-20 Tama Tlo Kk Proton-conductive solid electrolyte film, its manufacturing method, junction of electrolyte film and electrode, as well as fuel cell
WO2006134809A1 (en) 2005-06-17 2006-12-21 Riken Proton conductive membrane and process for producing the same
JP2010103047A (en) * 2008-10-27 2010-05-06 National Institute Of Advanced Industrial Science & Technology New proton conductor and method of manufacturing the same
US8211590B2 (en) 2005-03-15 2012-07-03 Panasonic Corporation Proton conducting material, and electrode and fuel cell using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107799A (en) * 2004-10-01 2006-04-20 Tama Tlo Kk Proton-conductive solid electrolyte film, its manufacturing method, junction of electrolyte film and electrode, as well as fuel cell
US8211590B2 (en) 2005-03-15 2012-07-03 Panasonic Corporation Proton conducting material, and electrode and fuel cell using the same
WO2006134809A1 (en) 2005-06-17 2006-12-21 Riken Proton conductive membrane and process for producing the same
EP1909295A1 (en) * 2005-06-17 2008-04-09 Riken Proton conductive membrane and process for producing the same
EP1909295A4 (en) * 2005-06-17 2010-12-29 Riken Proton conductive membrane and process for producing the same
JP2010103047A (en) * 2008-10-27 2010-05-06 National Institute Of Advanced Industrial Science & Technology New proton conductor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Arico et al. Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells
Yang et al. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells
Shabanikia et al. Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature
US7993791B2 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
Mamlouk et al. The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell
Sahu et al. Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs
Zhang et al. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application
JP5313495B2 (en) Proton conductor, electrode and fuel cell using the same
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
Eastcott et al. Sulfonated silica-based fuel cell electrode structures for low humidity applications
JP4566713B2 (en) Proton conductor and fuel cell
Cho et al. Effect of catalyst layer ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions
Kim et al. High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells
Zhang et al. Investigation of self-humidifying membranes based on sulfonated poly (ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications
US7824781B2 (en) Metal phosphate composite and dense material comprised of the same
Casciola et al. Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity
JP4836172B2 (en) Proton conductor made of metal oxide nanoporous material, fuel cell electrolyte or conductor using the conductor, and method for producing the conductor
Malinowski et al. An anode catalyst support for polymer electrolyte membrane fuel cells: application of organically modified titanium and silicon dioxide
CN100404503C (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
Glebova et al. Thermally expanded graphite as functional material in the technology of electrode material with mixed conductivity
Mitsushima et al. Mass transportation in diethylmethylammonium trifluoromethanesulfonate for fuel cell applications
Wang et al. Proton conductive inorganic materials for temperatures up to 120 C and relative humidity down to 5%
JP2004247253A (en) Manufacturing method of proton conductor
Uma et al. PMA/ZrO2–P2O5–SiO2 glass composite membranes: H2/O2 fuel cells
Han et al. An inorganic mesoporous membrane in situ-doped with Cs2. 5H0. 5PW12O40 for high temperature proton exchange membrane fuel cells