JP2000250640A - Control circuit for power supplies having different inputs - Google Patents

Control circuit for power supplies having different inputs

Info

Publication number
JP2000250640A
JP2000250640A JP11050514A JP5051499A JP2000250640A JP 2000250640 A JP2000250640 A JP 2000250640A JP 11050514 A JP11050514 A JP 11050514A JP 5051499 A JP5051499 A JP 5051499A JP 2000250640 A JP2000250640 A JP 2000250640A
Authority
JP
Japan
Prior art keywords
power supply
capacitor
output
voltage
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11050514A
Other languages
Japanese (ja)
Other versions
JP4338253B2 (en
Inventor
Hiroyuki Haga
浩之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP05051499A priority Critical patent/JP4338253B2/en
Publication of JP2000250640A publication Critical patent/JP2000250640A/en
Application granted granted Critical
Publication of JP4338253B2 publication Critical patent/JP4338253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the demerits such as the increase of cost, the lowering of efficiency and the increase of weight for the control circuits of plural power supplies by connecting a 1st capacitor between the 2nd output of a 1st power unit and the connection point of a 2nd resistance. SOLUTION: The 2nd output of a power unit 3, a capacitor 12 and a resistance 13 are added, and the voltage of the 2nd output is set at V2. Then the overshoot never occurs although a capacitor 10 is already charged by a power unit 4 since a series circuit of the capacitor 12 and the resistance 13 functions as the capacitor 10 and a resistance 11 respectively. The capacitor 12 is connected to the 2nd output of the unit 3 and accordingly not charged yet when the unit 3 is started. Then the capacitor 12 is charged when the unit 3 is started and the voltage V2 rises to function to prevent the overshoot thereby switches the voltage V1 smoothly. Thus, it is possible to prevent the overshoot just by adding a small number of parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】本発明は異なる入力を持つ電源の制御回路
に関するものである。
The present invention relates to a control circuit for a power supply having different inputs.

【従来の技術】[Prior art]

【0002】図6はこの種の電源装置の構成図である。
ここで、3、4は電源装置、5は負荷装置である。は入
力電源1が何らかの理由で断となって電源装置3が出力
を供給できなくなっても、電源装置4が入力電源2を入
力として動作し、負荷装置5に出力を供給し続けること
ができる信頼性の高いシステムとなっている。1、2の
入力電源は、別系統の電源であれば何でもよく、例えば
商用電源、バッテリー、発電機などが考えられる。図6
では1を商用電源、2をバッテリーとして書いてある。
負荷装置5に印加される電圧をV1とする。V1は電源
装置3の出力電圧でもあり、また電源装置4の出力電圧
でもある。
FIG. 6 is a block diagram of this type of power supply device.
Here, 3 and 4 are power supply devices, and 5 is a load device. The power supply device 4 operates with the input power source 2 as an input and can continuously supply the output to the load device 5 even if the input power source 1 is disconnected for some reason and the power supply device 3 cannot supply the output. It is a highly efficient system. The input power supplies 1 and 2 may be any power supplies as long as they are power supplies of different systems. FIG.
Here, 1 is a commercial power supply and 2 is a battery.
The voltage applied to the load device 5 is set to V1. V1 is the output voltage of the power supply 3 and also the output voltage of the power supply 4.

【0003】さて、図6の問題点はオーバーシュートが
発生する場合があることである。オーバーシュートとは
図7のように出力の供給元が切り替わる際に滑らかに切
り替わらず、一度V1が所定の電圧よりも高くなる現象
のことを言う。そしてV1の値が大きく変化しすぎて、
負荷装置5が許容する耐圧を超えると、負荷装置5の破
壊を招く事になる。したがってオーバーシュート発生は
大きな問題となる。では以下に、何故図7の様な現象が
発生するかを説明する。
The problem in FIG. 6 is that overshoot may occur. The overshoot is a phenomenon in which the output supply source does not switch smoothly as shown in FIG. 7 and V1 once becomes higher than a predetermined voltage. And the value of V1 changed too much,
If the withstand voltage exceeds the load device 5 allows, the load device 5 will be destroyed. Therefore, occurrence of overshoot is a serious problem. Now, the reason why the phenomenon shown in FIG. 7 occurs will be described below.

【0004】図8は電源装置3の出力電圧検出回路の一
例を示したものである。図6と同一符号の回路部、部品
は同一内容を示す。抵抗8、9で出力電圧を分圧し、そ
の電圧を誤差増幅器6のマイナス入力に入力している。
誤差増幅器6のプラス入力には基準電圧源7が接続さ
れ、これにより基準電圧と出力電圧の差が増幅され誤差
増幅器6の出力に得られる。電源装置3はこの誤差増幅
信号を入力とし、この信号をゼロにする作用を持つ制御
回路の働きによって、出力電圧を一定電圧に保つ。
FIG. 8 shows an example of an output voltage detecting circuit of the power supply device 3. Circuit parts and components having the same reference numerals as those in FIG. 6 indicate the same contents. The output voltage is divided by the resistors 8 and 9, and the voltage is input to the minus input of the error amplifier 6.
A reference voltage source 7 is connected to the plus input of the error amplifier 6, whereby the difference between the reference voltage and the output voltage is amplified and obtained at the output of the error amplifier 6. The power supply device 3 receives the error amplification signal as input, and keeps the output voltage at a constant voltage by the operation of a control circuit having an operation of making this signal zero.

【0005】そこで、従来はコンデンサ10、抵抗11
を直列に接続したオーバーシュート防止回路を挿入して
いた。以下にこの回路の作用について説明する。ここで
抵抗8の抵抗値をR1、抵抗9の抵抗値をR2、抵抗1
1の抵抗値をR3、基準電圧源7の電圧をVrとする。
コンデンサ10、抵抗11がない場合、誤差増幅器6の
出力がゼロとなる電圧、すなわち制御目標となる出力電
圧は (R1+R2)/R2×Vr (1) である。これは電源装置が動きはじめた瞬間からこの値
であり、変わることはない。これを表現したのが図9で
ある。しかし、のように急峻に制御目標が変化すると、
それに追従しきれず実際の出力電圧は図10の様にな
る。これがオーバーシュートである。
Therefore, conventionally, the capacitor 10 and the resistor 11
Are connected in series to prevent an overshoot prevention circuit. The operation of this circuit will be described below. Here, the resistance value of the resistor 8 is R1, the resistance value of the resistor 9 is R2,
1 is R3, and the voltage of the reference voltage source 7 is Vr.
When the capacitor 10 and the resistor 11 are not provided, the voltage at which the output of the error amplifier 6 becomes zero, that is, the output voltage to be controlled is (R1 + R2) / R2 × Vr (1). This is this value from the moment the power supply starts to move and does not change. FIG. 9 expresses this. However, when the control target changes suddenly as in
The actual output voltage cannot be followed, and the actual output voltage is as shown in FIG. This is overshoot.

【0006】ところが、コンデンサ10、抵抗11が存
在すると異なる結果となる。なぜなら、電源装置が動き
はじめた瞬間は出力電圧がゼロであるため、コンデンサ
10は充電されていない。このため、出力電圧が上昇し
はじめ、やがて一定電圧に達するまでの間は、コンデン
サ10、抵抗11に電流が流れる。すると式(1)のR
1は抵抗8にコンデンサ10、抵抗11の直列回路が並
列に接続されるため、見かけ上小さくなるのである。例
えば、起動時はコンデンサ10が全く充電されておら
ず、その電圧はゼロであるため、等価的に抵抗8と抵抗
11が並列接続されたことになる。従って、式(1)の
R1がR1とR3の合成抵抗で置き換えられ、制御目標
となる出力電圧は (R1×R3/(R1+R3)+R2)/R2×Vr (2) となる。一方、出力電圧が一定電圧に達し、コンデンサ
10が完全に充電されてしまえば、コンデンサ10、抵
抗11には電流が流れなくなるため、この回路は切り離
されたのと同じ事になる。従って、制御目標となる出力
電圧は式(1)となる。コンデンサ10が充電されはじ
めてから、完全に充電されるまでの間は、制御目標とな
る出力電圧はコンデンサ10の充電電圧に応じて式
(1)と式(2)の間を滑らかに切り替わる。これを表
現したのが図11である。
However, a different result is obtained when the capacitor 10 and the resistor 11 are present. Because the output voltage is zero at the moment when the power supply starts to operate, the capacitor 10 is not charged. Therefore, a current flows through the capacitor 10 and the resistor 11 until the output voltage starts to increase and eventually reaches a constant voltage. Then, R in equation (1)
1 is apparently smaller because a series circuit of a capacitor 10 and a resistor 11 is connected in parallel to the resistor 8. For example, at the time of startup, the capacitor 10 is not charged at all and its voltage is zero, so that the resistors 8 and 11 are equivalently connected in parallel. Therefore, R1 in the equation (1) is replaced by the combined resistance of R1 and R3, and the output voltage to be controlled is (R1 × R3 / (R1 + R3) + R2) / R2 × Vr (2). On the other hand, if the output voltage reaches a constant voltage and the capacitor 10 is completely charged, no current flows through the capacitor 10 and the resistor 11, so that this circuit is the same as disconnection. Therefore, the output voltage to be the control target is given by equation (1). From the time when the capacitor 10 is charged to the time when it is fully charged, the output voltage to be controlled smoothly switches between Expression (1) and Expression (2) according to the charging voltage of the capacitor 10. FIG. 11 expresses this.

【0007】以上のようにコンデンサ10、抵抗11の
作用により制御目標電圧が緩やかに立ち上がるため、十
分これに追従することが可能となり、オーバーシュート
が防止される。ところで、上記の説明には起動時に出力
電圧がゼロであるという前提が含まれている。電源装置
が単体で動作するときはこのような前提が成立するが、
図6のように複数の電源装置の出力同士が接続されてい
ると、この前提は成立しない。他の電源装置が動作して
いれば、出力電圧はゼロではなく既に所定の電圧が出力
されているためである。こうなると起動時にコンデンサ
10は既に充電されているため、上述したようなオーバ
ーシュート防止作用がなくなってしまう。以上が図7の
様な現象が発生する原因である。
As described above, since the control target voltage rises slowly by the action of the capacitor 10 and the resistor 11, it is possible to sufficiently follow this, and overshoot is prevented. Incidentally, the above description includes a premise that the output voltage is zero at startup. This assumption holds when the power supply operates alone,
If the outputs of a plurality of power supply devices are connected as shown in FIG. 6, this assumption is not satisfied. This is because if another power supply is operating, the output voltage is not zero and a predetermined voltage has already been output. In this case, since the capacitor 10 has already been charged at the time of startup, the above-described overshoot prevention effect is lost. The above is the cause of the phenomenon as shown in FIG.

【0008】以上のような問題を解決するため、従来は
図12の様にダイオード16、17を追加していた。こ
のようにすれば、たとえ電源装置4が動作している状況
で電源装置3を起動しても、オーバーシュートは発生し
ない。なぜなら、ダイオード16がコンデンサ10の充
電を阻止するからである。
Conventionally, diodes 16 and 17 have been added as shown in FIG. In this way, even if the power supply 3 is started while the power supply 4 is operating, no overshoot occurs. This is because the diode 16 prevents the capacitor 10 from being charged.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0009】さて、図12の問題点はオーバーシュート
対策によりコストアップ、効率低下、大型化、重量の増
大を招くことである。ダイオード16、17は電源装置
3、4の出力電流を流しうるものでなくてはならず、大
電流を流す電源装置では大型のダイオードが必要とな
り、コストアップとなる。またこのダイオードは常に
(順方向電圧×出力電流)の損失を発生し続け、効率の
低下を招く。また損失を発生するために、それを冷却す
るための冷却装置が必要となり、コストアップ、大型
化、重量増大の原因となる。このように従来の回路で
は、ダイオードを追加する事から上記の様な問題があっ
た。
The problem of FIG. 12 is that measures against overshoot increase the cost, decrease the efficiency, increase the size, and increase the weight. The diodes 16 and 17 must be able to flow the output currents of the power supply devices 3 and 4, and the power supply device that flows a large current requires a large diode and increases the cost. Further, this diode always generates a loss of (forward voltage × output current), which causes a reduction in efficiency. In addition, in order to generate a loss, a cooling device for cooling the cooling device is required, which causes an increase in cost, size, and weight. As described above, the conventional circuit has the above-described problem due to the addition of the diode.

【課題を解決するための手段】[Means for Solving the Problems]

【0010】少なくとも二つの出力を備える第一の電源
装置と、その出力が前記第一の電源装置の第一の出力と
接続されている第二の電源装置と、前記第二の電源装置
の出力の両端に第一の抵抗と第二の抵抗の直列回路を接
続し、、かつ第一の電源装置と第二の電源装置は異なる
入力を持つ電源装置の制御回路において、第一の電源装
置の第二の出力と前記第一の抵抗と第二の抵抗の接続点
の間に第一のコンデンサを接続することによって課題を
解決する。
A first power supply having at least two outputs, a second power supply having its output connected to the first output of the first power supply, and an output of the second power supply. A series circuit of a first resistor and a second resistor is connected to both ends of the first power supply device, and the first power supply device and the second power supply device have different inputs. The problem is solved by connecting a first capacitor between a second output and a connection point between the first resistor and the second resistor.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0011】図1は本発明の一実施例を示すもので、図
8と同一符号の回路部,部品は同一内容を示す。図8と
比較して、電源装置3の第二の出力とコンデンサ12、
抵抗13が追加されている。第二の出力の電圧をV2とす
る。図1の回路では、図7に示したようなオーバーシュ
ートは発生しない。なぜならば、コンデンサ10が電源
装置4によって充電されてしまっていても、コンデンサ
12、抵抗13の直列回路がコンデンサ10、抵抗11
に代わってその役割を果たすためである。コンデンサ1
2は電源装置3の第二の出力に接続されているため、電
源装置3の起動時には充電されていない。そして、電源
装置3が起動してV2が上昇するにしたがって充電され
る。したがって、オーバーシュート防止の作用を果たす
ことが可能である。このためV1は図2のように滑らかに
切り替わる。
FIG. 1 shows an embodiment of the present invention. Circuit parts and components having the same reference numerals as those in FIG. 8 have the same contents. As compared with FIG. 8, the second output of the power supply device 3 and the capacitor 12,
A resistor 13 has been added. The voltage of the second output is V2. In the circuit of FIG. 1, the overshoot as shown in FIG. 7 does not occur. This is because even if the capacitor 10 has been charged by the power supply device 4, the series circuit of the capacitor 12 and the resistor 13 forms the capacitor 10 and the resistor 11.
In order to fulfill that role. Capacitor 1
2 is connected to the second output of the power supply 3 and is not charged when the power supply 3 is started. Then, the power is charged as the power supply device 3 is activated and V2 rises. Therefore, it is possible to achieve the effect of preventing overshoot. Therefore, V1 switches smoothly as shown in FIG.

【0012】図3は本発明のより具体的な実施例であ
り、図1と同一符号の回路部,部品は同一内容を示す。
本実施例はバッテリーバックアップ機能を持つ電源装置
の例であって、例えばPHS基地局の電源装置に適するも
のである。図3の破線で囲った部分が電源部で、商用電
源を入力として動作する電源装置3と、バッテリーを入
力として動作する電源装置4の二つの電源及びバッテリ
ーを内蔵する。その動作であるが、通常は商用電源を受
電して電源装置3が動作し、負荷に電力を供給しつつ電
流制御回路を介してバッテリー2を充電する。商用受電
時はバッテリー2の放電を防ぐため、電源装置4は停止
させておく。商用電源が停電すると、直ちに電源装置4
が起動する。これにより、停電時も連続して負荷に電力
を供給する事が可能となる。商用電源が復電すると、電
源装置3が起動し電源装置4は再び停止する。この復電
時の再起動で電源装置3の出力電圧がオーバーシュート
する事を防ぐのが本発明の目的である。
FIG. 3 shows a more specific embodiment of the present invention. Circuit portions and components denoted by the same reference numerals as those in FIG. 1 have the same contents.
The present embodiment is an example of a power supply device having a battery backup function, and is suitable for a power supply device of a PHS base station, for example. A portion enclosed by a broken line in FIG. 3 is a power supply unit, and includes two power supplies and a battery, a power supply device 3 that operates using commercial power as an input, and a power supply device 4 that operates using a battery as an input. In this operation, the power supply device 3 normally operates by receiving commercial power and charges the battery 2 via the current control circuit while supplying power to the load. At the time of commercial power reception, the power supply device 4 is stopped to prevent the battery 2 from discharging. As soon as the commercial power fails, the power supply 4
Starts. This makes it possible to continuously supply power to the load even during a power failure. When the commercial power is restored, the power supply 3 starts and the power supply 4 stops again. It is an object of the present invention to prevent the output voltage of the power supply device 3 from overshooting due to the restart at the time of power restoration.

【0013】ここでは図1に比べて定電圧ダイオード1
4、抵抗15が追加され、更なる改善が図られている。
その目的は起動時間の短縮である。オーバーシュートを
防止するためには、コンデンサ12の容量を大きくする
事が望ましいが、大きくすると充電に時間がかかること
になり、出力電圧の起動時間が長くなる。これを表わし
たのが図4であるが、これによりタイミングがとりづら
いなどの不都合が発生することがある。オーバーシュー
ト防止の作用を十分に持たせながら起動時間を短縮する
手段が定電圧ダイオード14、抵抗15の追加である。
定電圧ダイオード14の降伏電圧は、電源装置3の第二
の出力電圧よりも低いものを選定する。これにより、抵
抗15には電源装置3の第二の出力が定電圧ダイオード
14の降伏電圧を乗り越えるまで電圧が発生しない。し
たがってそれまではコンデンサ12、抵抗13の直列回
路に電流が流れ込まず、出力電圧は急速に立ち上がる。
起動の最後の瞬間に、電源装置3の第二の出力が定電圧
ダイオード14の降伏電圧を乗り越え、抵抗15に電圧
が発生する。するとコンデンサ12、抵抗13の直列回
路に電流が流れ込み、ここで初めてオーバーシュート防
止の作用を果たす事になる。このように最後の瞬間のみ
コンデンサ12、抵抗13の直列回路が働くため、起動
時間を短縮しつつオーバーシュートを防止することが可
能となるのである。これを表わしたのが図5である。
Here, a constant voltage diode 1 is used as compared with FIG.
4. A resistor 15 has been added for further improvement.
Its purpose is to reduce startup time. In order to prevent overshoot, it is desirable to increase the capacity of the capacitor 12, but if it is increased, it takes a long time to charge, and the startup time of the output voltage becomes longer. This is shown in FIG. 4, but this may cause inconveniences such as difficult timing. A means for shortening the start-up time while having a sufficient effect of preventing overshoot is the addition of the constant voltage diode 14 and the resistor 15.
The breakdown voltage of the constant voltage diode 14 is selected to be lower than the second output voltage of the power supply device 3. As a result, no voltage is generated at the resistor 15 until the second output of the power supply 3 exceeds the breakdown voltage of the constant voltage diode 14. Therefore, no current flows into the series circuit of the capacitor 12 and the resistor 13 until then, and the output voltage rises rapidly.
At the last moment of startup, the second output of the power supply 3 overcomes the breakdown voltage of the constant voltage diode 14 and a voltage is generated at the resistor 15. Then, a current flows into the series circuit of the capacitor 12 and the resistor 13, and the function of preventing overshoot is first achieved here. As described above, since the series circuit of the capacitor 12 and the resistor 13 operates only at the last moment, it is possible to prevent the overshoot while shortening the startup time. This is shown in FIG.

【0014】さて、電源装置3の第二の出力について補
足するが、これは負荷装置5に接続されていてもいなく
ても、どちらでも良い。今までの説明から明らかなよう
に、他の電源装置によってコンデンサ12が充電されて
しまうことさえなければ良いのであるから、第二の出力
が負荷装置5に接続されているか否かは本発明の目的に
対し何ら影響を与えないのである。したがって、「出
力」といっても図3に示したように電源部の内部使用に
限る補助電源的性格の出力であっても何らかまわない。
Now, the second output of the power supply device 3 will be supplemented, which may or may not be connected to the load device 5. As is clear from the above description, it is only necessary that the capacitor 12 is not charged by another power supply device. Therefore, it is determined whether the second output is connected to the load device 5 according to the present invention. It has no effect on the purpose. Therefore, the "output" does not matter even if it is an output having an auxiliary power supply characteristic limited to internal use of the power supply unit as shown in FIG.

【0015】次に電源装置の数について補足する。これ
までの説明では、説明の便宜上から電源装置を二台とし
て説明してきたが、電源装置が何台あっても本発明の目
的に対し何ら影響を与えないことはこれまでの説明から
明らかである。
Next, the number of power supply units will be supplemented. In the above description, two power supply devices have been described for convenience of description, but it is clear from the above description that the number of power supply devices does not affect the object of the present invention at all. .

【発明の効果】以上の様に本発明を用いれば、わずかな
部品の追加でオーバーシュートを防止することができ、
従来ダイオードを追加することによって招いてしまった
コストアップ、効率低下、大型化、重量の増大といった
様々なデメリットをを避けることが可能となる。
As described above, according to the present invention, overshooting can be prevented by adding a small number of components.
It is possible to avoid various disadvantages caused by adding a diode in the related art, such as an increase in cost, a decrease in efficiency, an increase in size, and an increase in weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例FIG. 1 shows an embodiment of the present invention.

【図2】本発明適用時の電圧切替り波形FIG. 2 is a voltage switching waveform when the present invention is applied.

【図3】本発明の他の実施例FIG. 3 shows another embodiment of the present invention.

【図4】起動時間の長い起動電圧波形FIG. 4 is a startup voltage waveform having a long startup time.

【図5】起動時間の短い起動電圧波形FIG. 5 is a startup voltage waveform having a short startup time.

【図6】本発明を適用する電源装置の構成図FIG. 6 is a configuration diagram of a power supply device to which the present invention is applied.

【図7】電圧切替り波形の悪い例FIG. 7 is an example of a bad voltage switching waveform.

【図8】従来の電源装置例FIG. 8 shows an example of a conventional power supply device

【図9】制御目標電圧の時間変化FIG. 9 is a time change of a control target voltage.

【図10】オーバーシュート波形FIG. 10 is an overshoot waveform.

【図11】オーバーシュート対策後の制御目標電圧の時
間変化
FIG. 11 is a time change of a control target voltage after countermeasures for overshoot.

【図12】従来のオーバーシュート対策例FIG. 12 shows a conventional countermeasure for overshoot.

【符号の説明】[Explanation of symbols]

1 商用電源 2 バッテリー 3 第一の電源装置 4 第二の電源装置 5 負荷装置 6 演算増幅器 7 基準電圧源 8 抵抗 9 抵抗 10 コンデンサ 11 抵抗 12 コンデンサ 13 抵抗 14 定電圧ダイオード 15 抵抗 16 ダイオード 17 ダイオード DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Battery 3 First power supply device 4 Second power supply device 5 Load device 6 Operational amplifier 7 Reference voltage source 8 Resistance 9 Resistance 10 Capacitor 11 Resistance 12 Capacitor 13 Resistance 14 Constant voltage diode 15 Resistance 16 Diode 17 Diode

フロントページの続き Fターム(参考) 5G065 BA00 BA01 DA01 DA06 DA07 EA02 EA06 FA02 HA04 HA05 JA01 LA01 NA01 NA02 NA07 PA05 5H410 BB04 CC02 CC03 CC05 DD02 EA38 EB16 EB37 EB40 FF03 FF25 JJ07 LL04 LL18 5J055 AX11 AX25 AX59 CX19 DX01 EY01 EY10 EY13 EZ09 EZ51 EZ57 EZ59 GX02 GX04 Continued on front page F term (reference) 5G065 BA00 BA01 DA01 DA06 DA07 EA02 EA06 FA02 HA04 HA05 JA01 LA01 NA01 NA02 NA07 PA05 5H410 BB04 CC02 CC03 CC05 DD02 EA38 EB16 EB37 EB40 FF03 FF25 JJ07 LL04 LL18 5J019 AX11 AX11 AX11 AX11 AX11 EZ09 EZ51 EZ57 EZ59 GX02 GX04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも二つの出力を備える第一の電源
装置と、その出力が前記第一の電源装置の第一の出力と
接続されている第二の電源装置と、前記第二の電源装置
の出力の両端に第一の抵抗と第二の抵抗の直列回路を接
続し、かつ前記第一の電源装置と第二の電源装置は異な
る入力を持つ電源装置の制御回路において、前記第一の
電源装置の第二の出力と前記第一の抵抗と第二の抵抗の
接続点の間に第一のコンデンサを接続したことを特徴と
する異なる入力を持つ電源の制御回路。
1. A first power supply having at least two outputs, a second power supply having its output connected to a first output of the first power supply, and a second power supply. A series circuit of a first resistor and a second resistor is connected to both ends of the output of the first power supply device, and the first power supply device and the second power supply device have different inputs. A control circuit for a power supply having different inputs, wherein a first capacitor is connected between a second output of the power supply device and a connection point between the first resistor and the second resistor.
【請求項2】請求項1において、第一のコンデンサを第
一のコンデンサと第三の抵抗の直列回路に置き換えたこ
とを特徴とする異なる入力を持つ電源の制御回路。
2. The control circuit according to claim 1, wherein the first capacitor is replaced by a series circuit of a first capacitor and a third resistor.
【請求項3】請求項1あるいは請求項2において、その
出力が互いに接続された電源装置を任意の数だけ追加し
たことを特徴とする制御回路。
3. The control circuit according to claim 1, wherein an arbitrary number of power supply devices whose outputs are connected to each other are added.
【請求項4】請求項1において、第一の電源装置の第二
出力の両端に第一の定電圧ダイオードと第四の抵抗の直
列回路を接続し、前記第一の定電圧ダイオードと第四の
抵抗の直列回路の接続点に第一のコンデンサを接続した
ことを特徴とする異なる入力を持つ電源の制御回路。
4. A circuit according to claim 1, wherein a series circuit of a first constant voltage diode and a fourth resistor is connected to both ends of the second output of the first power supply device, and the first constant voltage diode and the fourth resistor are connected to each other. A power supply control circuit having different inputs, wherein a first capacitor is connected to a connection point of a series circuit of resistors.
【請求項5】請求項4において、第一のコンデンサを第
一のコンデンサと第三の抵抗の直列回路に置き換えたこ
とを特徴とする異なる入力を持つ電源の制御回路。
5. The control circuit according to claim 4, wherein the first capacitor is replaced with a series circuit of a first capacitor and a third resistor.
【請求項6】請求項4あるいは請求項5において、その
出力が前記第二の電源装置の出力に接続された電源装置
を任意の数だけ追加したことを特徴とする制御回路。
6. The control circuit according to claim 4, wherein an arbitrary number of power supplies whose outputs are connected to the output of said second power supply are added.
JP05051499A 1999-02-26 1999-02-26 Power supply control circuit with different inputs Expired - Fee Related JP4338253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05051499A JP4338253B2 (en) 1999-02-26 1999-02-26 Power supply control circuit with different inputs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05051499A JP4338253B2 (en) 1999-02-26 1999-02-26 Power supply control circuit with different inputs

Publications (2)

Publication Number Publication Date
JP2000250640A true JP2000250640A (en) 2000-09-14
JP4338253B2 JP4338253B2 (en) 2009-10-07

Family

ID=12861093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05051499A Expired - Fee Related JP4338253B2 (en) 1999-02-26 1999-02-26 Power supply control circuit with different inputs

Country Status (1)

Country Link
JP (1) JP4338253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272447A (en) * 2003-03-06 2004-09-30 Seiko Epson Corp Power circuit
JP2019204741A (en) * 2018-05-25 2019-11-28 三菱電機株式会社 Terminal and lighting control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272447A (en) * 2003-03-06 2004-09-30 Seiko Epson Corp Power circuit
JP2019204741A (en) * 2018-05-25 2019-11-28 三菱電機株式会社 Terminal and lighting control system
JP7135440B2 (en) 2018-05-25 2022-09-13 三菱電機株式会社 terminal and lighting control system

Also Published As

Publication number Publication date
JP4338253B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US5027002A (en) Redundant power bus arrangement for electronic circuits
US4520275A (en) Master and slave power supply control circuits
US6441583B1 (en) Method, arrangement and interface system to enable electrical batteries of different kinds to be charged by means of the same charger device
WO1999034270A1 (en) Dc power bus voltage transient suppression circuit
CN111082801B (en) Time sequence control system and electronic equipment
US6040640A (en) Direct voltage back-up system at a power supply outlet
CN113972702B (en) Power supply device and power supply control method
US11411257B2 (en) Hot swap battery module and control method thereof
JP2000250640A (en) Control circuit for power supplies having different inputs
US5568342A (en) Apparatus and method for protecting an amplifier circuit
JP2001069747A5 (en)
US11652360B2 (en) In-vehicle backup control apparatus and in-vehicle backup apparatus
US20060203413A1 (en) Protection circuit enabling a load to withstand a transient power supply failure
CN113109738A (en) Power-down time detection circuit and power-down time detection system
CN109217655B (en) Power supply capable of prolonging maintenance time after power failure
KR102316465B1 (en) Apparatus and method for delivering voltage
CN219916685U (en) Power supply time sequence control circuit and display device
JP2007259615A (en) Charger or discharger for capacitor storage power supply
US20050195544A1 (en) Current control circuit and method
JP3763387B2 (en) Control method and apparatus for DC uninterruptible power supply
JPH07154921A (en) Parallelly operated power source
CN113328621B (en) BOOST circuit and switching power supply
JPH0117335B2 (en)
JPH0742202Y2 (en) Power supply device for fire alarm equipment
JP2002078184A (en) Power supply output circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees