JP2000248164A - Lactic acid series composition and its molding - Google Patents

Lactic acid series composition and its molding

Info

Publication number
JP2000248164A
JP2000248164A JP11051037A JP5103799A JP2000248164A JP 2000248164 A JP2000248164 A JP 2000248164A JP 11051037 A JP11051037 A JP 11051037A JP 5103799 A JP5103799 A JP 5103799A JP 2000248164 A JP2000248164 A JP 2000248164A
Authority
JP
Japan
Prior art keywords
lactic acid
weight
component
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11051037A
Other languages
Japanese (ja)
Other versions
JP3622561B2 (en
Inventor
Yasumasa Horibe
泰正 堀部
Kenji Kanamori
健志 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP05103799A priority Critical patent/JP3622561B2/en
Publication of JP2000248164A publication Critical patent/JP2000248164A/en
Application granted granted Critical
Publication of JP3622561B2 publication Critical patent/JP3622561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lactic acid series composition for retaining a high loss angle tangent at not less than a room temperature and being stable with time by comprising a lactic acid series polymer having branching or network structure constructed with a main chain structure component containing a lactic acid component of not less than a specific amount and a plasticity component, thereby forming the composition having a specific dynamic viscoelastic property value. SOLUTION: A lactic acid series composition comprises a main chain structure component containing a lactic component of at least 50% based on the weight fraction and a plasticity component, in a dynamic viscoelastic measurement (JISK7198A), a transition temperature being not more than 30 deg.C, and in a temperature range of from the transition temperature to 150 deg.C, a dynamic storage elastic modulus being 1×104-1×108 Pa and a loss tangent being 0.1-3.0. The composition is obtained by melt mixing and polymerizing the lactic acid series polymer and the plasticity component at a temperature of 100-180 deg.C. As the lactic acid series polymer is used the material having a weight-average molecular weight of at least 10,000. As the plasticizer is preferable the material having a weight-average molecular weight of 100-5,000 and a solubility parameter value of 9.0-11.0. A molding is particularly preferable to use for a vibration damper, a vibration insulator, and an impact absorber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明の組成物は、包装材
料、産業資材、工業用品、容器等の各種用途に使用でき
るが、特に透明性・柔軟性を必要とされるフィルム、テ
ープ、シートの材料として好適である。また柔軟成分を
分岐鎖中に持つので経時安定性が有り、ゴム状弾性域が
広く衝撃吸収性にすぐれ、制振材・防振材、または衝撃
吸収材としての用途に非常に好適である。制振材・防振
材用途としては特に限定されるものではないが、シート
等へ成形する事によって回転軸の軸受け部、自動車、機
械器具、船舶、建築材料、音響材料等の振動やそれに伴
って発生する騒音対策として用いる事が可能である。ま
たは自動車や建物などにおいて内装材に利用する事によ
って吸遮音材、振動低減材としての応用も可能である。
BACKGROUND OF THE INVENTION The composition of the present invention can be used for various applications such as packaging materials, industrial materials, industrial supplies, containers, etc., and particularly for films, tapes and sheets requiring transparency and flexibility. It is suitable as a material. Further, since the flexible component is contained in the branched chain, it has stability over time, has a wide rubber-like elastic region and is excellent in shock absorption, and is very suitable for use as a vibration damping material, a vibration damping material, or a shock absorbing material. Although it is not particularly limited as a vibration damping material / vibration damping material, by shaping it into a sheet or the like, the vibration of a bearing part of a rotating shaft, an automobile, a machine tool, a ship, a building material, an acoustic material, etc. It can be used as a countermeasure for the noise generated. Alternatively, it can be used as a sound absorbing and insulating material and a vibration reducing material by using it as an interior material in a car or a building.

【0002】また本発明における組成物を含むダンパー
や免振装置を用いる事で建造物の耐震性や内燃駆動装置
等の微振動を低減させる用途への応用も可能である。衝
撃吸収用途としても特に限定されないが、道路橋の橋桁
部、道路又は岸壁の側壁、建物の床・壁、車両の衝撃吸
収部などへの利用が可能であり、また靴の中敷きや踵部
への封入等への応用、杖・スポーツ器具への応用、ハン
マー等工具・機器類への応用等、繰り返し衝撃を受ける
用途において、その衝撃を受ける部位へ本発明における
組成物またはその成形品を用いる事で衝撃を低減する事
が可能である。更には生分解性を有するので、従来のプ
ラスチックの様な廃棄物の問題も軽減される。
The use of a damper or a vibration isolator containing the composition according to the present invention can also be applied to applications such as seismic resistance of buildings and micro vibrations such as internal combustion driving devices. Although it is not particularly limited as a shock absorbing application, it can be used for a bridge girder of a road bridge, a side wall of a road or a quay, a floor / wall of a building, a shock absorbing portion of a vehicle, etc. Use of the composition of the present invention or a molded article of the present invention for a part to be subjected to repeated impacts such as application to encapsulation, application to canes and sports equipment, application to tools and equipment such as hammers, etc. It is possible to reduce the impact. Furthermore, because of the biodegradability, the problem of waste such as conventional plastics is reduced.

【0003】[0003]

【従来の技術】近年、自然環境保護の見地から、自然環
境中で分解する生分解性ポリマーおよびその成型品が求
められ、脂肪族ポリエステルなどの自然分解性樹脂の研
究が活発に行われている。特に、乳酸系ポリマーはガラ
ス転移点が60℃、融点が170〜180℃と、熱安定
性が高く、しかも透明性に優れているため、現行の汎用
樹脂に置き換わるものとして、用途に応じた改良・普及
が待ち望まれている。
2. Description of the Related Art In recent years, from the viewpoint of protection of the natural environment, biodegradable polymers that can be decomposed in the natural environment and molded products thereof have been demanded, and studies on naturally degradable resins such as aliphatic polyesters have been actively conducted. . In particular, the lactic acid-based polymer has a glass transition point of 60 ° C and a melting point of 170 to 180 ° C, and has high thermal stability and excellent transparency.・ It is expected to spread.

【0004】乳酸系ポリマーは、そのガラス転移点にお
いて損失角正接が2.0〜3.0と非常に大きく一般汎
用樹脂に比べ特異な性質を有している事が知られてい
る。しかしホモポリマーではガラス転移点が60℃近辺
であり、室温付近では、その特性は十分に生かされなか
った。その特性を引き出す為には共重合体を作成するか
他の成分をブレンドする方法が考えられる。しかし共重
合する場合、十分にガラス転移点を低下させるのに必要
な組成比で共重合を行うと、共重合体はランダムブロッ
ク構造となり、乳酸成分のブロック長が短くなる為、ホ
モポリマーと比較して乳酸ポリマーの特性が低下し十分
な損失角正接値を引き出す事は困難となる。また他成分
をブレンドする場合は、ガラス転移点を低下させる目的
で可塑剤を添加する方法が考えられるが、単純にブレン
ドするのみでは、可塑剤のブリードアウトを引き起こ
し、経時安定性に問題があった。
It is known that a lactic acid-based polymer has a very large loss angle tangent of 2.0 to 3.0 at its glass transition point and has a unique property as compared with general-purpose resins. However, the glass transition point of the homopolymer was around 60 ° C., and its properties were not sufficiently utilized near room temperature. In order to bring out the characteristics, a method of preparing a copolymer or blending other components can be considered. However, in the case of copolymerization, if copolymerization is performed at a composition ratio necessary to sufficiently lower the glass transition point, the copolymer will have a random block structure and the block length of the lactic acid component will be shorter, so it will be compared with the homopolymer. As a result, the properties of the lactic acid polymer deteriorate, and it is difficult to obtain a sufficient loss tangent value. When blending other components, a method of adding a plasticizer for the purpose of lowering the glass transition point can be considered, but simply blending causes bleed-out of the plasticizer, and there is a problem in stability over time. Was.

【0005】特開平8−199052号公報、特開平8
−199053号公報、特開平8−283557号公報
等においてポリエチレングリコール等のエーテル結合含
有グリコールを用いた(ポリ)エステル系可塑剤を添加
した組成物について開示されているが、乳酸系ポリマー
は結晶性が高く経時安定性が低い。またフィルム等を成
形するには溶融特性に問題があった。米国特許5180
765号において可塑成分として乳酸の低分子量物や乳
酸ポリマー原料であるラクチドを可塑剤として添加した
組成物が開示されているが、乳酸の低分子量体やラクチ
ドを含む乳酸系ポリマーは熱安定性が低下し、かつ分解
も促進される為経時安定性に問題があった。
[0005] JP-A-8-199052 and JP-A-8-199052
JP-A-199053 and JP-A-8-283557 disclose compositions containing a (poly) ester plasticizer using an ether bond-containing glycol such as polyethylene glycol. And high stability with time. In addition, there was a problem in the melting characteristics in forming a film or the like. US Patent 5180
No. 765 discloses a composition in which a low molecular weight product of lactic acid or lactide which is a raw material of a lactic acid polymer is added as a plasticizer as a plasticizer. However, there is a problem in stability over time because the temperature is reduced and decomposition is promoted.

【0006】[0006]

【発明が解決しようとする課題】以上のように従来、経
時安定性を有し、かつ常温以上の温度域において高い損
失角正接を維持する組成物を作成する事は困難であっ
た。
As described above, it has heretofore been difficult to prepare a composition having stability over time and maintaining a high loss tangent in a temperature range of room temperature or higher.

【0007】[0007]

【発明を解決するための手段】このような課題を解決す
るために、本発明者らは鋭意検討の結果、乳酸系ポリマ
ーを主鎖とし、可塑剤に代表される転移温度を低温へシ
フトさせる成分を側鎖、または架橋鎖に化学結合させる
事により乳酸系ポリマーの損失角正接値を低下させる事
なく常温以上の温度域において安定した値を示す組成物
を見出した。またこの組成物は経時安定性を有する事も
見出された。
Means for Solving the Problems In order to solve such a problem, the present inventors have made intensive studies and found that a lactic acid-based polymer is used as a main chain and a transition temperature represented by a plasticizer is shifted to a lower temperature. A composition was found that shows a stable value in a temperature range of room temperature or higher without lowering the loss angle tangent value of the lactic acid-based polymer by chemically bonding the component to a side chain or a cross-linked chain. It has also been found that this composition has stability over time.

【0008】即ち、本発明は、高損失角正接を有し、か
つ経時的に安定な、特に制振材・防振材、衝撃吸収材用
途に好適な乳酸系組成物、及びその成形品を提供する事
である。さらに詳しくは、本発明は、動的粘弾性測定
(JIS K7198A法)において転移温度が30℃
以下であり、かつその転移温度から150℃の温度域に
おいて動的貯蔵弾性率が1×104〜1×108Pa、損
失角正接が0.1〜3.0である乳酸系組成物である。
なお、JIS K7198A法での動的貯蔵弾性率の転
移温度とは、物理的にその組成物や成形品が柔らかく変
形する温度にあたり、同じ組成のポリマー組成物または
同ポリマー組成物から得られた成形品であっても、結晶
化度や結晶化状態によって、それぞれの組成物または成
形品ごとに異なる値となる。この点においてポリマー固
有の値となるガラス転移温度とは異なる。
That is, the present invention provides a lactic acid-based composition having a high loss angle tangent and being stable with time, particularly suitable for damping / vibration-proofing materials and shock absorbing materials, and a molded product thereof. It is to provide. More specifically, in the present invention, the transition temperature is 30 ° C. in the dynamic viscoelasticity measurement (JIS K7198A method).
A lactic acid-based composition having a dynamic storage modulus of 1 × 10 4 to 1 × 10 8 Pa and a loss angle tangent of 0.1 to 3.0 in a temperature range from the transition temperature to 150 ° C. is there.
The transition temperature of the dynamic storage modulus according to the JIS K7198A method refers to the temperature at which the composition or molded article is physically deformed softly, and is a polymer composition having the same composition or a molding obtained from the same polymer composition. Even in the case of a product, a different value is obtained for each composition or molded product depending on the degree of crystallization and the state of crystallization. In this point, it is different from the glass transition temperature which is a value specific to the polymer.

【0009】転移温度は30℃以下、好ましくは10℃
以下であり、30℃を超えると、室温では転移点以下の
温度域になる為、転移点以下での柔軟特性が必要とな
り、高温度域での安定性に問題があるからである。ま
た、動的貯蔵弾性率は、1×104〜1×108Pa、好
ましくは、1×10 5〜1×108Pa、損失角正接は
0.1〜3.0、好ましくは0.2〜1.5である。こ
れらの範囲を超えると、柔軟な制振材、衝撃吸収用途と
して十分な特性が得られないからである。さらにはこれ
らの値が温度変化に対して安定している必要がある。値
の変化が大きい場合は使用温度の変化により特性が変化
してしまうからである。
The transition temperature is 30 ° C. or less, preferably 10 ° C.
Below 30 ° C, at room temperature below the transition point
Because of the temperature range, flexible properties below the transition point are needed.
This is because there is a problem in stability in a high temperature range. Ma
The dynamic storage modulus is 1 × 10Four~ 1 × 108Pa, good
Preferably 1 × 10 Five~ 1 × 108Pa, loss angle tangent is
It is 0.1 to 3.0, preferably 0.2 to 1.5. This
Beyond these ranges, flexible damping materials, shock absorbing applications and
This is because sufficient characteristics cannot be obtained. And even this
These values must be stable against temperature changes. value
If the change is large, the characteristics will change due to changes in the operating temperature
Because it will.

【0010】本発明は、乳酸系ポリマーと可塑成分を1
00〜180℃で溶融混合し、重合反応させた乳酸系組
成物に関する。さらに、本発明で得られた組成物の成形
品に関するものである。以下に、本発明で使用する乳酸
ポリマー、可塑成分について順を追って説明する。本発
明における乳酸ポリマーとは、乳酸ホモポリマーの他、
乳酸コポリマー、ブレンドポリマーをも含むものであ
る。乳酸ホモポリマーとしては、2つのL−乳酸からな
るL−ラクチド、D−乳酸からなるD−ラクチド、L−
乳酸とD−乳酸からなるメソ−ラクチドという3種類の
ラクチド環状2量化したラクチドいずれを主原料とした
ポリマーでも良く、触媒存在下において重合反応する事
により得られる。L−ラクチド、またはD−ラクチドの
みを含む共重合体は、結晶化し高融点の共重合体を得る
ことができる。本発明の共重合体ではこれら3種のラク
チドを組み合わせることにより、更に良好な諸特性が得
られる。乳酸コポリマーは、乳酸モノマー又はラクチド
と共重合可能な他の成分とが共重合されたものである。
このような他の成分としては、2個以上のエステル結合
形成性の官能基を持つジカルボン酸、多価アルコール、
ヒドロキシカルボン酸、ラクトン等、及びこれら種々の
構成成分より成る各種ポリエステル、各種ポリエーテ
ル、各種ポリカーボネート等が挙げられる。
According to the present invention, a lactic acid-based polymer and a plastic component
The present invention relates to a lactic acid-based composition that is melt-mixed at 00 to 180 ° C and polymerized. Furthermore, the present invention relates to a molded article of the composition obtained by the present invention. Hereinafter, the lactic acid polymer and the plastic component used in the present invention will be described step by step. The lactic acid polymer in the present invention, in addition to lactic acid homopolymer,
Lactic acid copolymers and blended polymers are also included. Lactic acid homopolymers include L-lactide composed of two L-lactic acids, D-lactide composed of D-lactic acid, and L-lactide.
Any of three types of lactide cyclic dimerized lactide, meso-lactide composed of lactic acid and D-lactic acid, may be used as a main raw material, and can be obtained by performing a polymerization reaction in the presence of a catalyst. A copolymer containing only L-lactide or D-lactide can be crystallized to obtain a high melting point copolymer. In the copolymer of the present invention, even better properties can be obtained by combining these three lactides. A lactic acid copolymer is a lactic acid monomer or lactide copolymerized with another copolymerizable component.
Such other components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols,
Examples include hydroxycarboxylic acids, lactones and the like, and various polyesters, various polyethers, and various polycarbonates composed of these various components.

【0011】ジカルボン酸としては、コハク酸、アジピ
ン酸、アゼライン酸、セバシン酸、テレフタル酸、イソ
フタル酸等が挙げられる。多価アルコールの例として
は、ビスフェノールにエチレンオキサイドを付加反応さ
せたものなどの芳香族多価アルコール、エチレングリコ
ール、プロピレングリコール、ブタンジオール、ヘキサ
ンジオール、オクタンジオール、グリセリン、ソルビタ
ン、トリメチロールプロパン、ネオペンチルグリコール
などの脂肪族多価アルコール、ジエチレングリコール、
トリエチレングリコール、ポリエチレングリコール、ポ
リプロピレングリコール等のエーテルグリコール等が挙
げられる。ヒドロキシカルボン酸の例としては、グリコ
ール酸、ヒドロキシブチルカルボン酸、その他特開平6
−184417号公報に記載されているもの等が挙げら
れる。ラクトンとしては、グリコリド、ε−カプロラク
トングリコリド、ε−カプロラクトン、β−プロピオラ
クトン、δ−ブチロラクトン、β−またはγ−ブチロラ
クトン、ピバロラクトン、δ−バレロラクトン等が挙げ
られる。
The dicarboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid and the like. Examples of polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by adding ethylene oxide to bisphenol, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, trimethylolpropane, neomethyl Aliphatic polyhydric alcohols such as pentyl glycol, diethylene glycol,
Examples include ether glycols such as triethylene glycol, polyethylene glycol, and polypropylene glycol. Examples of hydroxycarboxylic acids include glycolic acid, hydroxybutylcarboxylic acid, and others described in
And those described in US Pat. Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, and δ-valerolactone.

【0012】乳酸ポリマーは、従来公知の方法で合成さ
せたものである。すなわち、特開平7−33861号公
報、特開昭59−96123号公報、高分子討論会予稿
集44巻3198−3199頁に記載のような乳酸モノ
マーからの直接脱水縮合、または乳酸環状二量体ラクチ
ドの開環重合によって合成することが出来る。直接脱水
縮合を行う場合、L−乳酸、D−乳酸、DL−乳酸、又
はこれらの混合物のいずれの乳酸を用いても良い。又、
開環重合を行う場合においても、L−ラクチド、D−ラ
クチド、DL−ラクチド、又はこれらの混合物のいずれ
のラクチドを用いても良い。また乳酸ポリマー主鎖中に
乳酸成分を重量分率で50%以下の時は、その透明性、
耐熱性、または生分解性などポリ乳酸独自の特性が失わ
れる為好ましくない。更に重量平均分子量において10
000以下の時は、高弾性が得られず、また分解も促進
される為好ましくない。
The lactic acid polymer is synthesized by a conventionally known method. That is, direct dehydration condensation from a lactic acid monomer as described in JP-A-7-33861, JP-A-59-96123, and Proceedings of the Society of Polymer Discussion, Vol. 44, pp. 3198-3199, or lactic acid cyclic dimer It can be synthesized by ring-opening polymerization of lactide. When performing direct dehydration condensation, any lactic acid of L-lactic acid, D-lactic acid, DL-lactic acid, or a mixture thereof may be used. or,
When performing ring-opening polymerization, L-lactide, D-lactide, DL-lactide, or any of these lactides may be used. When the lactic acid component in the lactic acid polymer main chain is 50% or less by weight, its transparency and
It is not preferable because characteristics unique to polylactic acid such as heat resistance and biodegradability are lost. Furthermore, the weight average molecular weight is 10
When the molecular weight is less than 000, high elasticity cannot be obtained and decomposition is promoted.

【0013】ラクチドの合成、精製及び重合操作は、例
えば米国特許4057537号明細書、公開欧州特許出
願第261572号明細書、Polymer Bulletin, 14, 49
1-495(1985)及び Makromol Chem., 187, 1611-16
28(1986)等の文献に様々に記載されている。この
重合反応に用いる触媒は、特に限定されるものではない
が、公知の乳酸重合用触媒を用いる事が出来る。例え
ば、乳酸錫スズ、酒石酸スズ、ジカプリル酸スズ、ジラ
ウリル酸スズ、ジパルミチン酸スズ、ジステアリン酸ス
ズ、ジオレイン酸スズ、α−ナフトエ酸スズ、β−ナフ
トエ酸スズ、オクチル酸スズ等のスズ系化合物、粉末ス
ズ、酸化スズ; 亜鉛末、ハロゲン化亜鉛、酸化亜鉛、
有機亜鉛系化合物、テトラプロピルチタネート等のチタ
ン系化合物、ジルコニウムイソプロポキシド等のジルコ
ニウム系化合物、三酸化アンチモン等のアンチモン系化
合物、酸化ビスマス(III)等のビスマス系化合物、酸
化アルミニウム、アルミニウムイソプロポキシド等のア
ルミニウム系化合物等を挙げることができる。これらの
中でも、スズ又はスズ化合物からなる触媒が活性の点か
ら特に好ましい。これら触媒の使用量は、例えば開環重
合を行う場合、ラクチドに対して0.001〜5重量%
程度である。重合反応は、上記触媒の存在下、触媒種に
よって異なるが、通常100〜220℃の温度で行う事
ができる。また特開平7−247345号公報に記載の
ような2段階重合を行う事も好ましい。
Lactide synthesis, purification and polymerization procedures are described, for example, in US Pat. No. 4,057,537, Published European Patent Application No. 261572, Polymer Bulletin, 14, 49.
1-495 (1985) and Makromol Chem., 187, 1611-16
28 (1986). The catalyst used for this polymerization reaction is not particularly limited, but a known lactic acid polymerization catalyst can be used. For example, tin compounds such as tin tin lactate, tin tartrate, tin dicaprylate, tin dilaurate, tin dipalmitate, tin distearate, tin dioleate, tin α-naphthoate, tin β-naphthoate, and tin octylate , Powdered tin, tin oxide; zinc dust, zinc halide, zinc oxide,
Organic zinc compounds, titanium compounds such as tetrapropyl titanate, zirconium compounds such as zirconium isopropoxide, antimony compounds such as antimony trioxide, bismuth compounds such as bismuth (III) oxide, aluminum oxide, and aluminum isopropoxy And aluminum-based compounds such as aluminum. Among them, a catalyst composed of tin or a tin compound is particularly preferable from the viewpoint of activity. The amount of these catalysts used is, for example, in the case of performing ring-opening polymerization, 0.001 to 5% by weight based on lactide.
It is about. The polymerization reaction can be usually carried out at a temperature of 100 to 220 ° C in the presence of the above catalyst, depending on the type of the catalyst. It is also preferable to carry out two-stage polymerization as described in JP-A-7-247345.

【0014】本発明で用いる可塑成分としては、一般に
ポリ乳酸やポリ乳酸変性品の可塑化に使用される可塑剤
を用いることができる。それら可塑剤の例としては、広
くは塩化ビニルポリマー用に開発される多くの可塑剤を
利用できるが、好ましくは、フタル酸エステル、アジピ
ン酸エステル、グリコール酸誘導体、エーテルエステル
誘導体、グリセリン誘導体、アルキル燐酸エステル、ジ
アルキレーテル、ジエステル、トリカルボン酸エステ
ル、ポリエステル、ポリグリコールジエステル、アルキ
ルアルキレーテルジエステル、脂肪族ジエステル、アル
キレーテルモノエステル、クエン酸エステル、芳香族炭
化水素から選ばれた単一または複数の混合物を用いる事
ができる。更に詳細には、可塑成分がフタル酸ジメチ
ル、フタル酸ジエチル、エチルフタリルエチルグリコレ
ート、トリエチレングリコールジアセテート、エーテル
エステル、アセチルクエン酸トリブチル、トリアセチン
から選ばれた単一または複数の混合物が好ましい。
As the plastic component used in the present invention, a plasticizer generally used for plasticizing polylactic acid or a modified product of polylactic acid can be used. As examples of such plasticizers, many plasticizers widely used for vinyl chloride polymers can be used, but preferably, phthalate esters, adipic esters, glycolic acid derivatives, ether ester derivatives, glycerin derivatives, alkyl A single or a plurality of mixtures selected from phosphate esters, dialalkylates, diesters, tricarboxylic esters, polyesters, polyglycol diesters, alkyl alkylate diesters, aliphatic diesters, alkylate monoesters, citrates, and aromatic hydrocarbons Can be used. More specifically, the plastic component is preferably a single or a plurality of mixtures selected from dimethyl phthalate, diethyl phthalate, ethylphthalylethyl glycolate, triethylene glycol diacetate, ether ester, tributyl acetylcitrate, and triacetin. .

【0015】溶解度パラメーター(SP)値について、
一般にSP値の近いものは相溶性が高い事が知られてい
る。乳酸系ポリマーのSP値は9.7前後である為、S
P値が9.0〜11.0である可塑剤が良い。更に好ま
しくは9.5〜10.5が良い。特にSP値が乳酸系ポ
リマーよりも高いほうが低いものに比べ相溶性が高い傾
向にある。9.0より小さい、または11.0より大き
いと相溶性が悪い為、透明性が低下する。
Regarding the solubility parameter (SP) value,
Generally, it is known that those having close SP values have high compatibility. Since the lactic acid-based polymer has an SP value of about 9.7,
A plasticizer having a P value of 9.0 to 11.0 is preferred. More preferably, it is 9.5 to 10.5. In particular, a higher SP value than a lactic acid-based polymer tends to have higher compatibility than a lower lactic acid-based polymer. If it is smaller than 9.0 or larger than 11.0, the compatibility is poor and the transparency is reduced.

【0016】可塑成分の重量平均分子量は100〜50
00が好ましく、更に好ましくは200〜3000がよ
い。重量平均分子量が100より小さい場合、十分な可
塑効果が得られず、5000より大きい場合は、十分な
可塑効果が得られず、かつその可塑剤の分子特性が顕著
となり耐熱性、透明性が低下する為好ましくない。可塑
成分の配合量は、特に限定されないものではないが、乳
酸ポリマー100重量部に対して1〜500重量部、好
ましくは5〜100重量部である。可塑剤が5重量部よ
り少ないと、乳酸系ポリマーの軟化温度を十分に低下さ
せることができず、100重量部より多いと、共重合反
応の効率が低下するためである。具体的には、例えば、
乳酸系ポリマーの可塑化に有効な配合例として、乳酸系
ポリマー100重量部に対してフタル酸ジメチル10〜
100重量部、および/またはフタル酸ジエチル10〜
100重量部を用いることができる。あるいは、同様に
トリアセチンおよび/またはトリエチレングリコールジ
アセテート、エーテルエステルとして旭電化工業社製R
S1000を用いても良い。これらの可塑成分を用いる
ことで、乳酸系組成物の透明性、色相を維持したまま、
その軟化温度を下げる事ができる。結果として、共重合
物の色相を良好に保ち、また成形品に十分な可塑効果が
付与できる。
The weight average molecular weight of the plastic component is from 100 to 50.
00 is preferable, and 200-3000 is more preferable. When the weight average molecular weight is less than 100, a sufficient plasticizing effect cannot be obtained, and when it is more than 5,000, a sufficient plasticizing effect cannot be obtained, and the molecular properties of the plasticizer become remarkable, and heat resistance and transparency are reduced. Is not preferred. The amount of the plastic component is not particularly limited, but is 1 to 500 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the lactic acid polymer. If the amount of the plasticizer is less than 5 parts by weight, the softening temperature of the lactic acid-based polymer cannot be sufficiently lowered, and if the amount is more than 100 parts by weight, the efficiency of the copolymerization reaction decreases. Specifically, for example,
As a compounding example effective for plasticizing the lactic acid-based polymer, dimethyl phthalate 10 to 10 parts by weight of the lactic acid-based polymer is used.
100 parts by weight, and / or diethyl phthalate
100 parts by weight can be used. Alternatively, similarly, as triacetin and / or triethylene glycol diacetate and ether ester, R made by Asahi Denka Kogyo KK
S1000 may be used. By using these plastic components, while maintaining the transparency and hue of the lactic acid composition,
Its softening temperature can be lowered. As a result, the color of the copolymer can be kept good, and a sufficient plastic effect can be imparted to the molded article.

【0017】なお、乳酸系ポリマーの重量平均分子量
は、10,000以上、好ましくは50,000〜30
0,000である。
The lactic acid polymer has a weight average molecular weight of 10,000 or more, preferably 50,000 to 30.
It is 0000.

【0018】次に製造方法を順に説明する。乳酸ポリマ
ーと可塑成分とを予め溶融混合する。乳酸ポリマーを可
塑成分で可塑化する方法は、公知の方法を用いることが
でき、例えば、乳酸ポリマー100重量部にフタル酸ジ
メチル10〜50重量部とフタル酸ジエチル10〜50
重量部を加え、180℃の押出しで窒素雰囲気下で攪拌
・溶融混合して得られる。乳酸ポリマーと可塑成分をあ
らかじめ溶融混合するときには、水分の混入を防ぐため
乾燥窒素気流中で行い、例えば180℃で行うとよい。
溶融混合する温度は、乳酸ポリマーの融解温度以上が好
ましく、溶融温度が高すぎると可塑成分が揮発減量され
るため、組成物の物性が不十分になるので、具体的には
80〜180℃の範囲で行うことが好ましい。次に得ら
れた混合体から分岐・架橋構造体を作成する。分岐・架
橋反応の開始方法としては過酸化物等のラジカル開始剤
を添加する方法や、波長が400nm以下で強度120
mW/cm2以上の電子線を照射する方法など公知の方
法が使用できる。例えば混合体100重量部に対して過
酸化物を0.1〜10重量部添加し反応を行う。
Next, the manufacturing method will be described in order. A lactic acid polymer and a plastic component are melt-mixed in advance. A known method can be used to plasticize the lactic acid polymer with a plastic component. For example, 10 to 50 parts by weight of dimethyl phthalate and 10 to 50 parts by weight of diethyl phthalate are added to 100 parts by weight of the lactic acid polymer.
It is obtained by extruding at 180 ° C., stirring and melting and mixing under a nitrogen atmosphere. When the lactic acid polymer and the plastic component are melt-mixed in advance, it is preferably performed in a dry nitrogen stream, for example, at 180 ° C. in order to prevent water from being mixed.
The temperature of the melt mixing is preferably equal to or higher than the melting temperature of the lactic acid polymer. If the melting temperature is too high, the plastic component is volatilized and reduced, and the physical properties of the composition become insufficient. It is preferable to carry out within the range. Next, a branched / crosslinked structure is prepared from the obtained mixture. As a method of initiating the branching / crosslinking reaction, a method of adding a radical initiator such as a peroxide, or a method in which the wavelength is 400 nm or less and the intensity is 120
A known method such as a method of irradiating an electron beam of mW / cm 2 or more can be used. For example, a reaction is carried out by adding 0.1 to 10 parts by weight of peroxide to 100 parts by weight of the mixture.

【0019】また、乳酸ポリマーと可塑成分を溶融混合
するときに、同時に分岐・架橋反応することが可能であ
る。例えば、重合反応に2軸の横型反応装置を用いる場
合は、乳酸ポリマーと可塑成分をラジカル開始剤等と同
時に投入してもよく、乳酸系ポリマーと可塑成分を溶融
混合する際に上記電子線を照射して混合反応しても良
い。さらに乳酸系ポリマーと可塑成分を溶融混合し、ア
クリル酸のような反応開始剤を添加したものにあらため
て電子線を照射して反応を行う事も可能である。
When the lactic acid polymer and the plastic component are melt-mixed, a branching / crosslinking reaction can occur simultaneously. For example, when using a biaxial horizontal reactor for the polymerization reaction, a lactic acid polymer and a plastic component may be added simultaneously with a radical initiator or the like, and the above-mentioned electron beam is applied when the lactic acid-based polymer and the plastic component are melted and mixed. Irradiation may be performed to effect a mixed reaction. Further, it is also possible to melt and mix the lactic acid-based polymer and the plastic component, and to perform a reaction by irradiating an electron beam again to a material to which a reaction initiator such as acrylic acid is added.

【0020】反応開始剤だけを途中から投入する場合
は、乳酸ポリマーと可塑成分をあらかじめ溶融混練する
事ができるので、開始剤投入点での温度を下げる事が可
能となり反応を緩やかに進行させる事ができ、開始剤の
活性を低下させずに反応させる事が可能となる。反応温
度は、120〜180℃の範囲で行う。反応温度が12
0℃より低いと、十分に反応が進まず、180℃より高
い温度での反応は反応開始剤の劣化を促進したり反応中
間体による乳酸ポリマーの分解反応が促進される為好ま
しくない。また可塑成分も揮発減量する恐れがあり、所
望の物性が得られない為、好ましくない。2軸の横型反
応装置を用いる場合には、反応温度との関係にもよる
が、例えば120〜180℃で反応を行なった場合、滞
留時間が5〜20分で十分に反応が進行し、乳酸ポリマ
ーと可塑成分の分岐・架橋構造共重合体を得ることがで
きる。
When only the reaction initiator is introduced from the middle, the lactic acid polymer and the plastic component can be melt-kneaded in advance, so that the temperature at the point where the initiator is introduced can be lowered and the reaction can proceed slowly. And the reaction can be performed without lowering the activity of the initiator. The reaction temperature is in the range of 120 to 180 ° C. Reaction temperature 12
When the temperature is lower than 0 ° C., the reaction does not proceed sufficiently, and the reaction at a temperature higher than 180 ° C. is not preferable because the deterioration of the reaction initiator is promoted and the decomposition reaction of the lactic acid polymer by the reaction intermediate is promoted. In addition, the plastic component may be volatilized and may be lost, and the desired physical properties may not be obtained. In the case of using a biaxial horizontal reactor, for example, when the reaction is performed at 120 to 180 ° C., the residence time is 5 to 20 minutes, and the reaction proceeds sufficiently, depending on the relationship with the reaction temperature. A branched / crosslinked structure copolymer of a polymer and a plastic component can be obtained.

【0021】得られた共重合体には、可塑成分が分子構
造中に含まれており、柔軟な性質を有する熱可塑樹脂で
ある。この共重合体は、ポリ乳酸単独の場合よりもむし
ろ成形温度を低く設定することができ、成形時の分子劣
化が少なく、着色しにくく、透明な成形品を得ることが
できる。また、成形温度を低く設定できるため、成形後
の冷却時間を短縮でき、良好な成形性が発揮される。こ
の共重合体の柔軟性は、用いる可塑成分の組成、および
使用量を適宜変えることで、制御可能である。さらに、
反応後期、または反応終了後、溶融状態で減圧下にさら
すことで、1〜3%程度残留している未反応のラクチド
モノマーや反応副生成物が除去できる。
The obtained copolymer is a thermoplastic resin having a flexible property in which a plastic component is contained in the molecular structure. The molding temperature of this copolymer can be set lower than that of polylactic acid alone, and there is little molecular degradation during molding, and it is difficult to color, and a transparent molded article can be obtained. Further, since the molding temperature can be set low, the cooling time after molding can be shortened, and good moldability is exhibited. The flexibility of the copolymer can be controlled by appropriately changing the composition and the amount of the plastic component used. further,
By exposing under a reduced pressure in a molten state at the latter stage of the reaction or after the completion of the reaction, unreacted lactide monomers and reaction by-products remaining about 1 to 3% can be removed.

【0022】具体的な減圧処理の方法としては、2軸の
横型反応装置の後半部分を120〜160℃、1〜50
Torrに維持し、3〜15分間滞留・脱揮させること
で可能である。このようにしてラクチドモノマーと副生
成物を除去した共重合体は、経時安定性が大幅に改善さ
れた優れたものを得ることができる。乳酸ポリマーと可
塑成分の単純ブレンド体では、乳酸ポリマーの結晶化に
伴い可塑成分が系外にブリードアウトし転移点降下の効
果が低下する。また十分に未反応物、副生成物が除去で
きず残留する場合は加水分解の促進剤として寄与するお
それがある。
As a specific method of the decompression treatment, the latter half of the biaxial horizontal reactor is heated at 120 to 160 ° C. and 1 to 50 ° C.
It is possible to maintain the pressure at Torr, and to retain and devolatilize for 3 to 15 minutes. The lactide monomer and the copolymer from which by-products have been removed in this manner can provide an excellent copolymer having greatly improved stability over time. In a simple blend of a lactic acid polymer and a plastic component, the plastic component bleeds out of the system as the lactic acid polymer crystallizes, and the effect of lowering the transition point decreases. When unreacted substances and by-products cannot be sufficiently removed and remain, they may contribute as a hydrolysis accelerator.

【0023】本発明の共重合体は、上述の2軸横型反応
装置のほかに、公知の反応容器で作成でき、例えば、1
軸又は複数軸の撹拌機が配設された竪型反応容器又は横
型反応容器、1軸又は複数軸の掻き取り羽根が配設され
た横型反応容器、又、1軸又は複数軸のニーダーや、1
軸又は複数軸の押出機等の反応装置を単独で用いても良
く、又は複数基を直列又は並列に接続して用いても良
い。
The copolymer of the present invention can be prepared in a known reaction vessel in addition to the above-described two-axis horizontal reaction apparatus.
A vertical reaction vessel or a horizontal reaction vessel provided with a shaft or a plurality of shaft stirrers, a horizontal reaction vessel provided with a scraping blade of one or more shafts, or a kneader of one or more shafts, 1
A single or multiple-screw extruder or other reactor may be used alone, or a plurality of reactors may be connected in series or in parallel.

【0024】また、本発明の組成物には、副次的添加物
を加えて色々な改質を行う事ができる。副次的添加剤の
例としては、紫外線吸収剤、顔料、着色剤、各種フィラ
ー、静電剤、離型剤、香料、抗菌剤、核形成剤、酸化防
止剤や調整剤などの安定剤等、その他の類似のものが挙
げられる。さらに、適宜2次可塑剤としてさらに可塑剤
を追加して添加して利用することも可能である。
The composition of the present invention can be modified in various ways by adding a secondary additive. Examples of secondary additives include ultraviolet absorbers, pigments, colorants, various fillers, electrostatic agents, release agents, fragrances, antibacterial agents, nucleating agents, stabilizers such as antioxidants and regulators, and the like. , And other similar ones. Furthermore, it is also possible to add and use a plasticizer as a secondary plasticizer as needed.

【0025】本発明及び以下の実施例において、重合体
の重量平均分子量はGPC分析によるポリスチレン換算
値、重合体のガラス転移点、結晶化点、及び融点は走査
型示差熱量計(DSC)による測定値である。又、動的
粘弾性測定はJIS K7198A法に準じて、株式会
社島津製作所製動的粘弾性測定装置DVA−300にて
測定した。
In the present invention and the following examples, the weight average molecular weight of a polymer is measured by GPC analysis in terms of polystyrene, and the glass transition point, crystallization point, and melting point of the polymer are measured by a scanning differential calorimeter (DSC). Value. The dynamic viscoelasticity was measured by a dynamic viscoelasticity measuring device DVA-300 manufactured by Shimadzu Corporation in accordance with JIS K7198A method.

【0026】[0026]

【実施例】以下に実施例及び比較例を示して本発明をさ
らに具体的に説明するが、本発明はこれに限定されるも
のではない。本実施例では、以下に示す乳酸系ポリマ
ー、可塑剤、及び過酸化物を使用し実験を行った。 <乳酸ポリマーA(P1)>L-ラクチド90重量部
に、 D-ラクチド10重量部を加え、不活性ガス雰囲気
下溶融混合し、開環重合触媒としてオクチル酸錫を0.
24重量部、2軸混練機で撹拌しつつ190℃で15分
間重合した後、直径2mmのノズルにより押し出し、水
冷し切断する事で低結晶性ポリ乳酸チップC1を得た。
チップC1を、120℃、圧力1.5kg/cm2の窒
素中で12時間処理し、未反応モノマー(ラクチド)を
除去し、チップP1を得た。チップP1の重量平均分子
量は168,000、残存モノマー(ラクチド)は、
0.5%以下であった。DSCを測定した結果、ガラス
転移温度は55.3℃、結晶化温度は144.9℃、融
点は175.7℃に観測された。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples. In this example, an experiment was conducted using the following lactic acid-based polymer, plasticizer, and peroxide. <Lactic acid polymer A (P1)> To 90 parts by weight of L-lactide, 10 parts by weight of D-lactide were added and melt-mixed under an inert gas atmosphere.
After polymerizing at 190 ° C. for 15 minutes while stirring with 24 parts by weight of a twin-screw kneader, the mixture was extruded with a nozzle having a diameter of 2 mm, cooled with water and cut to obtain a low-crystalline polylactic acid chip C1.
The chip C1 was treated in nitrogen at 120 ° C. and a pressure of 1.5 kg / cm 2 for 12 hours to remove unreacted monomer (lactide), thereby obtaining a chip P1. The weight average molecular weight of the chip P1 is 168,000, and the remaining monomer (lactide) is
It was less than 0.5%. As a result of DSC measurement, the glass transition temperature was 55.3 ° C, the crystallization temperature was 144.9 ° C, and the melting point was 175.7 ° C.

【0027】<乳酸ポリマーB(P2)>L-ラクチド
75重量部に、 D-ラクチド25重量部を加え、不活性
ガス雰囲気下溶融混合し、開環重合触媒としてオクチル
酸錫を0.24重量部、2軸混練機で撹拌しつつ190
℃で15分間重合した後、直径2mmのノズルにより押
し出し、水冷し切断する事で非晶性ポリ乳酸チップC2
を得た。チップC2を、120℃、圧力1.5kg/c
2の窒素中で12時間処理し、未反応モノマー(ラク
チド)を除去し、チップP2を得た。チップP2の重量
平均分子量は117,000、残存モノマー(ラクチ
ド)は、1.5%以下であった。DSCを測定した結
果、ガラス転移温度は51.7℃、結晶化温度と融点は
観測されなかった。
<Lactic acid polymer B (P2)> To 75 parts by weight of L-lactide, add 25 parts by weight of D-lactide, melt and mix under an inert gas atmosphere, and add 0.24 part by weight of tin octylate as a ring-opening polymerization catalyst. Part, while stirring with a twin-screw kneader
After polymerization at 15 ° C for 15 minutes, the mixture was extruded with a nozzle having a diameter of 2 mm, cooled with water and cut to obtain an amorphous polylactic acid chip C2.
I got Chip C2 is heated at 120 ° C. under a pressure of 1.5 kg / c
The mixture was treated in nitrogen of m 2 for 12 hours to remove unreacted monomer (lactide), thereby obtaining chip P2. The chip P2 had a weight average molecular weight of 117,000 and a residual monomer (lactide) of 1.5% or less. As a result of DSC measurement, the glass transition temperature was 51.7 ° C., and the crystallization temperature and melting point were not observed.

【0028】<可塑成分:トリアセチン(大八化学工業
株式会社製)(S1)> 酸価:0.05以下、色相(APHA):20以下、分
子量:218、比重(20/20℃):1.160±
0.003、溶解度パラメーター(HOY):9.9
<Plastic component: triacetin (manufactured by Daihachi Chemical Industry Co., Ltd.) (S1)> Acid value: 0.05 or less, hue (APHA): 20 or less, molecular weight: 218, specific gravity (20/20 ° C.): 1 .160 ±
0.003, solubility parameter (HOY): 9.9

【0029】<過酸化物:カヤヘキサAD40C(化薬
アクゾ株式会社製)(O1)> 含有量:40%、活性酸素量:4.4%、分子量:29
0.44、10時間半減期温度:118℃、活性化エネ
ルギー:36.0kcal/kmol (CASNo.
78−63−7)
<Peroxide: Kayahexa AD40C (manufactured by Kayaku Akzo Co., Ltd.) (O1)> Content: 40%, active oxygen content: 4.4%, molecular weight: 29
0.44, 10 hour half-life temperature: 118 ° C., activation energy: 36.0 kcal / kmol (CAS No.
78-63-7)

【0030】(実施例1)P1を100重量部、S1を
40重量部とを190℃の2軸押出機で十分に溶融混合
し、P1に対して2.5重量部のO1を溶融混合体へ添
加後、平均5分間混合反応し、直径2mmのノズルによ
り押出し、水冷し切断する事で、乳酸系重合体チップ
(PC1)を得た。そのチップPC1を60℃で真空乾
燥し絶乾状態にした後、射出成形により名刺大プレート
(1mmt)を作成し動的粘弾性測定を行った。動的粘
弾性測定の結果を図1に示す。この図より、転移温度が
10℃、転移温度から150℃までの温度域において動
的貯蔵弾性率は、1.5×106〜1.2×107、損失
角正接は、0.15〜0.25であることが分かる。
(Example 1) 100 parts by weight of P1 and 40 parts by weight of S1 were sufficiently melt-mixed with a twin-screw extruder at 190 ° C., and 2.5 parts by weight of O1 was melt-mixed with P1. After the addition, the mixture was mixed and reacted for an average of 5 minutes, extruded with a nozzle having a diameter of 2 mm, cooled with water, and cut to obtain a lactic acid-based polymer chip (PC1). After vacuum drying the chip PC1 at 60 ° C. to make it absolutely dry, a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity was measured. FIG. 1 shows the results of the dynamic viscoelasticity measurement. According to this figure, the dynamic storage modulus is 1.5 × 10 6 to 1.2 × 10 7 and the loss angle tangent is 0.15 to 10 ° C. in the temperature range from the transition temperature to 10 ° C. to 150 ° C. It turns out that it is 0.25.

【0031】(実施例2)P2を100重量部、S1を
40重量部とを190℃の2軸押出機で十分に溶融混合
し、P2に対して2.5重量部のO1を溶融混合体へ添
加後、平均5分間混合反応し、直径2mmのノズルによ
り押出し、水冷し切断する事で、乳酸系重合体チップ
(PC2)を得た。そのチップPC2を60℃で真空乾
燥し絶乾状態にした後、射出成形により名刺大プレート
(1mmt)を作成し動的粘弾性測定を行った。動的粘
弾性測定の結果を図2に示す。この図より、転移温度が
20℃、転移温度から150℃までの温度域において動
的貯蔵弾性率は、9.0×104〜1.5×106、損失
角正接は、0.3〜1.0であることが分かる。
Example 2 100 parts by weight of P2 and 40 parts by weight of S1 were sufficiently melt-mixed with a twin screw extruder at 190 ° C., and 2.5 parts by weight of O1 was melt-mixed with P2. After the addition, the mixture was reacted for an average of 5 minutes, extruded through a nozzle having a diameter of 2 mm, cooled with water, and cut to obtain a lactic acid-based polymer chip (PC2). After vacuum drying the chip PC2 at 60 ° C. to make it absolutely dry, a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity was measured. FIG. 2 shows the results of the dynamic viscoelasticity measurement. According to this figure, the dynamic storage modulus is 9.0 × 10 4 to 1.5 × 10 6 in the temperature range from the transition temperature of 20 ° C. and from the transition temperature to 150 ° C., and the loss tangent is 0.3 to It turns out that it is 1.0.

【0032】(比較例1)P1を100重量部とS1を
40重量部とを190℃の2軸押出機で平均5分間溶融
混合し、直径2mmのノズルにより押出し、水冷し切断
する事で、乳酸系重合体チップ(RP1)を得た。その
チップRP1を60℃で真空乾燥し絶乾状態にした後、
射出成形により名刺大プレート(1mmt)を作成し動
的粘弾性測定を行った。動的粘弾性測定の結果を図3に
示す。この図より、転移温度が20℃、転移温度から1
50℃までの温度域において動的貯蔵弾性率は、8.0
×105〜8.0×106、損失角正接は、0.1〜0.
25であることが分かる。
(Comparative Example 1) 100 parts by weight of P1 and 40 parts by weight of S1 were melt-mixed with a twin-screw extruder at 190 ° C for an average of 5 minutes, extruded with a nozzle having a diameter of 2 mm, cooled with water, and cut. A lactic acid-based polymer chip (RP1) was obtained. After vacuum drying the chip RP1 at 60 ° C. to make it completely dry,
A business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity was measured. FIG. 3 shows the results of the dynamic viscoelasticity measurement. From this figure, the transition temperature is 20 ° C.,
The dynamic storage modulus in the temperature range up to 50 ° C. is 8.0.
× 10 5 to 8.0 × 10 6 , and the loss angle tangent is 0.1 to 0.
25.

【0033】(比較例2)P2を100重量部とS1を
40重量部とを190℃の2軸押出機で平均5分間溶融
混合し、直径2mmのノズルにより押出し、水冷し切断
する事で、乳酸系重合体チップ(RP2)を得た。その
チップRP2を60℃で真空乾燥し絶乾状態にした後、
射出成形により名刺大プレート(1mmt)を作成し動
的粘弾性測定を行った。動的粘弾性測定の結果を図4に
示す。この図より、転移温度が25℃、転移温度から9
0℃までの温度域において動的貯蔵弾性率は、1.0×
104〜1.8×106、損失角正接は、0.3〜2.0
であることが分かる。しかし、温度幅は狭く、各値は劇
的に変化し、90℃以上の温度域ではドローダウンして
しまうことが分かる。
(Comparative Example 2) 100 parts by weight of P2 and 40 parts by weight of S1 were melt-mixed with a twin screw extruder at 190 ° C for an average of 5 minutes, extruded with a nozzle having a diameter of 2 mm, water-cooled and cut. A lactic acid-based polymer chip (RP2) was obtained. After vacuum drying the chip RP2 at 60 ° C. to make it completely dry,
A business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity was measured. FIG. 4 shows the results of the dynamic viscoelasticity measurement. From this figure, the transition temperature is 25 ° C.
In the temperature range up to 0 ° C., the dynamic storage modulus is 1.0 ×
10 4 to 1.8 × 10 6 , loss angle tangent is 0.3 to 2.0
It turns out that it is. However, it can be seen that the temperature range is narrow, each value changes dramatically, and drawdown occurs in a temperature range of 90 ° C. or higher.

【0034】[0034]

【発明の効果】本発明によれば、乳酸系ポリマーの損失
角正接値を低下させることなく、常温以上の温度域にお
いて安定した値を示す。また、この組成物は経時安定性
を有する。
According to the present invention, the lactic acid-based polymer exhibits a stable value in a temperature range of room temperature or higher without reducing the loss angle tangent value. This composition has stability over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の動的粘弾性測定の結果を示す図。FIG. 1 is a diagram showing the results of dynamic viscoelasticity measurement of Example 1.

【図2】実施例2の動的粘弾性測定の結果を示す図。FIG. 2 is a diagram showing the results of dynamic viscoelasticity measurement in Example 2.

【図3】比較例1の動的粘弾性測定の結果を示す図FIG. 3 is a diagram showing the results of dynamic viscoelasticity measurement of Comparative Example 1.

【図4】比較例2の動的粘弾性測定の結果を示す図FIG. 4 is a diagram showing the results of dynamic viscoelasticity measurement of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G10K 11/162 G10K 11/16 A 11/16 J Fターム(参考) 3J048 AA01 AC01 BA01 BD01 4J002 CF002 CF191 CH002 ED026 EH006 EH046 EH056 EH086 EH096 EH146 EH156 EW046 FD026 GG01 GG02 GL00 GM00 5D061 AA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) G10K 11/162 G10K 11/16 A 11/16 J F term (Reference) 3J048 AA01 AC01 BA01 BD01 4J002 CF002 CF191 CH002 ED026 EH006 EH046 EH056 EH086 EH096 EH146 EH156 EW046 FD026 GG01 GG02 GL00 GM00 5D061 AA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量分率50%以上の乳酸成分を含む主鎖
構造成分と可塑成分から構成された分岐または網目構造
をもつ乳酸系ポリマーからなり、動的粘弾性測定(JI
S K7198A法)において転移温度が30℃以下で
あり、かつその転移温度から150℃までの温度域にお
いて動的貯蔵弾性率が1×104〜1×108Pa、損失
角正接が0.1〜3.0である乳酸系組成物。
1. A dynamic viscoelasticity measurement (JI) comprising a branched or networked lactic acid-based polymer composed of a main chain structural component containing a lactic acid component having a weight fraction of 50% or more and a plastic component.
SK7198A method), the transition temperature is 30 ° C. or lower, and the dynamic storage modulus is 1 × 10 4 to 1 × 10 8 Pa and the loss angle tangent is 0.1 in the temperature range from the transition temperature to 150 ° C. A lactic acid-based composition of about 3.0.
【請求項2】乳酸系ポリマーの重量平均分子量が10,
000以上であり、かつ重量平均分子量100〜5,0
00で溶解度パラメーター(SP)値9.0〜11.0
である可塑成分を構造鎖中に含む請求項1記載の乳酸系
組成物
2. A lactic acid-based polymer having a weight average molecular weight of 10,
000 or more and a weight average molecular weight of 100 to 5,0
A solubility parameter (SP) value of 9.0 to 11.0 at 00
2. The lactic acid composition according to claim 1, wherein the plastic component is
【請求項3】可塑成分がフタル酸エステル、アジピン酸
エステル、グリコール酸誘導体、エーテルエステル誘導
体、グリセリン誘導体、アルキル燐酸エステル、ジアル
キレーテル、ジエステル、トリカルボン酸エステル、ポ
リエステル、ポリグリコールジエステル、アルキルアル
キレーテルジエステル、脂肪族ジエステル、アルキレー
テルモノエステル、クエン酸エステル、芳香族炭化水素
から選ばれた単一または複数の混合物である請求項1〜
2記載の乳酸系組成物。
3. A plasticizer comprising a phthalic acid ester, an adipic acid ester, a glycolic acid derivative, an ether ester derivative, a glycerin derivative, an alkyl phosphate, a dialkylater, a diester, a tricarboxylate, a polyester, a polyglycol diester, an alkylalkylate diester, It is a single or a plurality of mixtures selected from aliphatic diesters, alkylator monoesters, citrates, and aromatic hydrocarbons.
3. The lactic acid composition according to 2.
【請求項4】請求項1〜3記載の組成物からなる制振材
・防振材あるいは衝撃吸収材。
4. A vibration damping material, a vibration damping material or a shock absorbing material comprising the composition according to claim 1.
JP05103799A 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof Expired - Fee Related JP3622561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05103799A JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05103799A JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP2000248164A true JP2000248164A (en) 2000-09-12
JP3622561B2 JP3622561B2 (en) 2005-02-23

Family

ID=12875616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05103799A Expired - Fee Related JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP3622561B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012834A (en) * 2001-07-03 2003-01-15 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
JP2005162972A (en) * 2003-12-05 2005-06-23 Sekiso:Kk Vibration-controlling material
US7585910B2 (en) 2005-03-25 2009-09-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Polylactic acid composition
JP2010097144A (en) * 2008-10-20 2010-04-30 Riken Technos Corp Sound absorbing body
JP2010097143A (en) * 2008-10-20 2010-04-30 Riken Technos Corp Sound absorbing body
WO2010082639A1 (en) * 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
JP2010174070A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Method for producing aliphatic polyester
EP3089472A4 (en) * 2013-12-26 2017-08-02 Kao Corporation Vibration damping material
WO2017188183A1 (en) * 2016-04-25 2017-11-02 花王株式会社 Polyester resin molding composition for damping materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012834A (en) * 2001-07-03 2003-01-15 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
JP2005162972A (en) * 2003-12-05 2005-06-23 Sekiso:Kk Vibration-controlling material
US7585910B2 (en) 2005-03-25 2009-09-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Polylactic acid composition
JP2010097144A (en) * 2008-10-20 2010-04-30 Riken Technos Corp Sound absorbing body
JP2010097143A (en) * 2008-10-20 2010-04-30 Riken Technos Corp Sound absorbing body
WO2010082639A1 (en) * 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin
JP2010174070A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Method for producing aliphatic polyester
EP3089472A4 (en) * 2013-12-26 2017-08-02 Kao Corporation Vibration damping material
WO2017188183A1 (en) * 2016-04-25 2017-11-02 花王株式会社 Polyester resin molding composition for damping materials
JP2017197733A (en) * 2016-04-25 2017-11-02 花王株式会社 Polyester resin molding composition for damping material
CN109071926A (en) * 2016-04-25 2018-12-21 花王株式会社 Polyester resin forming composition for damping material

Also Published As

Publication number Publication date
JP3622561B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
AU2002357605B9 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP2003192884A (en) Polylactic acid-based polymer composition, molded article and method for producing the molded article
JP4042206B2 (en) Film and sheet comprising polylactic acid composition
EP1674528A1 (en) Aliphatic polyester composition and moulded article
KR20140059778A (en) Film
JP3622561B2 (en) Lactic acid composition and molded article thereof
JP2003192883A (en) Polylactic acid-based resin composition, molded article and method for producing the molded article
JPH11323113A (en) Polylactic acid composition
JP2008239645A (en) Polylactic acid-based resin composition, method for producing the same and molded article
JPH11181262A (en) Lactic acid-based polymer composition and its molded product
JPH1135808A (en) Lactic acid-based polymer composition and molding product therefrom
JP4205404B2 (en) Polylactic acid resin composition, molded article, and plasticizer for polyester resin
JP3622560B2 (en) Lactic acid-based composition having graft chain and molded product thereof
JP5062830B2 (en) Synthetic resin composition
JP2003105182A (en) Plasticizer for lactic acid-based polymer, resin composition comprising plasticizer and lactic acid-based polymer, and molded product
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP2000136300A (en) Plasticized lactic acid-based polymer composition and its formed product
JP4281860B2 (en) Polylactic acid resin composition, molded article and plasticizer for resin
JP2004352873A (en) Polylactic acid resin composition, molded article and its manufacturing method
JP2003073533A (en) Polylactic acid polymer composition
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
JP4820493B2 (en) Polylactic acid resin composition
JP2010126643A (en) Impact-resistant polylactic acid resin composition
JPH09272790A (en) Polylactic acid polymer composition and its molded item
JP4366848B2 (en) Method for producing crosslinked soft lactic acid polymer and composition thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees