JP3622561B2 - Lactic acid composition and molded article thereof - Google Patents

Lactic acid composition and molded article thereof Download PDF

Info

Publication number
JP3622561B2
JP3622561B2 JP05103799A JP5103799A JP3622561B2 JP 3622561 B2 JP3622561 B2 JP 3622561B2 JP 05103799 A JP05103799 A JP 05103799A JP 5103799 A JP5103799 A JP 5103799A JP 3622561 B2 JP3622561 B2 JP 3622561B2
Authority
JP
Japan
Prior art keywords
lactic acid
composition
weight
ester
diester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05103799A
Other languages
Japanese (ja)
Other versions
JP2000248164A (en
Inventor
泰正 堀部
健志 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05103799A priority Critical patent/JP3622561B2/en
Publication of JP2000248164A publication Critical patent/JP2000248164A/en
Application granted granted Critical
Publication of JP3622561B2 publication Critical patent/JP3622561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明の組成物は、包装材料、産業資材、工業用品、容器等の各種用途に使用できるが、特に透明性・柔軟性を必要とされるフィルム、テープ、シートの材料として好適である。また柔軟成分を分岐鎖中に持つので経時安定性が有り、ゴム状弾性域が広く衝撃吸収性にすぐれ、制振材・防振材、または衝撃吸収材としての用途に非常に好適である。制振材・防振材用途としては特に限定されるものではないが、シート等へ成形する事によって回転軸の軸受け部、自動車、機械器具、船舶、建築材料、音響材料等の振動やそれに伴って発生する騒音対策として用いる事が可能である。または自動車や建物などにおいて内装材に利用する事によって吸遮音材、振動低減材としての応用も可能である。
【0002】
また本発明における組成物を含むダンパーや免振装置を用いる事で建造物の耐震性や内燃駆動装置等の微振動を低減させる用途への応用も可能である。衝撃吸収用途としても特に限定されないが、道路橋の橋桁部、道路又は岸壁の側壁、建物の床・壁、車両の衝撃吸収部などへの利用が可能であり、また靴の中敷きや踵部への封入等への応用、杖・スポーツ器具への応用、ハンマー等工具・機器類への応用等、繰り返し衝撃を受ける用途において、その衝撃を受ける部位へ本発明における組成物またはその成形品を用いる事で衝撃を低減する事が可能である。更には生分解性を有するので、従来のプラスチックの様な廃棄物の問題も軽減される。
【0003】
【従来の技術】
近年、自然環境保護の見地から、自然環境中で分解する生分解性ポリマーおよびその成型品が求められ、脂肪族ポリエステルなどの自然分解性樹脂の研究が活発に行われている。特に、乳酸系ポリマーはガラス転移点が60℃、融点が170〜180℃と、熱安定性が高く、しかも透明性に優れているため、現行の汎用樹脂に置き換わるものとして、用途に応じた改良・普及が待ち望まれている。
【0004】
乳酸系ポリマーは、そのガラス転移点において損失角正接が2.0〜3.0と非常に大きく一般汎用樹脂に比べ特異な性質を有している事が知られている。しかしホモポリマーではガラス転移点が60℃近辺であり、室温付近では、その特性は十分に生かされなかった。その特性を引き出す為には共重合体を作成するか他の成分をブレンドする方法が考えられる。しかし共重合する場合、十分にガラス転移点を低下させるのに必要な組成比で共重合を行うと、共重合体はランダムブロック構造となり、乳酸成分のブロック長が短くなる為、ホモポリマーと比較して乳酸ポリマーの特性が低下し十分な損失角正接値を引き出す事は困難となる。また他成分をブレンドする場合は、ガラス転移点を低下させる目的で可塑剤を添加する方法が考えられるが、単純にブレンドするのみでは、可塑剤のブリードアウトを引き起こし、経時安定性に問題があった。
【0005】
特開平8−199052号公報、特開平8−199053号公報、特開平8−283557号公報等においてポリエチレングリコール等のエーテル結合含有グリコールを用いた(ポリ)エステル系可塑剤を添加した組成物について開示されているが、乳酸系ポリマーは結晶性が高く経時安定性が低い。またフィルム等を成形するには溶融特性に問題があった。
米国特許5180765号において可塑成分として乳酸の低分子量物や乳酸ポリマー原料であるラクチドを可塑剤として添加した組成物が開示されているが、乳酸の低分子量体やラクチドを含む乳酸系ポリマーは熱安定性が低下し、かつ分解も促進される為経時安定性に問題があった。
【0006】
【発明が解決しようとする課題】
以上のように従来、経時安定性を有し、かつ常温以上の温度域において高い損失角正接を維持する組成物を作成する事は困難であった。
【0007】
【発明を解決するための手段】
このような課題を解決するために、本発明者らは鋭意検討の結果、乳酸系ポリマーを主鎖とし、可塑剤に代表される転移温度を低温へシフトさせる成分を側鎖、または架橋鎖に化学結合させる事により乳酸系ポリマーの損失角正接値を低下させる事なく常温以上の温度域において安定した値を示す組成物を見出した。またこの組成物は経時安定性を有する事も見出された。
【0008】
即ち、本発明は、高損失角正接を有し、かつ経時的に安定な、特に制振材・防振材、衝撃吸収材用途に好適な乳酸系組成物、及びその成形品を提供する事である。さらに詳しくは、本発明は、動的粘弾性測定(JIS K7198A法)において転移温度が30℃以下であり、かつその転移温度から150℃の温度域において動的貯蔵弾性率が1×10〜1×10Pa、損失角正接が0.1〜3.0である乳酸系組成物である。
なお、JIS K7198A法での動的貯蔵弾性率の転移温度とは、物理的にその組成物や成形品が柔らかく変形する温度にあたり、同じ組成のポリマー組成物または同ポリマー組成物から得られた成形品であっても、結晶化度や結晶化状態によって、それぞれの組成物または成形品ごとに異なる値となる。この点においてポリマー固有の値となるガラス転移温度とは異なる。
【0009】
転移温度は30℃以下、好ましくは10℃以下であり、30℃を超えると、室温では転移点以下の温度域になる為、転移点以下での柔軟特性が必要となり、高温度域での安定性に問題があるからである。
また、動的貯蔵弾性率は、1×10〜1×10Pa、好ましくは、1×10〜1×10Pa、損失角正接は0.1〜3.0、好ましくは0.2〜1.5である。これらの範囲を超えると、柔軟な制振材、衝撃吸収用途として十分な特性が得られないからである。さらにはこれらの値が温度変化に対して安定している必要がある。値の変化が大きい場合は使用温度の変化により特性が変化してしまうからである。
【0010】
本発明は、乳酸系ポリマーと可塑成分を100〜180℃で溶融混合し、重合反応させた乳酸系組成物に関する。さらに、本発明で得られた組成物の成形品に関するものである。
以下に、本発明で使用する乳酸ポリマー、可塑成分について順を追って説明する。
本発明における乳酸ポリマーとは、乳酸ホモポリマーの他、乳酸コポリマー、ブレンドポリマーをも含むものである。乳酸ホモポリマーとしては、2つのL−乳酸からなるL−ラクチド、D−乳酸からなるD−ラクチド、L−乳酸とD−乳酸からなるメソ−ラクチドという3種類のラクチド環状2量化したラクチドいずれを主原料としたポリマーでも良く、触媒存在下において重合反応する事により得られる。L−ラクチド、またはD−ラクチドのみを含む共重合体は、結晶化し高融点の共重合体を得ることができる。本発明の共重合体ではこれら3種のラクチドを組み合わせることにより、更に良好な諸特性が得られる。乳酸コポリマーは、乳酸モノマー又はラクチドと共重合可能な他の成分とが共重合されたものである。このような他の成分としては、2個以上のエステル結合形成性の官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等、及びこれら種々の構成成分より成る各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等が挙げられる。
【0011】
ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールの例としては、ビスフェノールにエチレンオキサイドを付加反応させたものなどの芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、トリメチロールプロパン、ネオペンチルグリコールなどの脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のエーテルグリコール等が挙げられる。ヒドロキシカルボン酸の例としては、グリコール酸、ヒドロキシブチルカルボン酸、その他特開平6−184417号公報に記載されているもの等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
【0012】
乳酸ポリマーは、従来公知の方法で合成させたものである。すなわち、特開平7−33861号公報、特開昭59−96123号公報、高分子討論会予稿集44巻3198−3199頁に記載のような乳酸モノマーからの直接脱水縮合、または乳酸環状二量体ラクチドの開環重合によって合成することが出来る。
直接脱水縮合を行う場合、L−乳酸、D−乳酸、DL−乳酸、又はこれらの混合物のいずれの乳酸を用いても良い。又、開環重合を行う場合においても、L−ラクチド、D−ラクチド、DL−ラクチド、又はこれらの混合物のいずれのラクチドを用いても良い。
また乳酸ポリマー主鎖中に乳酸成分を重量分率で50%以下の時は、その透明性、耐熱性、または生分解性などポリ乳酸独自の特性が失われる為好ましくない。更に重量平均分子量において10000以下の時は、高弾性が得られず、また分解も促進される為好ましくない。
【0013】
ラクチドの合成、精製及び重合操作は、例えば米国特許4057537号明細書、公開欧州特許出願第261572号明細書、Polymer Bulletin, 14, 491−495(1985)及び Makromol Chem., 187, 1611−1628(1986)等の文献に様々に記載されている。
この重合反応に用いる触媒は、特に限定されるものではないが、公知の乳酸重合用触媒を用いる事が出来る。例えば、乳酸錫スズ、酒石酸スズ、ジカプリル酸スズ、ジラウリル酸スズ、ジパルミチン酸スズ、ジステアリン酸スズ、ジオレイン酸スズ、α−ナフトエ酸スズ、β−ナフトエ酸スズ、オクチル酸スズ等のスズ系化合物、粉末スズ、酸化スズ; 亜鉛末、ハロゲン化亜鉛、酸化亜鉛、有機亜鉛系化合物、テトラプロピルチタネート等のチタン系化合物、ジルコニウムイソプロポキシド等のジルコニウム系化合物、三酸化アンチモン等のアンチモン系化合物、酸化ビスマス(III)等のビスマス系化合物、酸化アルミニウム、アルミニウムイソプロポキシド等のアルミニウム系化合物等を挙げることができる。これらの中でも、スズ又はスズ化合物からなる触媒が活性の点から特に好ましい。これら触媒の使用量は、例えば開環重合を行う場合、ラクチドに対して0.001〜5重量%程度である。重合反応は、上記触媒の存在下、触媒種によって異なるが、通常100〜220℃の温度で行う事ができる。また特開平7−247345号公報に記載のような2段階重合を行う事も好ましい。
【0014】
本発明で用いる可塑成分としては、一般にポリ乳酸やポリ乳酸変性品の可塑化に使用される可塑剤を用いることができる。それら可塑剤の例としては、広くは塩化ビニルポリマー用に開発される多くの可塑剤を利用できるが、好ましくは、フタル酸エステル、アジピン酸エステル、グリコール酸誘導体、エーテルエステル誘導体、グリセリン誘導体、アルキル燐酸エステル、ジアルキレーテル、ジエステル、トリカルボン酸エステル、ポリエステル、ポリグリコールジエステル、アルキルアルキレーテルジエステル、脂肪族ジエステル、アルキレーテルモノエステル、クエン酸エステル、芳香族炭化水素から選ばれた単一または複数の混合物を用いる事ができる。更に詳細には、可塑成分がフタル酸ジメチル、フタル酸ジエチル、エチルフタリルエチルグリコレート、トリエチレングリコールジアセテート、エーテルエステル、アセチルクエン酸トリブチル、トリアセチンから選ばれた単一または複数の混合物が好ましい。
【0015】
溶解度パラメーター(SP)値について、一般にSP値の近いものは相溶性が高い事が知られている。乳酸系ポリマーのSP値は9.7前後である為、SP値が9.0〜11.0である可塑剤が良い。更に好ましくは9.5〜10.5が良い。特にSP値が乳酸系ポリマーよりも高いほうが低いものに比べ相溶性が高い傾向にある。9.0より小さい、または11.0より大きいと相溶性が悪い為、透明性が低下する。
【0016】
可塑成分の重量平均分子量は100〜5000が好ましく、更に好ましくは200〜3000がよい。重量平均分子量が100より小さい場合、十分な可塑効果が得られず、5000より大きい場合は、十分な可塑効果が得られず、かつその可塑剤の分子特性が顕著となり耐熱性、透明性が低下する為好ましくない。
可塑成分の配合量は、特に限定されないものではないが、乳酸ポリマー100重量部に対して1〜500重量部、好ましくは5〜100重量部である。可塑剤が5重量部より少ないと、乳酸系ポリマーの軟化温度を十分に低下させることができず、100重量部より多いと、共重合反応の効率が低下するためである。具体的には、例えば、乳酸系ポリマーの可塑化に有効な配合例として、乳酸系ポリマー100重量部に対してフタル酸ジメチル10〜100重量部、および/またはフタル酸ジエチル10〜100重量部を用いることができる。あるいは、同様にトリアセチンおよび/またはトリエチレングリコールジアセテート、エーテルエステルとして旭電化工業社製RS1000を用いても良い。これらの可塑成分を用いることで、乳酸系組成物の透明性、色相を維持したまま、その軟化温度を下げる事ができる。結果として、共重合物の色相を良好に保ち、また成形品に十分な可塑効果が付与できる。
【0017】
なお、乳酸系ポリマーの重量平均分子量は、10,000以上、好ましくは50,000〜300,000である。
【0018】
次に製造方法を順に説明する。
乳酸ポリマーと可塑成分とを予め溶融混合する。乳酸ポリマーを可塑成分で可塑化する方法は、公知の方法を用いることができ、例えば、乳酸ポリマー100重量部にフタル酸ジメチル10〜50重量部とフタル酸ジエチル10〜50重量部を加え、180℃の押出しで窒素雰囲気下で攪拌・溶融混合して得られる。乳酸ポリマーと可塑成分をあらかじめ溶融混合するときには、水分の混入を防ぐため乾燥窒素気流中で行い、例えば180℃で行うとよい。溶融混合する温度は、乳酸ポリマーの融解温度以上が好ましく、溶融温度が高すぎると可塑成分が揮発減量されるため、組成物の物性が不十分になるので、具体的には80〜180℃の範囲で行うことが好ましい。
次に得られた混合体から分岐・架橋構造体を作成する。分岐・架橋反応の開始方法としては過酸化物等のラジカル開始剤を添加する方法や、波長が400nm以下で強度120mW/cm以上の電子線を照射する方法など公知の方法が使用できる。例えば混合体100重量部に対して過酸化物を0.1〜10重量部添加し反応を行う。
【0019】
また、乳酸ポリマーと可塑成分を溶融混合するときに、同時に分岐・架橋反応することが可能である。例えば、重合反応に2軸の横型反応装置を用いる場合は、乳酸ポリマーと可塑成分をラジカル開始剤等と同時に投入してもよく、乳酸系ポリマーと可塑成分を溶融混合する際に上記電子線を照射して混合反応しても良い。さらに乳酸系ポリマーと可塑成分を溶融混合し、アクリル酸のような反応開始剤を添加したものにあらためて電子線を照射して反応を行う事も可能である。
【0020】
反応開始剤だけを途中から投入する場合は、乳酸ポリマーと可塑成分をあらかじめ溶融混練する事ができるので、開始剤投入点での温度を下げる事が可能となり反応を緩やかに進行させる事ができ、開始剤の活性を低下させずに反応させる事が可能となる。反応温度は、120〜180℃の範囲で行う。反応温度が120℃より低いと、十分に反応が進まず、180℃より高い温度での反応は反応開始剤の劣化を促進したり反応中間体による乳酸ポリマーの分解反応が促進される為好ましくない。また可塑成分も揮発減量する恐れがあり、所望の物性が得られない為、好ましくない。2軸の横型反応装置を用いる場合には、反応温度との関係にもよるが、例えば120〜180℃で反応を行なった場合、滞留時間が5〜20分で十分に反応が進行し、乳酸ポリマーと可塑成分の分岐・架橋構造共重合体を得ることができる。
【0021】
得られた共重合体には、可塑成分が分子構造中に含まれており、柔軟な性質を有する熱可塑樹脂である。この共重合体は、ポリ乳酸単独の場合よりもむしろ成形温度を低く設定することができ、成形時の分子劣化が少なく、着色しにくく、透明な成形品を得ることができる。また、成形温度を低く設定できるため、成形後の冷却時間を短縮でき、良好な成形性が発揮される。
この共重合体の柔軟性は、用いる可塑成分の組成、および使用量を適宜変えることで、制御可能である。さらに、反応後期、または反応終了後、溶融状態で減圧下にさらすことで、1〜3%程度残留している未反応のラクチドモノマーや反応副生成物が除去できる。
【0022】
具体的な減圧処理の方法としては、2軸の横型反応装置の後半部分を120〜160℃、1〜50Torrに維持し、3〜15分間滞留・脱揮させることで可能である。このようにしてラクチドモノマーと副生成物を除去した共重合体は、経時安定性が大幅に改善された優れたものを得ることができる。
乳酸ポリマーと可塑成分の単純ブレンド体では、乳酸ポリマーの結晶化に伴い可塑成分が系外にブリードアウトし転移点降下の効果が低下する。また十分に未反応物、副生成物が除去できず残留する場合は加水分解の促進剤として寄与するおそれがある。
【0023】
本発明の共重合体は、上述の2軸横型反応装置のほかに、公知の反応容器で作成でき、例えば、1軸又は複数軸の撹拌機が配設された竪型反応容器又は横型反応容器、1軸又は複数軸の掻き取り羽根が配設された横型反応容器、又、1軸又は複数軸のニーダーや、1軸又は複数軸の押出機等の反応装置を単独で用いても良く、又は複数基を直列又は並列に接続して用いても良い。
【0024】
また、本発明の組成物には、副次的添加物を加えて色々な改質を行う事ができる。副次的添加剤の例としては、紫外線吸収剤、顔料、着色剤、各種フィラー、静電剤、離型剤、香料、抗菌剤、核形成剤、酸化防止剤や調整剤などの安定剤等、その他の類似のものが挙げられる。さらに、適宜2次可塑剤としてさらに可塑剤を追加して添加して利用することも可能である。
【0025】
本発明及び以下の実施例において、重合体の重量平均分子量はGPC分析によるポリスチレン換算値、重合体のガラス転移点、結晶化点、及び融点は走査型示差熱量計(DSC)による測定値である。又、動的粘弾性測定はJIS K7198A法に準じて、株式会社島津製作所製動的粘弾性測定装置DVA−300にて測定した。
【0026】
【実施例】
以下に実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
本実施例では、以下に示す乳酸系ポリマー、可塑剤、及び過酸化物を使用し実験を行った。
<乳酸ポリマーA(P1)>
L−ラクチド90重量部に、 D−ラクチド10重量部を加え、不活性ガス雰囲気下溶融混合し、開環重合触媒としてオクチル酸錫を0.24重量部、2軸混練機で撹拌しつつ190℃で15分間重合した後、直径2mmのノズルにより押し出し、水冷し切断する事で低結晶性ポリ乳酸チップC1を得た。
チップC1を、120℃、圧力1.5kg/cmの窒素中で12時間処理し、未反応モノマー(ラクチド)を除去し、チップP1を得た。チップP1の重量平均分子量は168,000、残存モノマー(ラクチド)は、0.5%以下であった。DSCを測定した結果、ガラス転移温度は55.3℃、結晶化温度は144.9℃、融点は175.7℃に観測された。
【0027】
<乳酸ポリマーB(P2)>
L−ラクチド75重量部に、 D−ラクチド25重量部を加え、不活性ガス雰囲気下溶融混合し、開環重合触媒としてオクチル酸錫を0.24重量部、2軸混練機で撹拌しつつ190℃で15分間重合した後、直径2mmのノズルにより押し出し、水冷し切断する事で非晶性ポリ乳酸チップC2を得た。
チップC2を、120℃、圧力1.5kg/cmの窒素中で12時間処理し、未反応モノマー(ラクチド)を除去し、チップP2を得た。チップP2の重量平均分子量は117,000、残存モノマー(ラクチド)は、1.5%以下であった。DSCを測定した結果、ガラス転移温度は51.7℃、結晶化温度と融点は観測されなかった。
【0028】
<可塑成分:トリアセチン(大八化学工業株式会社製)(S1)>
酸価:0.05以下、色相(APHA):20以下、分子量:218、比重(20/20℃):1.160±0.003、溶解度パラメーター(HOY):9.9
【0029】
<過酸化物:カヤヘキサAD40C(化薬アクゾ株式会社製)(O1)>
含有量:40%、活性酸素量:4.4%、分子量:290.44、10時間半減期温度:118℃、活性化エネルギー:36.0kcal/kmol (CASNo.78−63−7)
【0030】
(実施例1)
P1を100重量部、S1を40重量部とを190℃の2軸押出機で十分に溶融混合し、P1に対して2.5重量部のO1を溶融混合体へ添加後、平均5分間混合反応し、直径2mmのノズルにより押出し、水冷し切断する事で、乳酸系重合体チップ(PC1)を得た。そのチップPC1を60℃で真空乾燥し絶乾状態にした後、射出成形により名刺大プレート(1mmt)を作成し動的粘弾性測定を行った。
動的粘弾性測定の結果を図1に示す。この図より、転移温度が10℃、転移温度から150℃までの温度域において動的貯蔵弾性率は、1.5×10〜1.2×10、損失角正接は、0.15〜0.25であることが分かる。
【0031】
(実施例2)
P2を100重量部、S1を40重量部とを190℃の2軸押出機で十分に溶融混合し、P2に対して2.5重量部のO1を溶融混合体へ添加後、平均5分間混合反応し、直径2mmのノズルにより押出し、水冷し切断する事で、乳酸系重合体チップ(PC2)を得た。そのチップPC2を60℃で真空乾燥し絶乾状態にした後、射出成形により名刺大プレート(1mmt)を作成し動的粘弾性測定を行った。
動的粘弾性測定の結果を図2に示す。この図より、転移温度が20℃、転移温度から150℃までの温度域において動的貯蔵弾性率は、9.0×10〜1.5×10、損失角正接は、0.3〜1.0であることが分かる。
【0032】
(比較例1)
P1を100重量部とS1を40重量部とを190℃の2軸押出機で平均5分間溶融混合し、直径2mmのノズルにより押出し、水冷し切断する事で、乳酸系重合体チップ(RP1)を得た。そのチップRP1を60℃で真空乾燥し絶乾状態にした後、射出成形により名刺大プレート(1mmt)を作成し動的粘弾性測定を行った。
動的粘弾性測定の結果を図3に示す。この図より、転移温度が20℃、転移温度から150℃までの温度域において動的貯蔵弾性率は、8.0×10〜8.0×10、損失角正接は、0.1〜0.25であることが分かる。
【0033】
(比較例2)
P2を100重量部とS1を40重量部とを190℃の2軸押出機で平均5分間溶融混合し、直径2mmのノズルにより押出し、水冷し切断する事で、乳酸系重合体チップ(RP2)を得た。そのチップRP2を60℃で真空乾燥し絶乾状態にした後、射出成形により名刺大プレート(1mmt)を作成し動的粘弾性測定を行った。
動的粘弾性測定の結果を図4に示す。この図より、転移温度が25℃、転移温度から90℃までの温度域において動的貯蔵弾性率は、1.0×10〜1.8×10、損失角正接は、0.3〜2.0であることが分かる。しかし、温度幅は狭く、各値は劇的に変化し、90℃以上の温度域ではドローダウンしてしまうことが分かる。
【0034】
【発明の効果】
本発明によれば、乳酸系ポリマーの損失角正接値を低下させることなく、常温以上の温度域において安定した値を示す。また、この組成物は経時安定性を有する。
【図面の簡単な説明】
【図1】実施例1の動的粘弾性測定の結果を示す図。
【図2】実施例2の動的粘弾性測定の結果を示す図。
【図3】比較例1の動的粘弾性測定の結果を示す図
【図4】比較例2の動的粘弾性測定の結果を示す図
[0001]
BACKGROUND OF THE INVENTION
The composition of the present invention can be used for various applications such as packaging materials, industrial materials, industrial articles, containers, etc., but is particularly suitable as a material for films, tapes and sheets that require transparency and flexibility. In addition, since it has a flexible component in the branched chain, it has stability over time, has a wide rubber-like elastic region and excellent shock absorption, and is very suitable for use as a vibration damping material, vibration damping material, or shock absorbing material. Although it is not particularly limited as a vibration damping material / vibration-proof material, it can be vibrated and accompanied by vibrations in bearings of rotating shafts, automobiles, machinery, ships, building materials, acoustic materials, etc. Therefore, it can be used as a countermeasure against noise generated. Or, it can be used as a sound absorbing and insulating material and a vibration reducing material by using it as an interior material in automobiles and buildings.
[0002]
Further, by using a damper or a vibration isolator containing the composition according to the present invention, it can be applied to uses for reducing earthquake resistance of a building, micro-vibration of an internal combustion drive device, and the like. Although it is not particularly limited as a shock absorbing application, it can be used for bridge girder parts of road bridges, road or quay side walls, building floors / walls, shock absorbing parts of vehicles, etc. The composition of the present invention or a molded product thereof is used for a part that receives repeated impacts, such as application to encapsulation, etc., application to canes / sports equipment, application to tools / equipment such as hammers, etc. It is possible to reduce the impact. Furthermore, since it has biodegradability, the problem of waste like the conventional plastic is also reduced.
[0003]
[Prior art]
In recent years, biodegradable polymers that can be decomposed in the natural environment and molded articles thereof have been demanded from the viewpoint of protecting the natural environment, and research on natural degradable resins such as aliphatic polyester has been actively conducted. In particular, the lactic acid polymer has a glass transition point of 60 ° C. and a melting point of 170 to 180 ° C., and has high thermal stability and excellent transparency.・ The spread is awaited.
[0004]
It is known that the lactic acid-based polymer has a very large loss angle tangent of 2.0 to 3.0 at the glass transition point, and has unique properties as compared with general-purpose resins. However, the homopolymer has a glass transition point around 60 ° C., and its properties were not fully utilized near room temperature. In order to extract the characteristics, a method of preparing a copolymer or blending other components can be considered. However, in the case of copolymerization, if the copolymerization is carried out at a composition ratio necessary to sufficiently lower the glass transition point, the copolymer has a random block structure and the block length of the lactic acid component is shortened. As a result, the characteristics of the lactic acid polymer deteriorate and it becomes difficult to obtain a sufficient loss angle tangent value. When blending other components, a method of adding a plasticizer for the purpose of lowering the glass transition point is conceivable, but simply blending causes bleeding out of the plasticizer and there is a problem in stability over time. It was.
[0005]
In JP-A-8-199052, JP-A-8-199053, JP-A-8-283557, etc., a composition containing a (poly) ester plasticizer using an ether bond-containing glycol such as polyethylene glycol is disclosed. However, lactic acid polymers have high crystallinity and low stability over time. In addition, there is a problem in melting characteristics when forming a film or the like.
US Pat. No. 5,180,765 discloses a composition in which a low molecular weight product of lactic acid or lactide, which is a lactic acid polymer raw material, is added as a plasticizer as a plastic component. However, a lactic acid polymer containing a low molecular weight product of lactic acid or lactide is thermally stable. However, there is a problem in stability over time because the properties are lowered and the decomposition is accelerated.
[0006]
[Problems to be solved by the invention]
As described above, it has heretofore been difficult to produce a composition having stability over time and maintaining a high loss angle tangent in a temperature range of room temperature or higher.
[0007]
[Means for Solving the Invention]
In order to solve such problems, the present inventors have intensively studied, and as a result, a lactic acid polymer is a main chain, and a component that shifts the transition temperature represented by a plasticizer to a low temperature is a side chain or a crosslinked chain. The present inventors have found a composition that exhibits a stable value in a temperature range of normal temperature or higher without reducing the loss angle tangent value of a lactic acid-based polymer by chemical bonding. It has also been found that this composition has stability over time.
[0008]
That is, the present invention provides a lactic acid-based composition that has a high loss angle tangent and is stable over time, and is particularly suitable for use as a vibration damping material, a vibration damping material, and a shock absorbing material, and a molded product thereof. It is. More specifically, the present invention has a transition temperature of 30 ° C. or less in dynamic viscoelasticity measurement (JIS K7198A method), and a dynamic storage elastic modulus of 1 × 10 4 to 150 ° C. from the transition temperature. The lactic acid composition is 1 × 10 8 Pa and the loss angle tangent is 0.1 to 3.0.
In addition, the transition temperature of the dynamic storage elastic modulus in JIS K7198A method is the temperature at which the composition or molded product is physically soft and deformed, and the molding obtained from the same polymer composition or the same polymer composition. Even if it is a product, it becomes a different value for each composition or molded product depending on the degree of crystallization and the crystallization state. In this respect, it differs from the glass transition temperature which is a value inherent to the polymer.
[0009]
The transition temperature is 30 ° C. or lower, preferably 10 ° C. or lower. If it exceeds 30 ° C., it becomes a temperature range below the transition point at room temperature. Because there is a problem with sex.
The dynamic storage elastic modulus is 1 × 10 4 to 1 × 10 8 Pa, preferably 1 × 10 5 to 1 × 10 8 Pa, and the loss angle tangent is 0.1 to 3.0, preferably 0.8. 2 to 1.5. This is because if these ranges are exceeded, sufficient characteristics cannot be obtained for a flexible vibration damping material or shock absorbing application. Furthermore, these values need to be stable against temperature changes. This is because when the value changes greatly, the characteristics change due to changes in the operating temperature.
[0010]
The present invention relates to a lactic acid composition obtained by melt-mixing a lactic acid polymer and a plastic component at 100 to 180 ° C. to cause a polymerization reaction. Furthermore, it is related with the molded article of the composition obtained by this invention.
Hereinafter, the lactic acid polymer and plastic component used in the present invention will be described in order.
The lactic acid polymer in the present invention includes a lactic acid homopolymer, a lactic acid copolymer, and a blend polymer. Lactic acid homopolymers include L-lactide composed of two L-lactic acids, D-lactide composed of D-lactic acid, and meso-lactide composed of L-lactic acid and D-lactic acid. It may be a polymer as a main raw material, and can be obtained by carrying out a polymerization reaction in the presence of a catalyst. A copolymer containing only L-lactide or D-lactide can be crystallized to obtain a copolymer having a high melting point. In the copolymer of the present invention, various characteristics can be further improved by combining these three kinds of lactides. The lactic acid copolymer is obtained by copolymerizing a lactic acid monomer or other component copolymerizable with lactide. Examples of such other components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, lactones, etc., and various polyesters and various polyethers composed of these various components. And various polycarbonates.
[0011]
Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Examples of polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by addition reaction of bisphenol with ethylene oxide, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, trimethylolpropane, neo Examples include aliphatic polyhydric alcohols such as pentyl glycol, ether glycols such as diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and others described in JP-A-6-184417. Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, and the like.
[0012]
The lactic acid polymer is synthesized by a conventionally known method. That is, a direct dehydration condensation from a lactic acid monomer or a lactic acid cyclic dimer as described in JP-A-7-33861, JP-A-59-96123, Polymer Proceedings Proceedings Vol. 44, pages 3198-3199 It can be synthesized by ring-opening polymerization of lactide.
When performing direct dehydration condensation, any lactic acid of L-lactic acid, D-lactic acid, DL-lactic acid, or a mixture thereof may be used. Also, in the case of performing ring-opening polymerization, any lactide of L-lactide, D-lactide, DL-lactide, or a mixture thereof may be used.
Further, when the lactic acid component is 50% or less by weight in the lactic acid polymer main chain, the properties unique to polylactic acid such as transparency, heat resistance and biodegradability are lost. Furthermore, when the weight average molecular weight is 10,000 or less, high elasticity cannot be obtained and decomposition is also promoted, which is not preferable.
[0013]
Lactide synthesis, purification and polymerization procedures are described, for example, in US Pat. No. 4,057,537, published European Patent Application No. 261572, Polymer Bulletin, 14, 491-495 (1985) and Makromol Chem. , 187, 1611-1628 (1986) and the like.
The catalyst used in this polymerization reaction is not particularly limited, but a known lactic acid polymerization catalyst can be used. For example, tin compounds such as tin lactate, tin tartrate, dicaprylate, dilaurate, dipalmitate, tin distearate, dioleate, α-naphthoate, β-naphthoate, and octylate Tin powder, tin oxide; zinc powder, zinc halide, zinc oxide, organic zinc compounds, titanium compounds such as tetrapropyl titanate, zirconium compounds such as zirconium isopropoxide, antimony compounds such as antimony trioxide, Examples thereof include bismuth compounds such as bismuth (III) oxide, and aluminum compounds such as aluminum oxide and aluminum isopropoxide. Among these, a catalyst made of tin or a tin compound is particularly preferable from the viewpoint of activity. The amount of these catalysts used is, for example, about 0.001 to 5% by weight based on lactide when ring-opening polymerization is performed. The polymerization reaction can be usually carried out at a temperature of 100 to 220 ° C. in the presence of the catalyst, although it varies depending on the catalyst type. It is also preferable to carry out two-stage polymerization as described in JP-A-7-247345.
[0014]
As the plastic component used in the present invention, a plasticizer generally used for plasticizing polylactic acid or polylactic acid-modified products can be used. As examples of these plasticizers, many plasticizers widely developed for vinyl chloride polymers can be used. Preferably, phthalate ester, adipic acid ester, glycolic acid derivative, ether ester derivative, glycerin derivative, alkyl Single or a mixture selected from phosphoric acid ester, dialkylate, diester, tricarboxylic acid ester, polyester, polyglycol diester, alkyl alkylter diester, aliphatic diester, alkylate monoester, citrate ester, aromatic hydrocarbon Can be used. More specifically, a single or a mixture of plastic components selected from dimethyl phthalate, diethyl phthalate, ethyl phthalyl ethyl glycolate, triethylene glycol diacetate, ether ester, tributyl acetylcitrate, and triacetin is preferred. .
[0015]
Regarding the solubility parameter (SP) value, it is generally known that those having a close SP value have high compatibility. Since the SP value of the lactic acid-based polymer is around 9.7, a plasticizer having an SP value of 9.0 to 11.0 is preferable. More preferably, it is 9.5 to 10.5. In particular, the higher the SP value than the lactic acid-based polymer, the higher the compatibility than the lower one. If it is smaller than 9.0 or larger than 11.0, the compatibility is poor, and the transparency is lowered.
[0016]
The weight average molecular weight of the plastic component is preferably 100 to 5000, more preferably 200 to 3000. If the weight average molecular weight is less than 100, a sufficient plastic effect cannot be obtained, and if it is greater than 5000, a sufficient plastic effect cannot be obtained, and the molecular properties of the plasticizer become remarkable, resulting in a decrease in heat resistance and transparency. Therefore, it is not preferable.
Although the compounding quantity of a plastic component is not specifically limited, It is 1-500 weight part with respect to 100 weight part of lactic acid polymers, Preferably it is 5-100 weight part. This is because if the plasticizer is less than 5 parts by weight, the softening temperature of the lactic acid-based polymer cannot be lowered sufficiently, and if it is more than 100 parts by weight, the efficiency of the copolymerization reaction is lowered. Specifically, for example, as an effective formulation example for plasticizing a lactic acid-based polymer, 10 to 100 parts by weight of dimethyl phthalate and / or 10 to 100 parts by weight of diethyl phthalate are added to 100 parts by weight of the lactic acid-based polymer. Can be used. Alternatively, RS1000 manufactured by Asahi Denka Kogyo Co., Ltd. may be similarly used as triacetin and / or triethylene glycol diacetate or ether ester. By using these plastic components, the softening temperature can be lowered while maintaining the transparency and hue of the lactic acid composition. As a result, the hue of the copolymer can be kept good, and a sufficient plastic effect can be imparted to the molded product.
[0017]
In addition, the weight average molecular weight of a lactic acid-type polymer is 10,000 or more, Preferably it is 50,000-300,000.
[0018]
Next, a manufacturing method is demonstrated in order.
The lactic acid polymer and the plastic component are previously melt mixed. As a method for plasticizing the lactic acid polymer with a plastic component, a known method can be used. For example, 10 to 50 parts by weight of dimethyl phthalate and 10 to 50 parts by weight of diethyl phthalate are added to 100 parts by weight of the lactic acid polymer. It is obtained by stirring and melting and mixing in a nitrogen atmosphere by extrusion at 0 ° C. When melt-mixing the lactic acid polymer and the plastic component in advance, it is preferable to carry out in a dry nitrogen stream, for example, at 180 ° C. in order to prevent moisture from entering. The melting and mixing temperature is preferably equal to or higher than the melting temperature of the lactic acid polymer. If the melting temperature is too high, the plastic component is volatilized and the physical properties of the composition become insufficient. It is preferable to carry out within a range.
Next, a branched / crosslinked structure is prepared from the obtained mixture. As a method for initiating the branching / crosslinking reaction, a known method such as a method of adding a radical initiator such as peroxide or a method of irradiating an electron beam having a wavelength of 400 nm or less and an intensity of 120 mW / cm 2 or more can be used. For example, 0.1 to 10 parts by weight of peroxide is added to 100 parts by weight of the mixture to carry out the reaction.
[0019]
Further, when the lactic acid polymer and the plastic component are melt-mixed, it is possible to carry out a branching / crosslinking reaction at the same time. For example, when a biaxial horizontal reactor is used for the polymerization reaction, the lactic acid polymer and the plastic component may be added simultaneously with the radical initiator or the like, and the above-mentioned electron beam is used when the lactic acid polymer and the plastic component are melt-mixed. Irradiation may cause a mixed reaction. Furthermore, it is also possible to carry out the reaction by irradiating an electron beam again after melt-mixing a lactic acid-based polymer and a plastic component and adding a reaction initiator such as acrylic acid.
[0020]
When charging only the reaction initiator from the middle, the lactic acid polymer and the plastic component can be melt-kneaded in advance, so the temperature at the initiator charging point can be lowered and the reaction can proceed slowly. It is possible to react without reducing the activity of the initiator. The reaction temperature is 120 to 180 ° C. When the reaction temperature is lower than 120 ° C., the reaction does not proceed sufficiently, and the reaction at a temperature higher than 180 ° C. is not preferable because it promotes the deterioration of the reaction initiator or the decomposition reaction of the lactic acid polymer by the reaction intermediate. . Also, the plastic component may be reduced in volatilization, and the desired physical properties cannot be obtained. When a biaxial horizontal reactor is used, depending on the relationship with the reaction temperature, for example, when the reaction is performed at 120 to 180 ° C., the reaction proceeds sufficiently with a residence time of 5 to 20 minutes, and lactic acid A branched / crosslinked copolymer of polymer and plastic component can be obtained.
[0021]
The obtained copolymer contains a plastic component in the molecular structure, and is a thermoplastic resin having flexible properties. With this copolymer, the molding temperature can be set lower than in the case of polylactic acid alone, there is little molecular deterioration during molding, it is difficult to color, and a transparent molded product can be obtained. Further, since the molding temperature can be set low, the cooling time after molding can be shortened, and good moldability is exhibited.
The flexibility of this copolymer can be controlled by appropriately changing the composition of the plastic component used and the amount used. Furthermore, after the end of the reaction or after the completion of the reaction, the unreacted lactide monomer and reaction by-products remaining about 1 to 3% can be removed by exposing to a reduced pressure in a molten state.
[0022]
As a specific decompression method, the latter half of the biaxial horizontal reactor can be maintained at 120 to 160 ° C. and 1 to 50 Torr, and retained and devolatilized for 3 to 15 minutes. Thus, the copolymer which removed the lactide monomer and the by-product can obtain an excellent one having greatly improved stability over time.
In a simple blend of a lactic acid polymer and a plastic component, the plastic component bleeds out of the system as the lactic acid polymer crystallizes, and the effect of lowering the transition point is reduced. In addition, if unreacted substances and by-products are not sufficiently removed and remain, there is a risk of contributing as a hydrolysis accelerator.
[0023]
The copolymer of the present invention can be prepared in a known reaction vessel in addition to the above-described biaxial horizontal reactor, for example, a vertical reaction vessel or a horizontal reaction vessel provided with a uniaxial or multiaxial agitator A reaction apparatus such as a horizontal reaction vessel provided with scraping blades of one or more axes, a kneader of one or more axes, or an extruder of one or more axes may be used alone. Alternatively, a plurality of groups may be connected in series or in parallel.
[0024]
In addition, the composition of the present invention can be subjected to various modifications by adding secondary additives. Examples of secondary additives include UV absorbers, pigments, colorants, various fillers, electrostatic agents, mold release agents, fragrances, antibacterial agents, nucleating agents, stabilizers such as antioxidants and regulators, etc. , Other similar ones. Furthermore, it is also possible to add a plasticizer as a secondary plasticizer and add it as appropriate.
[0025]
In the present invention and the following examples, the weight average molecular weight of the polymer is a polystyrene conversion value by GPC analysis, and the glass transition point, crystallization point, and melting point of the polymer are values measured by a scanning differential calorimeter (DSC). . Moreover, the dynamic viscoelasticity measurement was measured with Shimadzu Corporation dynamic viscoelasticity measuring apparatus DVA-300 according to JIS K7198A method.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
In this example, experiments were conducted using the following lactic acid-based polymer, plasticizer, and peroxide.
<Lactic acid polymer A (P1)>
To 90 parts by weight of L-lactide, 10 parts by weight of D-lactide is added, melted and mixed in an inert gas atmosphere, and 0.24 parts by weight of tin octylate as a ring-opening polymerization catalyst is stirred with a biaxial kneader. After polymerization at 15 ° C. for 15 minutes, low-crystalline polylactic acid chip C1 was obtained by extruding with a nozzle having a diameter of 2 mm, cooling with water and cutting.
The chip C1 was treated in nitrogen at 120 ° C. and a pressure of 1.5 kg / cm 2 for 12 hours to remove unreacted monomer (lactide) to obtain a chip P1. The weight average molecular weight of chip P1 was 168,000, and the residual monomer (lactide) was 0.5% or less. As a result of measuring DSC, it was observed that the glass transition temperature was 55.3 ° C., the crystallization temperature was 144.9 ° C., and the melting point was 175.7 ° C.
[0027]
<Lactic acid polymer B (P2)>
To 75 parts by weight of L-lactide, 25 parts by weight of D-lactide is added, melted and mixed in an inert gas atmosphere, and 0.24 parts by weight of tin octylate as a ring-opening polymerization catalyst is stirred with a biaxial kneader. After polymerization at 15 ° C. for 15 minutes, an amorphous polylactic acid chip C2 was obtained by extruding with a nozzle having a diameter of 2 mm, cooling with water and cutting.
Chip C2 was treated in nitrogen at 120 ° C. under a pressure of 1.5 kg / cm 2 for 12 hours to remove unreacted monomer (lactide) to obtain chip P2. The weight average molecular weight of the chip P2 was 117,000, and the residual monomer (lactide) was 1.5% or less. As a result of measuring DSC, the glass transition temperature was 51.7 ° C., and the crystallization temperature and the melting point were not observed.
[0028]
<Plastic component: Triacetin (manufactured by Daihachi Chemical Industry Co., Ltd.) (S1)>
Acid value: 0.05 or less, Hue (APHA): 20 or less, Molecular weight: 218, Specific gravity (20/20 ° C.): 1.160 ± 0.003, Solubility parameter (HOY): 9.9
[0029]
<Peroxide: Kayahexa AD40C (manufactured by Kayaku Akzo Co., Ltd.) (O1)>
Content: 40%, active oxygen content: 4.4%, molecular weight: 290.44, 10 hour half-life temperature: 118 ° C., activation energy: 36.0 kcal / kmol (CAS No. 78-63-7)
[0030]
(Example 1)
100 parts by weight of P1 and 40 parts by weight of S1 are sufficiently melt-mixed with a twin screw extruder at 190 ° C., and 2.5 parts by weight of O1 with respect to P1 is added to the melted mixture, and then mixed for an average of 5 minutes. The lactic acid polymer chip (PC1) was obtained by reacting, extruding with a nozzle having a diameter of 2 mm, cooling with water and cutting. After the chip PC1 was vacuum-dried at 60 ° C. to make it completely dry, a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity measurement was performed.
The result of the dynamic viscoelasticity measurement is shown in FIG. From this figure, the dynamic storage elastic modulus is 1.5 × 10 6 to 1.2 × 10 7 and the loss angle tangent is 0.15 to 10 ° C. in the temperature range from the transition temperature to 150 ° C. It turns out that it is 0.25.
[0031]
(Example 2)
100 parts by weight of P2 and 40 parts by weight of S1 are sufficiently melt-mixed with a twin screw extruder at 190 ° C., and 2.5 parts by weight of O1 with respect to P2 is added to the melted mixture and then mixed for an average of 5 minutes The lactic acid polymer chip (PC2) was obtained by reacting, extruding with a nozzle having a diameter of 2 mm, cooling with water and cutting. After the chip PC2 was vacuum-dried at 60 ° C. to make it completely dry, a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity measurement was performed.
The result of the dynamic viscoelasticity measurement is shown in FIG. From this figure, the dynamic storage elastic modulus is 9.0 × 10 4 to 1.5 × 10 6 and the loss angle tangent is 0.3 to 0.3 in the temperature range from 20 ° C. to the transition temperature to 150 ° C. It turns out that it is 1.0.
[0032]
(Comparative Example 1)
100 parts by weight of P1 and 40 parts by weight of S1 are melt-mixed on average by a twin-screw extruder at 190 ° C. for 5 minutes, extruded through a nozzle with a diameter of 2 mm, cooled with water and cut to give a lactic acid polymer chip (RP1) Got. The chip RP1 was vacuum dried at 60 ° C. to make it completely dry, and then a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity measurement was performed.
The result of the dynamic viscoelasticity measurement is shown in FIG. From this figure, the dynamic storage elastic modulus is 8.0 × 10 5 to 8.0 × 10 6 and the loss angle tangent is 0.1 to 0.1 in the temperature range from 20 ° C. to the transition temperature to 150 ° C. It turns out that it is 0.25.
[0033]
(Comparative Example 2)
100 parts by weight of P2 and 40 parts by weight of S1 are melt-mixed on average by a twin screw extruder at 190 ° C. for 5 minutes, extruded through a nozzle with a diameter of 2 mm, cooled with water and cut to give a lactic acid polymer chip (RP2) Got. The chip RP2 was vacuum dried at 60 ° C. to make it completely dry, and then a business card large plate (1 mmt) was prepared by injection molding, and dynamic viscoelasticity measurement was performed.
The result of the dynamic viscoelasticity measurement is shown in FIG. From this figure, the dynamic storage elastic modulus is 1.0 × 10 4 to 1.8 × 10 6 and the loss angle tangent is 0.3 to 3.0 ° C. in the temperature range from 25 ° C. and from the transition temperature to 90 ° C. It turns out that it is 2.0. However, it can be seen that the temperature range is narrow, each value changes dramatically, and draws down in the temperature range of 90 ° C. or higher.
[0034]
【The invention's effect】
According to the present invention, a stable value is exhibited in a temperature range of normal temperature or higher without reducing the loss angle tangent value of the lactic acid-based polymer. In addition, this composition has stability over time.
[Brief description of the drawings]
1 is a graph showing the results of dynamic viscoelasticity measurement of Example 1. FIG.
2 is a graph showing the results of dynamic viscoelasticity measurement of Example 2. FIG.
FIG. 3 is a diagram showing the results of dynamic viscoelasticity measurement of Comparative Example 1. FIG. 4 is a diagram showing the results of dynamic viscoelasticity measurement of Comparative Example 2.

Claims (6)

重量分率50%以上の乳酸成分を含む主鎖構造成分と可塑成分から構成された分岐または網目構造をもつ乳酸系ポリマーからなり、動的粘弾性測定(JIS K7198A法)において転移温度が30℃以下であり、かつその転移温度から150℃までの温度域において動的貯蔵弾性率が1×104〜1×108Pa、損失角正接が0.1〜3.0である乳酸系組成物。It is composed of a lactic acid-based polymer having a branched or network structure composed of a main chain structure component containing a lactic acid component with a weight fraction of 50% or more and a plastic component. And a lactic acid composition having a dynamic storage elastic modulus of 1 × 10 4 to 1 × 10 8 Pa and a loss angle tangent of 0.1 to 3.0 in the temperature range from the transition temperature to 150 ° C. . 乳酸系ポリマーの重量平均分子量が10,000以上であり、かつ重量平均分子量100〜5,000で溶解度パラメーター(SP)値9.0〜11.0である可塑成分を構造鎖中に含む請求項1記載の乳酸系組成物。The structural chain contains a plastic component having a weight average molecular weight of 10,000 or more and a solubility parameter (SP) value of 9.0 to 11.0 when the lactic acid polymer has a weight average molecular weight of 10,000 or more. The lactic acid composition according to 1. 可塑成分がフタル酸エステル、アジピン酸エステル、グリコール酸誘導体、エーテルエステル誘導体、グリセリン誘導体、アルキル燐酸エステル、ジアルキレーテル、ジエステル、トリカルボン酸エステル、ポリエステル、ポリグリコールジエステル、アルキルアルキレーテルジエステル、脂肪族ジエステル、アルキレーテルモノエステル、クエン酸エステル、芳香族炭化水素から選ばれた単一または複数の混合物である請求項1又は2記載の乳酸系組成物。Plastic component is phthalate ester, adipic acid ester, glycolic acid derivative, ether ester derivative, glycerin derivative, alkyl phosphate ester, dialkylate, diester, tricarboxylic acid ester, polyester, polyglycol diester, alkylalkylate diester, aliphatic diester, alkyl diester The lactic acid composition according to claim 1 or 2, wherein the lactic acid composition is a single or plural mixture selected from a labeler monoester, a citrate ester and an aromatic hydrocarbon. 請求項1〜3いずれか一項記載の組成物からなる制振材。The damping material which consists of a composition as described in any one of Claims 1-3. 請求項1〜3いずれか一項記載の組成物からなる防振材。The vibration isolator which consists of a composition as described in any one of Claims 1-3. 請求項1〜3いずれか一項記載の組成物からなる衝撃吸収材。The impact-absorbing material which consists of a composition as described in any one of Claims 1-3.
JP05103799A 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof Expired - Fee Related JP3622561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05103799A JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05103799A JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP2000248164A JP2000248164A (en) 2000-09-12
JP3622561B2 true JP3622561B2 (en) 2005-02-23

Family

ID=12875616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05103799A Expired - Fee Related JP3622561B2 (en) 1999-02-26 1999-02-26 Lactic acid composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP3622561B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146625B2 (en) * 2001-07-03 2008-09-10 三菱樹脂株式会社 Biodegradable soft film
JP4368671B2 (en) * 2003-12-05 2009-11-18 株式会社セキソー Damping material
JP4325576B2 (en) 2005-03-25 2009-09-02 株式会社豊田中央研究所 Polylactic acid composition
JP5116629B2 (en) * 2008-10-20 2013-01-09 リケンテクノス株式会社 Sound absorber
JP2010097143A (en) * 2008-10-20 2010-04-30 Riken Technos Corp Sound absorbing body
JP5608562B2 (en) * 2009-01-16 2014-10-15 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
JP5574605B2 (en) * 2009-01-27 2014-08-20 帝人株式会社 Method for producing aliphatic polyester
JP6514886B2 (en) * 2013-12-26 2019-05-15 花王株式会社 Damping material
WO2017188183A1 (en) * 2016-04-25 2017-11-02 花王株式会社 Polyester resin molding composition for damping materials

Also Published As

Publication number Publication date
JP2000248164A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
KR100643250B1 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP3960797B2 (en) Polylactic acid-based polymer composition, molded article and method for producing the same
JP4042206B2 (en) Film and sheet comprising polylactic acid composition
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it&#39;s production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
JP2013544911A (en) Polycarbonate as a nucleating agent for polylactide
JP3622561B2 (en) Lactic acid composition and molded article thereof
JP2006328284A (en) Resin composition and molded product
JPH11323113A (en) Polylactic acid composition
JPH11181262A (en) Lactic acid-based polymer composition and its molded product
JP4034596B2 (en) Injection molded body
JP2008239645A (en) Polylactic acid-based resin composition, method for producing the same and molded article
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JPH1135808A (en) Lactic acid-based polymer composition and molding product therefrom
JP4205404B2 (en) Polylactic acid resin composition, molded article, and plasticizer for polyester resin
JP3622560B2 (en) Lactic acid-based composition having graft chain and molded product thereof
JP2003105182A (en) Plasticizer for lactic acid-based polymer, resin composition comprising plasticizer and lactic acid-based polymer, and molded product
JP2012177045A (en) Polylactic acid-based film
JP2000136300A (en) Plasticized lactic acid-based polymer composition and its formed product
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP4281860B2 (en) Polylactic acid resin composition, molded article and plasticizer for resin
JP2004352873A (en) Polylactic acid resin composition, molded article and its manufacturing method
JP4820493B2 (en) Polylactic acid resin composition
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
JP3747592B2 (en) Lactic acid polymer molded product and method for producing the same
JP2004323791A (en) Injection molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees