JP2000254688A - Biological denitrification treatment of waste water - Google Patents

Biological denitrification treatment of waste water

Info

Publication number
JP2000254688A
JP2000254688A JP11064821A JP6482199A JP2000254688A JP 2000254688 A JP2000254688 A JP 2000254688A JP 11064821 A JP11064821 A JP 11064821A JP 6482199 A JP6482199 A JP 6482199A JP 2000254688 A JP2000254688 A JP 2000254688A
Authority
JP
Japan
Prior art keywords
denitrification
tank
waste water
carrier
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064821A
Other languages
Japanese (ja)
Inventor
Osamu Tokari
脩 戸河里
Yasuo Imamura
泰夫 今村
Kenji Shimokawa
憲治 下川
Tokihiko Koyama
時彦 小山
Emi Sumita
絵美 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP11064821A priority Critical patent/JP2000254688A/en
Publication of JP2000254688A publication Critical patent/JP2000254688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat for a long period of time without the degradation in the nitric acid reduction effect of denitrification bacteria by adding an inorganic acid to waste water before the introduction thereof into a denitrification tank, thereby suppressing the deposition of calcium carbonate at the time of the biological denitrification treatment of the nitrogen-containing waste water which contains calcium ions. SOLUTION: In the case of the denitrification treatment of the waste water, a carrier carried with the denitrification bacteria is packed in the denitrification tank 1 and is maintained at a fluidization state by the waste water introduced from the lower part of the tank. At this time, a microbial cell peeling device 3, which is composed of agitating vanes having guides on the circumference and peels part of the denitrification bacteria adhered to the carrier by applying shearing force to the carrier floating to the surface, is actuated. In addition, part of a circulating liquid is withdrawn and the inorganic acid is added in addition to methanol necessary for the denitrification reaction at need in a circulation tank 5. The liquid withdrawn from the circulation tank 5 is again sent by a circulating pump 6 to the denitrification tank 1. The inorganic acid is added into the waste water in the manner described above, by which the deposition of the calcium carbonate is suppressed and the stable denitrification reaction is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水の生物学的脱
窒処理方法に関し、詳しくは生物学的脱窒反応に伴い発
生する炭酸ガスが、排水中のカルシウムイオンと結合し
て不溶性の炭酸カルシウムを生成し、これが脱窒菌に付
着してその作用を低下させることを防止する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for the biological denitrification of wastewater, and more particularly, to a method in which carbon dioxide gas generated during a biological denitrification reaction is combined with calcium ions in wastewater to form insoluble carbon dioxide. It relates to a method for producing calcium and preventing it from adhering to the denitrifying bacteria and reducing its action.

【0002】[0002]

【従来の技術】カルシウムイオンを含まない排水中の有
機性窒素やアンモニアを硝酸根に変換して、これを生物
学的に脱窒処理する方法は良く知られている。この方法
の原理は、脱窒菌が培養されている脱窒槽内において、
添加されるメタノール等の水素供与体の力を借りて硝酸
根を還元し、窒素に変換して大気中に放出するものであ
る。しかし、この反応においては水酸基が発生するた
め、処理排水はアルカリ性を呈するようになる。したが
って、脱窒菌の作用を維持するためには、適当な酸を添
加し、発生した水酸基を中和することが必要となる。
2. Description of the Related Art It is well known to convert organic nitrogen or ammonia in wastewater containing no calcium ions into nitrate and biologically denitrify it. The principle of this method is that in a denitrification tank where denitrifying bacteria are cultured,
With the help of the added hydrogen donor such as methanol, nitrate is reduced, converted to nitrogen and released into the atmosphere. However, in this reaction, a hydroxyl group is generated, so that the treated wastewater becomes alkaline. Therefore, in order to maintain the action of the denitrifying bacteria, it is necessary to add an appropriate acid to neutralize the generated hydroxyl groups.

【0003】一方、高濃度のカルシウムイオンを含む窒
素含有排水を上記の方法によって脱窒除去する場合、反
応に伴い発生した炭酸ガスは炭酸イオンとなってカルシ
ウムイオンと結合し、難溶性の炭酸カルシウムを生成す
ると共に、炭酸イオン生成時に発生する水素イオンによ
り生成アルカリがすべて中和されるため、前述のような
酸の添加を必要としない。しかし、この場合、炭酸カル
シウムは、脱窒菌を担持している担体または汚泥中の該
菌体上に析出し、その働きを阻害する上に、多量に生成
した場合は、脱窒槽や配管内に沈積あるいは付着して流
路閉塞の原因となったり、汚泥発生量の増加による水処
理コストの増加を引き起こす等の問題を抱えている。上
記した問題のうち、炭酸カルシウムによる脱窒菌の作用
阻害に関しては、他の問題と同様に、多量に析出した場
合は勿論のこと、析出した炭酸カルシウム量が脱窒菌の
量に対して一定量を越えた場合にも無視できないもので
ある。したがって、カルシウムイオンを含む窒素含有排
水の生物学的脱窒処理において、処理過程で生ずる炭酸
カルシウムは脱窒効率に著しく影響する因子である。そ
のため該物質の生成を抑制することは重要な課題の1つ
である。
[0003] On the other hand, when nitrogen-containing wastewater containing high-concentration calcium ions is denitrified and removed by the above-mentioned method, the carbon dioxide gas generated during the reaction becomes carbonate ions and combines with the calcium ions to form the hardly soluble calcium carbonate. Is generated, and the generated alkalis are all neutralized by hydrogen ions generated during the generation of carbonate ions, so that the addition of the acid as described above is not required. However, in this case, the calcium carbonate precipitates on the cells in the carrier or sludge carrying the denitrifying bacteria and inhibits its function. There are problems such as deposition and adhesion that cause blockage of the flow path and increase in water treatment cost due to an increase in the amount of generated sludge. Among the above-mentioned problems, regarding the inhibition of the action of denitrifying bacteria by calcium carbonate, the amount of precipitated calcium carbonate is, of course, a certain amount relative to the amount of denitrifying bacteria, as well as other problems, in the case of precipitation in large amounts. Even if it exceeds, it cannot be ignored. Therefore, in the biological denitrification treatment of nitrogen-containing wastewater containing calcium ions, calcium carbonate generated in the treatment process is a factor that significantly affects the denitrification efficiency. Therefore, suppressing the production of the substance is one of the important issues.

【0004】[0004]

【発明が解決しようとする課題】本発明は、カルシウム
を含む窒素含有排水を生物学的脱窒処理方法により処理
する際に起こる上記の諸問題を解決し、脱窒菌の硝酸還
元作用を低下させず、かつ長期間の処理を可能とする方
法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems that occur when treating nitrogen-containing wastewater containing calcium by a biological denitrification method, and reduces the nitrate reduction action of denitrifying bacteria. It is another object of the present invention to provide a method that enables long-term processing without using any method.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の本発明
は、カルシウムイオンを含む窒素含有排水の生物学的脱
窒処理方法において、脱窒槽へ導入する前に排水に無機
酸を加えることにより炭酸カルシウムの析出を抑制する
ことを特徴とする排水の生物学的脱窒処理方法である。
請求項2に記載の本発明は、無機酸が塩酸である請求項
1記載の方法である。請求項3に記載の本発明は、無機
酸を、排水中に含まれる硝酸根に対し0.1〜0.6化学当
量の範囲で加える請求項1記載の方法である。請求項4
に記載の本発明は、生物学的脱窒処理を、流動床式脱窒
装置で行う請求項1記載の方法である。
According to a first aspect of the present invention, there is provided a method for biologically denitrifying nitrogen-containing wastewater containing calcium ions, wherein an inorganic acid is added to the wastewater before the wastewater is introduced into a denitrification tank. This is a biological denitrification treatment method for wastewater, wherein precipitation of calcium carbonate is suppressed by the method.
The present invention according to claim 2 is the method according to claim 1, wherein the inorganic acid is hydrochloric acid. The present invention according to claim 3 is the method according to claim 1, wherein the inorganic acid is added in a range of 0.1 to 0.6 chemical equivalent to nitrate contained in the wastewater. Claim 4
The present invention according to claim 1 is the method according to claim 1, wherein the biological denitrification treatment is performed by a fluidized bed type denitrification apparatus.

【0006】[0006]

【発明の実施の形態】本発明の対象となる窒素含有排水
の具体例としては、硝化反応処理液、硝酸性廃液などが
ある。本発明は、カルシウムイオンを含む窒素含有排水
を生物学的に脱窒処理する方法において、所定の条件下
で該排水中に無機酸を添加することにより、炭酸カルシ
ウムの析出を抑制し、安定的な脱窒反応を可能とする方
法を提供するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the nitrogen-containing wastewater to which the present invention is applied include a nitrification reaction solution, a nitrate waste solution, and the like. The present invention provides a method for biologically denitrifying a nitrogen-containing wastewater containing calcium ions, by adding an inorganic acid to the wastewater under predetermined conditions to suppress the precipitation of calcium carbonate and stably It is intended to provide a method for enabling a denitrification reaction.

【0007】生物学的脱窒処理法において重要な役割を
果たしているのは脱窒菌である。そのため、この方法で
は脱窒菌をどのようにして脱窒槽に保持するかというこ
とがプロセスの特色を構成することになる。最も良く知
られた方法の一つは、脱窒菌を含む汚泥を返送する脱窒
菌活性汚泥法である。この方法は、浮遊状態で存在する
脱窒菌により脱窒反応を行わせる処理槽に、沈殿槽で分
離した沈降汚泥(脱窒菌)を返送することにより、処理
槽内の脱窒菌濃度をを一定に維持する方法である。この
方法においては、炭酸カルシウムの生成によって汚泥の
比重を増すことになり、沈殿槽での汚泥の分離を容易に
すると共に、脱窒槽内の汚泥濃度を高めるのに役立つ。
しかしながら、カルシウムの沈降量を抑制しないと、脱
窒菌の機能が阻害される。
[0007] A denitrifying bacterium plays an important role in the biological denitrification process. Therefore, in this method, how to hold the denitrifying bacteria in the denitrification tank constitutes a feature of the process. One of the best-known methods is the denitrifying bacteria activated sludge method in which sludge containing denitrifying bacteria is returned. In this method, the concentration of denitrifying bacteria in the treatment tank is kept constant by returning the settled sludge (denitrifying bacteria) separated in the sedimentation tank to the treatment tank in which the denitrification reaction is performed by the denitrifying bacteria existing in a floating state. How to maintain. In this method, the specific gravity of the sludge is increased by the formation of calcium carbonate, which facilitates the separation of the sludge in the sedimentation tank and helps to increase the sludge concentration in the denitrification tank.
However, if the amount of precipitated calcium is not suppressed, the function of the denitrifying bacteria is inhibited.

【0008】また、第2の方法として、脱窒菌を担体に
担持させ、高密度に脱窒槽内に滞留させる方法がある。
この方法には、担体が固定床を形成している場合と、流
動床を形成している場合がある。固定床においては、担
体上に析出した炭酸カルシウムは脱窒菌とは異なり、循
環液量の増大や炭酸ガスのリサイクル程度の処置では担
体からはほとんど剥離しない。そのため、担体は炭酸カ
ルシウムで覆い尽くされ、やがては流路閉塞を起こすこ
とになる。この傾向は、固定床に充填する担体の粒径が
小さい場合に著しく、特にこのような場合には、炭酸カ
ルシウムの析出を殆ど零にすることが必要である。一
方、担体が流動床を形成している場合は、脱窒槽に機械
的な剥離手段を設けることにより、担体上に析出した炭
酸カルシウムは菌体と同様恒常的に担体から剥離され、
汚泥として外部に排出されるので、脱窒槽内において脱
窒菌と同様に炭酸カルシウム量をほぼ一定に保てること
になる。したがって、この場合は、析出した炭酸カルシ
ウムが菌体の機能を阻害しない程度に炭酸カルシウムの
沈殿量を調節すればよい。
[0008] As a second method, there is a method in which denitrifying bacteria are carried on a carrier and accumulated in a denitrification tank at high density.
In this method, the carrier may form a fixed bed or may form a fluidized bed. In a fixed bed, calcium carbonate precipitated on a carrier is hardly separated from the carrier by a treatment such as an increase in the amount of circulating fluid or a degree of recycling of carbon dioxide gas, which is different from denitrifying bacteria. For this reason, the carrier is covered with calcium carbonate, and eventually causes the passage to be blocked. This tendency is remarkable when the particle size of the carrier packed in the fixed bed is small. In such a case, it is necessary to make the precipitation of calcium carbonate almost zero. On the other hand, when the carrier forms a fluidized bed, by providing a mechanical peeling means in the denitrification tank, calcium carbonate precipitated on the carrier is constantly peeled off from the carrier like the bacterial cells,
Since the sludge is discharged to the outside, the amount of calcium carbonate can be kept almost constant in the denitrification tank, similarly to the denitrification bacteria. Therefore, in this case, the amount of precipitated calcium carbonate may be adjusted to such an extent that the precipitated calcium carbonate does not inhibit the function of the cells.

【0009】本発明では、生成した炭酸カルシウム量の
脱窒菌への影響を、汚泥または担体への付着物の炭酸カ
ルシウム量と有機物量の重量比(Ca/菌体値)を指標と
して評価することとした。炭酸カルシウム量は、担体付
着物の105℃乾燥重量から600℃強熱減量を差し引
いた重量とし、有機物量は、600℃強熱減量をもって
表すこととした。本発明者らは、実験によって、このCa
/菌体値が1を超えると、脱窒菌の機能が低下しはじめ
ることを見出している。したがって、本発明による排水
の生物学的脱窒処理方法を安定的に持続させるために
は、該Ca/菌体値を常に1以下に保つことが必要であ
る。この値が1を超える組成の排水では、析出した炭酸
カルシウムが脱窒菌の機能に悪影響を及ぼし、十分な脱
窒反応を期待することができない。図1は、本発明者ら
による NO3 - とCa2+を含む模擬排水の脱窒試験から得ら
れた結果を示した模式図である。この図で斜線で示した
領域は、この組成範囲にある排水では脱窒菌の機能が十
分に発揮されないことを示している。すなわち、斜線領
域ではCa/菌体値が1を超えており、脱窒菌の多くが析
出した炭酸カルシウム内に包括されてしまうことによ
り、脱窒菌の働きが阻害されることを示すものである。
この図でカルシウム濃度が非常に高い領域でも硝酸根濃
度が非常に低いか、非常に高いと、脱窒菌の性能が正常
に働く状態(すなわち、正常性能)の領域に入ることに
なる。その理由は、硝酸根濃度が低い場合には、発生す
る炭酸ガス量も少なくなり、炭酸カルシウムの生成量が
溶解度以下に収まるためと考えられる。また、硝酸根濃
度が高い場合には、生成する炭酸ガス量が多くなるの
で、カルシウムイオンはすべて重炭酸カルシウムの形態
で溶解するためと考えられる。
In the present invention, the influence of the amount of generated calcium carbonate on the denitrifying bacteria is evaluated using the weight ratio of the amount of calcium carbonate and the amount of organic matter (Ca / microbial cell value) of the substance adhering to the sludge or the carrier as an index. And The amount of calcium carbonate was defined as the weight obtained by subtracting the ignition loss at 600 ° C. from the dry weight at 105 ° C. of the adhered substance on the carrier, and the amount of organic matter was expressed as the ignition loss at 600 ° C. The present inventors have found that this Ca
/ It has been found that when the cell value exceeds 1, the function of the denitrifying bacteria starts to decrease. Therefore, in order to stably maintain the biological denitrification treatment method for wastewater according to the present invention, it is necessary to always keep the Ca / cell value at 1 or less. In wastewater having a composition in which this value exceeds 1, the precipitated calcium carbonate adversely affects the function of the denitrifying bacteria, and a sufficient denitrification reaction cannot be expected. FIG. 1 is a schematic diagram showing the results obtained from a denitrification test of a simulated wastewater containing NO 3 and Ca 2+ by the present inventors. The hatched area in this figure indicates that the drainage within this composition range does not sufficiently function as a denitrifying bacterium. That is, in the shaded region, the Ca / cell value exceeds 1, indicating that many of the denitrifying bacteria are included in the precipitated calcium carbonate, thereby inhibiting the action of the denitrifying bacteria.
In this figure, if the concentration of nitrate is very low or very high even in the region where the calcium concentration is very high, the denitrifying bacterium enters the region where the performance of the denitrifying bacterium works normally (that is, the normal performance). It is considered that the reason is that when the nitrate concentration is low, the amount of generated carbon dioxide gas is also small, and the amount of generated calcium carbonate falls below the solubility. Also, it is considered that when the nitrate concentration is high, the amount of generated carbon dioxide gas is large, so that all calcium ions are dissolved in the form of calcium bicarbonate.

【0010】Ca/菌体値が1を超える組成、すなわち図
1の斜線領域の組成を有する排水の脱窒処理を行う場合
に、この処理を安定的に行うための方策について検討し
た。第1に考えられる方法は、該排水を希釈する方法で
ある。Ca/菌体値が1以下となるカルシウムイオン、硝
酸イオン濃度まで希釈すれば、正常性能で運転すること
が可能であるが、そのために大量の水を必要とし、工業
的に実施するには適していない。次に考えられる方法
は、脱窒槽を密閉型として槽内を加圧状態にすることに
よって、炭酸ガスの圧力を増大させる方法である。この
方法では、重炭酸イオン濃度が上がり、炭酸イオン濃度
が低下するため、炭酸カルシウムの沈澱を防ぐことがで
きる。しかし、この方法は、脱窒槽を耐圧性にすると共
に、炭酸ガス圧の調節を必要とするため、コストの上昇
が避けられず、好ましい方法ではない。
[0010] In the case of performing a denitrification treatment of wastewater having a composition having a Ca / bacterium value exceeding 1, that is, a composition in a hatched region in Fig. 1, measures for stably performing this treatment were studied. The first conceivable method is to dilute the wastewater. Normal performance can be achieved by diluting Ca / cell concentration to 1 or less calcium ion and nitrate ion concentration. However, it requires a large amount of water and is suitable for industrial implementation. Not. The next conceivable method is to increase the pressure of carbon dioxide gas by making the denitrification tank a closed type and pressurizing the inside of the tank. In this method, since the concentration of bicarbonate ions increases and the concentration of carbonate ions decreases, precipitation of calcium carbonate can be prevented. However, this method is not a preferable method because the denitrification tank needs to have pressure resistance and the carbon dioxide gas pressure needs to be adjusted.

【0011】そこで、本発明者らは図1の斜線領域の組
成を有する排水を安定に処理できる簡便な方法を開発す
べく検討した。その結果、該排水に予め、あるいは脱窒
処理中に少量の無機酸を加えることにより、正常性能で
運転することが可能となることを見出した。すなわち、
脱窒槽に導入する以前に排水に無機酸を添加することに
より、炭酸カルシウムの生成量を低減し、脱窒菌の性能
が正常に働く状態で運転することができる。これは、脱
窒反応で生じた水酸基の一部が無機酸によって中和さ
れ、残りの水酸基の中和に必要な酸量が減るため、溶解
した炭酸ガスが炭酸イオンにまで進まず、重炭酸イオン
のままでとどまるためと考えられる。しかも、酸を添加
した場合も添加しない場合も、処理排水のpHは中性の
ままであるため、酸の添加は脱窒菌に何ら悪影響を与え
ない。本発明に用いる無機酸としては塩酸や硫酸等があ
るが、塩酸が特に好ましい。硫酸を添加した場合、脱窒
槽内に硫酸還元菌が繁殖し、これが余分なメタノールを
消費して悪臭物質である硫化水素を発生させることがあ
る。
Therefore, the present inventors have studied to develop a simple method capable of stably treating wastewater having the composition of the shaded region in FIG. As a result, they found that by adding a small amount of an inorganic acid to the wastewater in advance or during the denitrification treatment, it was possible to operate with normal performance. That is,
By adding the inorganic acid to the wastewater before introducing it into the denitrification tank, the amount of generated calcium carbonate can be reduced, and the operation can be performed in a state where the performance of the denitrifying bacteria normally works. This is because some of the hydroxyl groups generated in the denitrification reaction are neutralized by inorganic acids, and the amount of acid required for neutralization of the remaining hydroxyl groups is reduced. It is thought that it stays as an ion. Moreover, the pH of the treated wastewater remains neutral regardless of whether an acid is added or not, so that the addition of the acid has no adverse effect on the denitrifying bacteria. Examples of the inorganic acid used in the present invention include hydrochloric acid and sulfuric acid, and hydrochloric acid is particularly preferred. When sulfuric acid is added, sulfuric acid-reducing bacteria grow in the denitrification tank, and this may consume excess methanol to generate hydrogen sulfide, which is a malodorous substance.

【0012】また、無機酸の添加量については、排水中
の硫酸根に対して0.1〜0.6、好ましくは0.2〜0.4化
学当量の範囲が適当である。無機酸の添加量が0.1化学
当量未満であると、炭酸カルシウムの生成を効果的に抑
制することができない。一方、添加量の上限について
は、0.6化学当量の添加で炭酸カルシウムの生成を抑制
できるので、0.6化学当量を超える量の無機酸を添加し
ても相当する効果が得られない。なお、0.1化学当量の
無機酸を添加した場合、少量の炭酸カルシウムが生成す
るが、Ca/菌体値は1以下に保たれる。排水に無機酸を
添加する場所、時期については、脱窒槽に入る以前であ
ればよく、排水を貯えるタンク内に加えてもよく、脱窒
槽の直前で排水に添加してもよい。脱窒槽がリサイクル
型であるときは、脱窒槽に直接加えてもよいし、リサイ
クルラインの適当な場所に加えてもよい。
The amount of the inorganic acid to be added is in the range of 0.1 to 0.6, preferably 0.2 to 0.4 chemical equivalent, based on the sulfate group in the waste water. If the amount of the inorganic acid is less than 0.1 chemical equivalent, the formation of calcium carbonate cannot be effectively suppressed. On the other hand, as for the upper limit of the addition amount, since the formation of calcium carbonate can be suppressed by adding 0.6 chemical equivalent, even if an inorganic acid in an amount exceeding 0.6 chemical equivalent is added, a considerable effect is not obtained. When 0.1 chemical equivalent of an inorganic acid is added, a small amount of calcium carbonate is produced, but the Ca / cell value is kept at 1 or less. The location and timing of adding the inorganic acid to the wastewater may be any time before entering the denitrification tank, may be added to the tank storing the wastewater, or may be added to the wastewater immediately before the denitrification tank. When the denitrification tank is of a recycle type, it may be added directly to the denitrification tank or may be added to an appropriate place on the recycling line.

【0013】本発明の方法を実施するために用いる装置
としては、脱窒型活性汚泥法(汚泥循環型)、担体に担
持させた脱窒菌を充填したタイプなど、いずれでもよい
が、後者の場合は固定床型よりも流動床型の方が好まし
い。図2は、流動床式脱窒装置の1態様を示したもので
ある。この装置は、脱窒槽(1)、脱窒菌担持担体の流
動床(2)、菌体剥離装置(3)、担体溢流防止用スク
リーン(4)、循環槽(5)、循環ポンプ(6)、排水
タンク(7)、排水供給ポンプ(8)、処理水出口
(9)を主な構成要素とするものである。脱窒槽(1)
には、脱窒菌を担持させた担体(例えば直径約1.5mm
程度の球状活性炭)が充填されており、槽の下部より導
入される排水により流動状態となる。菌体剥離装置
(3)は、周囲にガイドがついた攪拌羽根で構成されて
おり、浮上してきた担体に剪断力を与え、付着している
脱窒菌の一部を剥離するものであり、この攪拌羽根の回
転速度を調節することにより脱窒菌付着担体の流動床の
レベルを一定に維持することができる。
The apparatus used to carry out the method of the present invention may be any of a denitrification type activated sludge method (sludge circulation type), a type filled with denitrification bacteria supported on a carrier, and the like. Is preferably a fluidized bed type rather than a fixed bed type. FIG. 2 shows one embodiment of a fluidized bed type denitrification apparatus. The apparatus comprises a denitrification tank (1), a fluidized bed of a carrier carrying a denitrifying bacteria (2), a cell stripper (3), a screen for preventing carrier overflow (4), a circulation tank (5), and a circulation pump (6). , A drainage tank (7), a drainage supply pump (8), and a treated water outlet (9) as main components. Denitrification tank (1)
Is a carrier carrying denitrifying bacteria (for example, about 1.5 mm in diameter).
Degree of spherical activated carbon), and becomes fluidized by drainage introduced from the lower part of the tank. The microbial cell detaching device (3) is constituted by a stirring blade with a guide around the periphery, applies a shearing force to the carrier that has come up, and exfoliates a part of the denitrifying bacteria adhering thereto. By adjusting the rotation speed of the stirring blade, the level of the fluidized bed of the denitrifying bacteria-adhering carrier can be kept constant.

【0014】担体としては、上記した活性炭の他、水処
理において一般的に用いられているもの、例えばシリ
カ、ガラス、アルミナ等やポリプロピレン、ポリスチレ
ン等のプラスチック粒子などが使用できる。また、担体
溢流防止用スクリーン(4)は、目開き一定のスクリー
ンであり、担体の直径以下の目としてあるため、担体か
ら剥離された菌体と共に処理水は排出されるが、担体の
流出は防止される。循環槽(5)において、循環液の一
部を抜き出したり、必要に応じて脱窒反応に必要なメタ
ノールの他、無機酸を適宜添加する。循環槽から抜き出
された液体(処理水)は、循環ポンプ(6)で再度脱窒
槽に送られる。
As the carrier, in addition to the above-mentioned activated carbon, those generally used in water treatment, for example, silica, glass, alumina and the like, and plastic particles such as polypropylene and polystyrene can be used. In addition, the carrier overflow prevention screen (4) is a screen with a fixed opening, and has an eye not larger than the diameter of the carrier, so that the treated water is discharged together with the bacteria detached from the carrier, but the carrier overflows. Is prevented. In the circulation tank (5), a part of the circulating liquid is withdrawn, and if necessary, an inorganic acid is appropriately added in addition to methanol necessary for the denitrification reaction. The liquid (treated water) extracted from the circulation tank is sent again to the denitrification tank by the circulation pump (6).

【0015】[0015]

【実施例】次に、実施例により本発明を詳しく説明する
が、本発明はこれらに限定されるものではない。 実施例1 図2に示した流動床式脱窒装置を用いて排水の脱窒処理
を行った。有効容積が30Lの脱窒槽(1)に、平均粒
径約2.5mmの固定化脱窒菌粒子を静止槽高60%と
なるように充填した。この固定化脱窒菌粒子は、平均粒
径1.5mmの球状活性炭を担体とし、メタノールと硝
酸イオンを含む模擬排水を供給して、担体表面に脱窒菌
の生物膜を形成させたものである。この脱窒槽に、模擬
排水(組成:NaNO3 5.3g/L、CaCl2 4.2g/L、KH2PO4
0.04g/L、CH4OH 2.4g/L)を流量10L/時間の速
度で流入せしめ、循環量を900L/時間に設定するこ
とにより流動床を形成した。運転開始時より循環ライン
中に10% 塩酸水溶液を0.08L/時間の割合で添加
した。このときの塩酸の添加量は、排水中の硝酸根に対
して0.36化学当量に相当する。この条件で脱窒処理を
行った。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 The wastewater was denitrified using the fluidized bed type denitrification apparatus shown in FIG. The denitrification tank (1) having an effective volume of 30 L was filled with immobilized denitrifying bacteria particles having an average particle size of about 2.5 mm so that the height of the stationary tank was 60%. The immobilized denitrifying bacteria particles are obtained by forming a simulated wastewater containing methanol and nitrate ions using a spherical activated carbon having an average particle size of 1.5 mm as a carrier to form a denitrifying bacteria biofilm on the surface of the carrier. Simulated drainage (composition: NaNO 3 5.3 g / L, CaCl 2 4.2 g / L, KH 2 PO 4
(0.04 g / L, CH 4 OH 2.4 g / L) was introduced at a flow rate of 10 L / hour, and a fluidized bed was formed by setting the circulation rate to 900 L / hour. From the start of operation, a 10% aqueous hydrochloric acid solution was added to the circulation line at a rate of 0.08 L / hour. At this time, the added amount of hydrochloric acid is equivalent to 0.36 chemical equivalent to the nitrate group in the waste water. A denitrification treatment was performed under these conditions.

【0016】その結果、炭酸カルシウムの沈殿量は処理
水中のカルシウム量の約15%となり、99%以上の脱
窒率を1500時間以上安定的に持続することができ
た。また、全運転を通して処理水のpHは6.4±0.2の
範囲内であり、pH変動による脱窒菌への影響はないこ
とが示された。さらに、運転終了後に脱窒菌を担持して
いる担体の一部を取り出し、該担体から付着物のみを分
離し、該付着物を乾燥後、カルシウムおよび有機炭素含
有量の分析を行ったところ、先に定義したCa/菌体値は
0.83であった。
As a result, the amount of precipitated calcium carbonate was about 15% of the amount of calcium in the treated water, and a denitrification rate of 99% or more could be stably maintained for 1500 hours or more. Further, the pH of the treated water was in the range of 6.4 ± 0.2 throughout the entire operation, and it was shown that there was no influence on the denitrifying bacteria due to the pH fluctuation. Further, after the operation was completed, a part of the carrier carrying the denitrifying bacteria was taken out, only the deposits were separated from the carrier, and the deposits were dried and analyzed for calcium and organic carbon contents. The Ca / cell value defined in
It was 0.83.

【0017】比較例1 実施例1の運転終了後、循環槽への塩酸水溶液の添加を
行わないこと以外はすべて実施例1と同じ条件で運転を
続けた。塩酸を添加しない場合は、運転時の処理水のp
Hは実施例1の場合よりも若干高く、6.8±0.2の範囲
に維持された。しかし、処理水のカルシウムイオン濃度
が下がり、明らかに炭酸カルシウムの沈殿量が大幅に増
大していることが分かった。第1表に脱窒槽から排出さ
れる処理水の性状を示す。
Comparative Example 1 After the operation of Example 1 was completed, the operation was continued under the same conditions as in Example 1 except that the aqueous hydrochloric acid solution was not added to the circulation tank. When hydrochloric acid is not added, p
H was slightly higher than in Example 1 and was maintained in the range of 6.8 ± 0.2. However, it was found that the calcium ion concentration of the treated water was lowered, and the precipitated amount of calcium carbonate was clearly increased significantly. Table 1 shows the properties of the treated water discharged from the denitrification tank.

【0018】[0018]

【表1】 第 1 表 脱窒率(%) pH Ca2+ 濃度(重量%) 酸添加運転時 99.8 6.4 0.13 酸不添加 1日目 99.9 6.4 0.08 2日目 100 6.4 0.05 4日目 99.8 6.5 0.03 6日目 98.0 6.5 0.03 8日目 87.0 6.5 0.02 10日目 65.4 6.5 0.02 12日目 30.9 6.6 0.02 14日目 33.4 6.5 0.02 [Table 1] Table 1 Denitrification rate (%) pH Ca 2+ concentration (% by weight) During acid addition operation 99.8 6.4 0.13 No acid addition Day 1 99.9 6.4 0.08 Day 2 100 6.4 0.05 Day 4 99.8 6.5 0.03 6th day 98.0 6.5 0.03 8th day 87.0 6.5 0.02 10th day 65.4 6.5 0.02 12th day 30.9 6.6 0.02 14th day G 33.4 6.5 0.02

【0019】この結果、酸の添加を中止して6日目以降
から脱窒率が低下し始め、脱窒槽の性能が著しく低下し
ていることが分かった。12日目以降では脱窒率が30
%台にまで低下した。これは沈澱した炭酸カルシウムが
担体上に析出し、菌体表面が覆われ、菌体量が減少した
ことに対応してメタノールの添加量を調節する操作を行
わなかったために、脱窒菌がメタノール阻害を受けたも
のと考えられる。そこで、メタノールの添加量を菌体の
減少に対応させて減少させたところ、脱窒率は60%台
に回復した。しかし、無機酸を添加せずに脱窒処理を行
った場合は、炭酸カルシウムの析出により脱窒菌が減少
し、脱窒処理能力が低下することが避けられなかった。
なお、担体表面が炭酸カルシウムにより覆われ、脱窒菌
量が減少したことは、電子顕微鏡により確認した。
As a result, it was found that the denitrification rate began to decrease from the sixth day after the addition of the acid was stopped, and that the performance of the denitrification tank was remarkably reduced. After the 12th day, the denitrification rate was 30
% Range. This was because the precipitated calcium carbonate was deposited on the carrier, the bacterial cell surface was covered, and the operation of adjusting the amount of methanol was not performed in response to the decrease in the amount of bacterial cells. It is considered to have received. Then, when the amount of added methanol was decreased in accordance with the decrease in the number of cells, the denitrification rate was restored to the order of 60%. However, when the denitrification treatment was performed without adding an inorganic acid, it was inevitable that the denitrification bacteria were reduced due to the precipitation of calcium carbonate, and the denitrification treatment performance was reduced.
It was confirmed by an electron microscope that the surface of the carrier was covered with calcium carbonate and the amount of denitrifying bacteria was reduced.

【0020】実施例2 図3に示した装置を用いて脱窒処理を行った。この装置
は、脱窒槽(10)、ポリプロピレン製円筒形不織布担
体(直径15mm、長さ15mm、厚さ2mm)充填槽
(11)、担体のオーバーフローを防止するための金網
(12)、排水タンク(13)、排水供給ポンプ(1
4)、処理水出口(15)、ヘッドスペースガスを槽底
部に供給し、曝気により槽内を混合するためのブロワー
(16)およびガス分散器(17)よりなる。充填槽
(11)の担体には、脱窒菌が脱窒槽有効容積基準で約
10000mg/Lの密度で固定化されている。この脱
窒槽に、模擬排水(組成:NaNO3 16.7g/L、CaCl2
1.5g/L、KH2PO4 0.12g/L、CH4OH 6.9g/L、HCl
3.6g/L)を流量10L/時間の速度で槽下部より流入
せしめた。この模擬排水には、予め塩酸を0.36重量%
(排水中の硝酸根に対して0.50化学当量に相当)加え
た。連続運転の結果、運転中の炭酸カルシウムの沈澱は
ほとんど認められず、95%以上の脱窒率で安定的に1
000時間以上も運転を継続することができた。なお、
全運転期間中の処理液のpHは、6.3±0.2の範囲であ
り、pH変動による脱窒菌への影響はなかった。これに
対して、塩酸を添加しない模擬排水について脱窒処理を
同様に行ったところ、該排水中に含まれるカルシウムイ
オンの90%以上が炭酸カルシウムとして沈澱し、担体
上に析出して脱窒率が著しく低下した。以上のことか
ら、塩酸を排水中に添加することにより、高い脱窒率を
維持したまま長期間の正常運転が可能であることが示さ
れた。
Example 2 A denitrification treatment was performed using the apparatus shown in FIG. The apparatus includes a denitrification tank (10), a cylindrical cylindrical nonwoven fabric carrier (15 mm in diameter, 15 mm in length, 2 mm in thickness), a filling tank (11), a wire mesh for preventing overflow of the carrier (12), and a drainage tank ( 13), drainage supply pump (1
4) It comprises a treated water outlet (15), a blower (16) for supplying headspace gas to the bottom of the tank and mixing the inside of the tank by aeration, and a gas disperser (17). Denitrifying bacteria are immobilized on the carrier of the filling tank (11) at a density of about 10,000 mg / L based on the effective volume of the denitrifying tank. This denitrification tank, the simulated wastewater (composition: NaNO 3 16.7g / L, CaCl 2 1
1.5 g / L, KH 2 PO 4 0.12 g / L, CH 4 OH 6.9 g / L, HCl
(3.6 g / L) at a flow rate of 10 L / hour from the lower part of the tank. 0.36% by weight of hydrochloric acid was previously added to this simulated wastewater.
(Equivalent to 0.50 chemical equivalents relative to the nitrate in the wastewater). As a result of continuous operation, almost no precipitation of calcium carbonate was observed during the operation, and a stable denitrification rate of 95% or more
Operation could be continued for more than 000 hours. In addition,
The pH of the treatment liquid during the entire operation period was in the range of 6.3 ± 0.2, and there was no influence on the denitrifying bacteria due to the pH fluctuation. On the other hand, when denitrification treatment was similarly performed on the simulated wastewater to which hydrochloric acid was not added, 90% or more of the calcium ions contained in the wastewater were precipitated as calcium carbonate, deposited on the carrier, and denitrified. Decreased significantly. From the above, it was shown that by adding hydrochloric acid to wastewater, long-term normal operation was possible while maintaining a high denitrification rate.

【0021】実施例3 実施例1と同様の脱窒装置を用いて、添加する塩酸量を
徐々に変化させて排水の脱窒処理を行った。まず、直径
約1.5mmの球状活性炭に脱窒菌を付着させ、これを湿
潤状態で直径約2.5mmとなるまで成長させた。この固
定化脱窒菌粒子を脱窒槽に静止層高で60%充填し、こ
れに実施例1で用いた模擬排水を流速10L/時間で供
給した。また、脱窒槽の液循環量を900L/時間に設
定した。循環槽に加える10%塩酸水溶液の量は、運転
当初は排水中の硝酸根濃度に対して0.3化学当量に当た
る0.061L/時間に設定した。この条件では処理水の
脱窒率は99.8%、pHは6.4、炭酸カルシウム沈澱率
は実施例1と同様に約15%であった。
Example 3 Using the same denitrifying apparatus as in Example 1, the wastewater was denitrified by gradually changing the amount of hydrochloric acid to be added. First, a denitrifying bacterium was attached to spherical activated carbon having a diameter of about 1.5 mm, and this was grown in a wet state until the diameter became about 2.5 mm. The immobilized denitrifying bacteria particles were filled in a denitrification tank at a stationary bed height of 60%, and the simulated wastewater used in Example 1 was supplied thereto at a flow rate of 10 L / hour. The liquid circulation rate of the denitrification tank was set at 900 L / hour. The amount of the 10% hydrochloric acid aqueous solution to be added to the circulation tank was set to 0.061 L / hour, which corresponds to 0.3 chemical equivalent to the concentration of nitrate in the wastewater at the beginning of the operation. Under these conditions, the denitrification rate of the treated water was 99.8%, the pH was 6.4, and the calcium carbonate precipitation rate was about 15% as in Example 1.

【0022】上記条件で600時間運転した後、塩酸水
溶液の添加量を0.04L/時間(硝酸根に対して0.2化
学当量に相当)に低下させたところ、炭酸カルシウム沈
澱率は25%に上昇したが、脱窒率にはほとんど変化が
なく99.6%以上を維持していた。このため、この条件
で1000時間運転後、塩酸水溶液の添加量を0.02L
/時間(硝酸根に対して0.1化学当量に相当)に低下
させた。その結果、炭酸カルシウム沈澱率は約37%に
上昇した。しかし、脱窒率の低下は条件変更後1000
時間経過した時でも98%を示し、十分な脱窒反応が行
われていることが分かった。そこで、1000時間運転
後、10%塩酸水溶液の添加量を0.01L/時間(硝酸
根に対して0.05化学当量に相当)に低下させて再度運
転した。この時の炭酸カルシウム沈澱率は50%に達
し、脱窒率も急速に低下し始め、800時間運転後に脱
窒率は83%にまで低下した。上記の各条件で運転した
ときの脱窒率および炭酸カルシウム沈澱率の測定結果を
図4に示す。この結果、排水中の硝酸根に対して0.1化
学当量以上の無機酸を添加することによって、脱窒活性
を正常値に維持することができることが分かった。
After operating for 600 hours under the above conditions, when the amount of the aqueous hydrochloric acid solution was reduced to 0.04 L / hour (corresponding to 0.2 chemical equivalent to nitrate), the precipitation rate of calcium carbonate was 25%. The denitrification rate remained almost unchanged at 99.6%. Therefore, after operating under these conditions for 1000 hours, the amount of the aqueous hydrochloric acid added was reduced to 0.02 L.
/ Hour (corresponding to 0.1 chemical equivalent to nitrate). As a result, the calcium carbonate precipitation rate increased to about 37%. However, the denitrification rate decreased by 1000 after the conditions were changed.
Even after a lapse of time, the rate was 98%, indicating that a sufficient denitrification reaction had been performed. Therefore, after the operation for 1000 hours, the operation was performed again with the addition amount of the 10% hydrochloric acid aqueous solution reduced to 0.01 L / hour (corresponding to 0.05 chemical equivalent to nitrate). At this time, the precipitation rate of calcium carbonate reached 50%, the denitrification rate also began to decrease rapidly, and after 800 hours of operation, the denitrification rate dropped to 83%. FIG. 4 shows the measurement results of the denitrification rate and the calcium carbonate precipitation rate when operated under the above-described conditions. As a result, it was found that the denitrification activity could be maintained at a normal value by adding an inorganic acid in an amount of 0.1 chemical equivalent or more to the nitrate groups in the wastewater.

【0023】[0023]

【発明の効果】本発明によれば、カルシウムイオンを含
む窒素含有排水を生物学的に脱窒処理する方法におい
て、該排水中に無機酸を添加することにより、炭酸カル
シウムの析出を抑制して脱窒菌の性能を正常状態にし、
長期間にわたり安定した運転を続けることができる。
According to the present invention, in a method for biologically denitrifying nitrogen-containing wastewater containing calcium ions, the precipitation of calcium carbonate is suppressed by adding an inorganic acid to the wastewater. Normalize the performance of denitrifying bacteria,
Stable operation can be continued for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 硝酸根とカルシウムイオンを含む模擬排水の
脱窒試験結果を示した模式図である。
FIG. 1 is a schematic diagram showing the results of a denitrification test of simulated wastewater containing nitrate and calcium ions.

【図2】 本発明に用いる脱窒反応装置の1例を示した
ものである。
FIG. 2 shows an example of a denitrification reactor used in the present invention.

【図3】 本発明に用いる脱窒反応装置の別の1例を示
したものである。
FIG. 3 shows another example of the denitrification reaction apparatus used in the present invention.

【図4】 実施例3の方法における運転期間中の処理水
の脱窒率およびカルシウム沈澱率の推移を示したグラフ
である。
FIG. 4 is a graph showing changes in the denitrification rate and calcium precipitation rate of treated water during the operation period in the method of Example 3.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 脱窒菌担持担体の流動床 3 菌体剥離装置 4 担体溢流防止用スクリーン 5 循環槽 6 循環ポンプ 7 排水タンク 8 排水供給ポンプ 9 処理水出口 10 脱窒槽 11 脱窒菌担持担体の充填層 12 金網 13 排水タンク 14 排水供給ポンプ 15 処理水出口 16 ブロワー 17 ガス分散管 DESCRIPTION OF SYMBOLS 1 Denitrification tank 2 Fluidized bed of carrier carrying denitrifying bacteria 3 Cell peeling device 4 Screen for preventing carrier overflow 5 Circulation tank 6 Circulation pump 7 Drain tank 8 Drainage supply pump 9 Treatment water outlet 10 Denitrification tank 11 Filling of carrier carrying denitrifying bacteria Layer 12 Wire mesh 13 Drain tank 14 Drain supply pump 15 Treated water outlet 16 Blower 17 Gas dispersion pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下川 憲治 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 小山 時彦 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 住田 絵美 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 Fターム(参考) 4D003 AA12 AB02 EA01 EA25 4D040 BB02 BB42  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Shimokawa 2-1-1, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Chiyoda Kako Construction Co., Ltd. (72) Tokihiko Koyama Tsurumi-chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chome 12-1 Chiyoda Chemical Works, Ltd. (72) Inventor Sumita Emi 2--12-1, Tsurumi-chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 4D003 AA12 AB02 EA01 EA25 4D040 BB02 BB42

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムイオンを含む窒素含有排水の
生物学的脱窒処理方法において、脱窒槽へ導入する前に
排水に無機酸を加えることにより炭酸カルシウムの析出
を抑制することを特徴とする排水の生物学的脱窒処理方
法。
1. A method of biologically denitrifying a nitrogen-containing wastewater containing calcium ions, wherein the precipitation of calcium carbonate is suppressed by adding an inorganic acid to the wastewater before introducing the wastewater into a denitrification tank. Biological denitrification treatment method.
【請求項2】 無機酸が、塩酸である請求項1記載の方
法。
2. The method according to claim 1, wherein the inorganic acid is hydrochloric acid.
【請求項3】 無機酸を、排水中に含まれる硝酸根に対
し0.1〜0.6化学当量の範囲で加える請求項1記載の方
法。
3. The method according to claim 1, wherein the inorganic acid is added in a range of 0.1 to 0.6 chemical equivalent to nitrate contained in the waste water.
【請求項4】 生物学的脱窒処理を、流動床式脱窒装置
で行う請求項1記載の方法。
4. The method according to claim 1, wherein the biological denitrification treatment is performed in a fluidized bed type denitrification apparatus.
JP11064821A 1999-03-11 1999-03-11 Biological denitrification treatment of waste water Pending JP2000254688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064821A JP2000254688A (en) 1999-03-11 1999-03-11 Biological denitrification treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064821A JP2000254688A (en) 1999-03-11 1999-03-11 Biological denitrification treatment of waste water

Publications (1)

Publication Number Publication Date
JP2000254688A true JP2000254688A (en) 2000-09-19

Family

ID=13269312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064821A Pending JP2000254688A (en) 1999-03-11 1999-03-11 Biological denitrification treatment of waste water

Country Status (1)

Country Link
JP (1) JP2000254688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441208B1 (en) * 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
WO2013062057A1 (en) * 2011-10-28 2013-05-02 株式会社クラレ Screen device for wastewater treatment tank and wastewater treatment method
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same
CN110482801A (en) * 2019-09-19 2019-11-22 浙江艾摩柯斯环境科技有限公司 Integrated wastewater biological simultaneous denitrification calcium-removing device and its method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441208B1 (en) * 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
WO2013062057A1 (en) * 2011-10-28 2013-05-02 株式会社クラレ Screen device for wastewater treatment tank and wastewater treatment method
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same
CN110482801A (en) * 2019-09-19 2019-11-22 浙江艾摩柯斯环境科技有限公司 Integrated wastewater biological simultaneous denitrification calcium-removing device and its method
CN110482801B (en) * 2019-09-19 2024-02-23 浙江艾摩柯斯环境科技有限公司 Integrated biological synchronous denitrification and decalcification device for wastewater and method thereof

Similar Documents

Publication Publication Date Title
CN108947102B (en) Device for deep denitrification and toxicity reduction of sewage and operation method thereof
KR100198191B1 (en) Wastewater disposal apparatus and method
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
CN110862150A (en) Sewage treatment method applying sewage treatment composite microbial inoculum
WO2006049322A1 (en) Biological denitrification method and apparatus
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2008284428A (en) Method for treating organic matter-containing waste water
JP2000254688A (en) Biological denitrification treatment of waste water
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2003033790A (en) Denitrification device and method therefor
JP2011143365A (en) Method and apparatus for treating wastewater
JPH06182393A (en) Fluidized bed type denitrification treating device
JP4608771B2 (en) Biological denitrification equipment
JP2012011376A (en) Sewage treatment method and apparatus
JP5095882B2 (en) Waste nitric acid treatment method
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP2002172399A (en) Denitrification treatment method
JPH06142682A (en) Anaerobic water treatment device
JP5077334B2 (en) Nitrogen removal treatment apparatus and nitrogen removal treatment method
JP3387241B2 (en) Anaerobic treatment method
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2018161607A (en) Wastewater treatment method containing anammox process
JP2002210489A (en) Treating method of waste water containing polyethylene glycol and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090924