JP2000247982A - Production of isocyanatodisiloxane - Google Patents

Production of isocyanatodisiloxane

Info

Publication number
JP2000247982A
JP2000247982A JP11050957A JP5095799A JP2000247982A JP 2000247982 A JP2000247982 A JP 2000247982A JP 11050957 A JP11050957 A JP 11050957A JP 5095799 A JP5095799 A JP 5095799A JP 2000247982 A JP2000247982 A JP 2000247982A
Authority
JP
Japan
Prior art keywords
water
necked flask
isocyanatodisiloxane
nco
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050957A
Other languages
Japanese (ja)
Inventor
Yoshisaki Abe
部 芳 首 阿
Amahiro Gunji
司 天 博 郡
Koji Abe
部 浩 次 阿
Miho Watanabe
邉 美 帆 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
Original Assignee
Matsumoto Seiyaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seiyaku Kogyo KK filed Critical Matsumoto Seiyaku Kogyo KK
Priority to JP11050957A priority Critical patent/JP2000247982A/en
Publication of JP2000247982A publication Critical patent/JP2000247982A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain in high yield and selectivity the subject compound useful as a surface modifier or crosslinking agent for inorganic and organic materials, a raw rnaterial for adhesives, etc., by reaction of a specific isocyanatosilane with water in the presence (absence) of an organic solvent in a gaseous phase to reduce by-product oligomer formation. SOLUTION: This compound of the formula: [R(NCO)2Si]2O (e.g. 1,3- dimethyl-1,1,3,3-tetraisocyanatodisiloxane) is obtained by reaction of an isocyanatosilane of the formula: RSi(NCO)3 (R is a 1-6C alkyl, alkenyl, alkynyl or the like) (e.g. methyltriisocyanatosilane) in the presence (absence) of an organic solvent such as 1,4-dioxane with (C) water in a gaseous phase pref. at 100-200 deg.C and a pressure of normal pressure to 1 mmHg or so; wherein it is preferable that the amount of the component C to be used is 0.3-0.5 equivalent based on the component A and that of the component B to be used 5-15 wt. times based on the component C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なイソシアナト
ジシロキサンの製造法に関するものである。
TECHNICAL FIELD The present invention relates to a novel method for producing isocyanatodisiloxane.

【0002】[0002]

【従来技術と発明が解決しようとする課題】これまでに
合成されているケイ素官能性ジシロキサン化合物はきわ
めて数が少なく、主に報告されているのは1,3位にク
ロロ基、アルコキシ基、ヒドロキシ基などを有する2官
能性ジシロキサン化合物であり、その中でも汎用原料と
して入手できるものは数種に限られる。反応性が高く縮
合安定性の良好な4官能性のケイ素官能性化合物、特に
イソシアナトジシロキサン化合物はこれからの表面処理
剤として優れた原料化合物であり、その合成法の開発が
期待されている。
2. Description of the Related Art The number of silicon-functional disiloxane compounds synthesized so far is extremely small, and mainly reported are a chloro group, an alkoxy group and a chloro group at the 1,3-position. It is a bifunctional disiloxane compound having a hydroxy group or the like, and among them, only a few are available as general-purpose materials. A tetrafunctional silicon-functional compound having high reactivity and good condensation stability, particularly an isocyanatodisiloxane compound, is an excellent raw material compound as a surface treating agent in the future, and development of a synthesis method thereof is expected.

【0003】上記のイソシアナトジシロキサン化合物は
次の如き一般式(II) 〔R(NCO)Si〕O (II) (式中、Rは炭素数1乃至6のアルキル基、アルケニル
基、アルキニル基、炭素数6乃至12のアリール基又は
イソシアナト基)を有するものであり、これは代表的な
シラン化合物である次の一般式(III ) RSiX (III ) (Rは上述のとおり、Xはハロゲン基を示す)の化合物
に対して無塩素系試剤であり、装置の腐蝕等を起さない
こと、上記(III )式でXがアルコキシである化合物よ
りも反応性が高いこと、一般式(III )で表す化合物と
異なってダイマー(二量体)構造のため表面に形成され
る膜の分子量が高くなり、膜の強度、接着力が高くなる
こと等の利点を有している。そのためこの化合物は無機
及び有機材料の表面改質剤や架橋剤および接着剤用原料
あるいは有機合成の反応試剤やカップリング剤およびポ
リシロキサン合成前駆体として利用できる。
The above isocyanatodisiloxane compound has the following general formula (II) [R (NCO) 2 Si] 2 O (II) (wherein R is an alkyl group or alkenyl group having 1 to 6 carbon atoms, Alkynyl group, aryl group having 6 to 12 carbon atoms or isocyanato group), which is a typical silane compound represented by the following general formula (III) RSix 3 (III) (where R is X Is a chlorine-free reagent with respect to the compound of the formula (1), does not cause corrosion of the apparatus, has higher reactivity than the compound of the above formula (III) where X is alkoxy, Unlike the compound represented by (III), the film formed on the surface has a higher molecular weight due to a dimer (dimer) structure, and has advantages such as an increase in film strength and adhesion. Therefore, this compound can be used as a surface modifier for inorganic and organic materials, a cross-linking agent, a raw material for an adhesive, a reaction reagent for organic synthesis, a coupling agent, and a precursor for polysiloxane synthesis.

【0004】イソシアナトジシロキサン〔R(NCO)
Si〕O(R=メチル、ビニル、NCO)の製造法
としては、これまでにRSi(NCO)(R=メチ
ル、ビニル、NCO)と水を有機溶媒中で反応させる方
法が瀬戸川晃、郡司天博、阿部芳首、日本化学会中国四
国・同九州支部合同大会、講演要旨集、1D06、p1
04、1995年;郡司天博、朝倉一江、瀬戸川晃、阿
部芳首、日本化学会第70春季年会、講演要旨集、4H
2 13、p1146、1996;郡司天博、朝倉一
江、阿部芳首、日本化学会第74春季年会、講演要旨
集、4C3 01、P815、1997年に報告されて
いるにすぎない。
[0004] Isocyanatodisiloxane [R (NCO)
As a method for producing 2Si] 2 O (R = methyl, vinyl, NCO), a method of reacting RSi (NCO) 3 (R = methyl, vinyl, NCO) with water in an organic solvent has been known so far. , Tenhiro Gunji, Yoshibe Abe, The Chemical Society of Japan Chugoku-Shikoku and Kyushu Branch Joint Conference, Abstracts, 1D06, p1
04, 1995; Tenji Gunji, Kazue Asakura, Akira Setogawa, Yoshibe Abe, The 70th Annual Meeting of the Chemical Society of Japan, Abstracts, 4H
213, p1146, 1996; only reported in Tenji Gunji, Kazue Asakura, Yoshibe Abe, The 74th Annual Meeting of the Chemical Society of Japan, Abstracts of Lectures, 4C301, P815, 1997.

【0005】従来報告されているイソシアナトジシロキ
サン〔R(NCO)Si〕O(R=メチル、ビニ
ル、NCO)の合成法は、イソシアナトシランRSi
(NCO)(R=メチル、ビニル、NCO)と水を有
機溶媒中で反応させる方法である。しかし、この方法で
は3量体以上のオリゴシロキサンが副生し、イソシアナ
トジシロキサン収率は高々50%程度であり、3量体以
上のオリゴマーが多量副生する。そのため分離操作が複
雑となり加えて収率が低く、イソシアナトジシロキサン
の工業的な製造方法とはなり得なかった。
A conventionally reported method for synthesizing isocyanatodisiloxane [R (NCO) 2 Si] 2 O (R = methyl, vinyl, NCO) is based on isocyanatosilane RSi
(NCO) 3 (R = methyl, vinyl, NCO) and water are reacted in an organic solvent. However, in this method, a trimer or more oligosiloxane is by-produced, the isocyanatodisiloxane yield is at most about 50%, and a trimer or more oligomer is by-produced in a large amount. Therefore, the separation operation is complicated, and the yield is low, so that it cannot be an industrial production method of isocyanatodisiloxane.

【0006】かくて本発明はイソシアナトシランからイ
ソシアナトジシロキサンをつくるに当りオリゴマー副生
成物の生成量を少なくし、又イソシアナトジシロキサン
を高い収率、高い選択率で製造し得る方法を提供するこ
とを目的とするものである。
Thus, the present invention provides a method for producing an isocyanatodisiloxane from an isocyanatosilane, which reduces the amount of oligomer by-products and can produce the isocyanatodisiloxane with high yield and high selectivity. It is intended to provide.

【0007】本発明者らの研究、実験によれば、従来の
液相系反応のように多量の有機溶媒を用いることなく、
気相系で反応させることによって上記目的を達成しうる
ことが見出されたのである。
According to the research and experiments of the present inventors, it is possible to use a large amount of organic solvent without using a large amount of organic solvent as in the conventional liquid phase reaction.
It has been found that the above object can be achieved by reacting in a gas phase system.

【0008】[0008]

【課題を解決するための手段】よって本発明は、一般式
(I) RSi(NCO) (I) (式中Rは炭素数1乃至6のアルキル基、アルケニル
基、アルキニル基、炭素数6乃至12のアリール基又は
イソシアナト基である)を有するイソシアナトシラン
を、有機溶媒の非存在下、又は存在下水と気相で反応さ
せて一般式(II) 〔R(NCO)Si〕O (II) (Rは上記の通り)を有するイソシアナトジシロキサン
を製造することを特徴とするイソシアナトジシロキサン
の製造法に関するものである。
Accordingly, the present invention provides a compound represented by the general formula (I): RSi (NCO) 3 (I) wherein R is an alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, and 6 carbon atoms. Is an aryl group or an isocyanato group of the formula (II) [R (NCO) 2 Si] 2 O by reacting in the gas phase with water in the absence or presence of an organic solvent. (II) The present invention relates to a method for producing an isocyanatodisiloxane, which comprises producing an isocyanatodisiloxane having (R is as described above).

【0009】[0009]

【発明の実施の形態】以下、本発明について詳しく説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0010】上記のように本発明では一般式(I)のイ
ソシアナトシランを有機溶媒の非存在下又は存在下に水
と気相で反応させることにより一般式(II)のイソシア
ナトジシロキサンを製造するものであり、これを反応式
で示すと次のとおりである。 一般式Iで示される原料イソシアナトシランRSi(N
CO)(R=炭素数1から6迄のアルキル基、アルケ
ニル基、アルキニル基、炭素数6から12迄のアリル基
又はイソシアナト基)としてメチルトリイソシアナトシ
ラン、エチルトリイソシアナトシラン、n−プロピルト
リイソシアナトシラン、i−プロピルトリイソシアナト
シラン、ビニルトリイソシアナトシラン、フェニルトリ
イソシアナトシラン、テトライソシアナトシラン等を挙
げることができる。
As described above, in the present invention, the isocyanatodisiloxane of the general formula (II) is reacted with water in the gas phase in the absence or presence of an organic solvent to produce the isocyanatodisiloxane of the general formula (I). It is to be produced, and this is represented by the following reaction formula. The raw material isocyanatosilane RSi (N
CO) 3 (R = alkyl group having 1 to 6 carbon atoms, alkenyl group, alkynyl group, allyl group having 6 to 12 carbon atoms or isocyanato group) methyltriisocyanatosilane, ethyltriisocyanatosilane, n- Examples thereof include propyl triisocyanato silane, i-propyl triisocyanato silane, vinyl triisocyanato silane, phenyl triisocyanato silane, and tetraisocyanato silane.

【0011】本発明では、一般式Iで表す原料のイソシ
アナトシランRSi(NCO)に対し用いる水は0.
2当量から0.7当量が好ましく、0.3から0.5当
量がもっとも好ましい。これよりも水のモル比が大きい
と生成したイソシアナトジシロキサン〔R(NCO)
Si〕O(Rは上述のとおり)がさらに加水分解さ
れ、3量体以上のオリゴシロキサンを副生し、収率が著
しく減少する。
In the present invention, the water used for the isocyanatosilane RSi (NCO) 3 as the raw material represented by the general formula I is 0.1.
Two equivalents to 0.7 equivalents are preferred, and 0.3 to 0.5 equivalents are most preferred. If the molar ratio of water is higher than this, the isocyanatodisiloxane [R (NCO) 2
Si] 2 O (R is as described above) is further hydrolyzed to produce a trimeric or higher oligosiloxane as a by-product, and the yield is significantly reduced.

【0012】有機溶媒は気体として反応する水の濃度を
下げ、原料イソシアナトシランが分子レベルで化学量論
的に水と反応し、副反応を最小限に抑えるために用いる
ことができる。有機溶媒は、水と混じり合うアセトン、
メチルエチルケトン、メチルイソプロピルケトンなどの
ケトン、ジエチルエーテル、テトラヒドロフラン、1,
4−ジオキサン、エチレングリコールジメチルエーテ
ル、エチレングリコールジエチルエーテル、ジエチレン
グリコールジメチルエーテル、ジエチレングリコールジ
エチルエーテルなどのエーテル類、アセトニリトルが用
いられるが、水と任意の割合で混合し、沸点や蒸気圧が
近接したメチルエチルケトン、メチルイソプロピルケト
ン、1,4−ジオキサン、エチレングリコールジメチル
エーテル、エチレングリコールジエチルエーテル、アセ
トニトリルが望ましい。有機溶媒の使用量は水に対し5
から15重量倍が好ましく、有機溶媒の使用量がこれよ
りも多くなると容積効率が低下する。
Organic solvents can be used to reduce the concentration of water that reacts as a gas, and that the starting isocyanatosilane reacts stoichiometrically with water at the molecular level to minimize side reactions. Organic solvent is acetone mixed with water,
Ketones such as methyl ethyl ketone and methyl isopropyl ketone, diethyl ether, tetrahydrofuran, 1,
Ethers such as 4-dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and acetonitrile are used, but they are mixed with water at an arbitrary ratio, and methyl ethyl ketone and methyl isopropyl having similar boiling points and vapor pressures are used. Ketone, 1,4-dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and acetonitrile are desirable. The amount of organic solvent used is 5
To 15 times by weight, and when the amount of the organic solvent used is larger than this, the volumetric efficiency is reduced.

【0013】反応温度は所定の圧力下で原料イソシアナ
トシランが気化する温度であり、水と溶媒の加熱温度は
これらを混合気体として所定圧力、流量、時間ですべて
蒸発させる温度である。反応温度は一般的には80℃か
ら250℃、好ましくは100℃から200℃である。
The reaction temperature is a temperature at which the raw material isocyanatosilane is vaporized under a predetermined pressure, and the heating temperature of water and the solvent is a temperature at which the mixture is vaporized at a predetermined pressure, flow rate, and time as a mixed gas. The reaction temperature is generally between 80 ° C and 250 ° C, preferably between 100 ° C and 200 ° C.

【0014】反応圧力は常圧から1mmHg程度が好ま
しい。減圧下で行なうときは圧力は特に20〜50mm
Hg程度が好ましい。
The reaction pressure is preferably from normal pressure to about 1 mmHg. When performing under reduced pressure, the pressure is particularly 20 to 50 mm.
Hg is preferred.

【0015】反応時間は、所定の圧力と流量で水あるい
は水と有機溶媒がすべて混合気体として反応系に導入さ
れ終わる時間で十分である。さらに、本発明で得られる
一般式(II)で示されるイソシアナトジシロキサン〔R
(NCO)Si〕O(R=上記のとおり)は減圧蒸
留により容易に単離できる。又反応によりシアン酸(H
NCO)が副生するが、これは反応中に反応系から気体
としてあるいは、重合して不溶性固体として除去するこ
とができる。
[0015] The reaction time is sufficient to complete the introduction of water or a mixture of water and an organic solvent into the reaction system at a predetermined pressure and flow rate. Further, the isocyanatodisiloxane represented by the general formula (II) obtained by the present invention [R
(NCO) 2 Si] 2 O (R = as described above) can be easily isolated by distillation under reduced pressure. In addition, cyanic acid (H
NCO) is by-produced and can be removed from the reaction system during the reaction as a gas or as an insoluble solid by polymerization.

【0016】この反応は例えば図1,2の装置を用いて
行なわれる。図1は反応を減圧下で行なう場合、図2は
常圧で行なう場合を示す。
This reaction is carried out, for example, using the apparatus shown in FIGS. FIG. 1 shows the case where the reaction is carried out under reduced pressure, and FIG. 2 shows the case where the reaction is carried out at normal pressure.

【0017】図1において、1は一定容積の4つ口フラ
スコであり、その中央の口部に二方コック2を装着した
球入冷却器3を接続する。二方コック2は図示せぬ真空
ポンプに接続する。4つ口フラスコ1の一つの口部は二
方コック4を経てニードルバルブ付流量計5、二方コッ
ク6を装着した2つ口なす型フラスコ7に接続する。8
は4つ口フラスコ1内で用いられ外部電源によって運動
し、フラスコ1内の液体を撹拌するメカニカルスターラ
ーであり、9,10は夫々フラスコ1、フラスコ7にそ
なえつけられた温度計である。
In FIG. 1, reference numeral 1 denotes a four-necked flask having a fixed volume, and a ball inlet cooler 3 equipped with a two-way cock 2 is connected to a central opening. The two-way cock 2 is connected to a vacuum pump (not shown). One mouth of the four-necked flask 1 is connected via a two-way cock 4 to a two-necked flask 7 equipped with a flow meter 5 with a needle valve and a two-way cock 6. 8
Is a mechanical stirrer used in the four-necked flask 1 and operated by an external power supply to agitate the liquid in the flask 1, and 9 and 10 are thermometers attached to the flask 1 and the flask 7, respectively.

【0018】図1の反応装置を操作するときは、まず4
つ口フラスコ1に一定量の原料イソシアナトシランを入
れ、一方、これに対して適量の水あるいは水と有機溶媒
の混合物を2つ口フラスコ7に入れる。4つ口フラスコ
1を所定温度、所定圧力に加熱、減圧する。この圧力下
で、所定温度に保たれた2つ口なす型フラスコ7から二
方コック4を調節して流量計5で所定流量になるよう水
を気体としてまたは水を有機溶媒との混合気体として4
つ口フラスコ1に導入する。4つ口フラスコ1では加熱
・減圧下で原料イソシアナトシランが気化され、ここに
気体としてあるいは水と有機溶媒との混合気体として調
整された量の水が導入されることにより、原料イソシア
ナトシランは常にそれよりも少ないモル比で4つ口フラ
スコ1と球入冷却器3の気相部で水と反応し、一般式II
で示される目的化合物イソシアナトジシロキサンが生成
する。水又は混合気体の導入終了後、未反応物と溶剤を
除去してから減圧蒸留して目的化合物を得る。生成した
イソシアナトジシロキサンは沸点が原料イソシアナトシ
ランより低いので液化し、さらに水蒸気と接触し加水分
解して3量体以上のオリゴシロキサンを生成する副反応
が最小限に保たれる。
When operating the reactor of FIG.
A fixed amount of the raw material isocyanatosilane is placed in a one-necked flask 1, while an appropriate amount of water or a mixture of water and an organic solvent is placed in a two-necked flask 7. The four-necked flask 1 is heated and reduced to a predetermined temperature and a predetermined pressure. Under this pressure, the two-way cock 4 is adjusted from the two-necked flask 7 maintained at a predetermined temperature, and water is used as a gas or water is used as a mixed gas with an organic solvent so as to have a predetermined flow rate with the flowmeter 5. 4
It is introduced into a one-necked flask 1. In the four-necked flask 1, the raw material isocyanatosilane is vaporized under heating and reduced pressure, and an adjusted amount of water is introduced into the gas as a gas or a mixed gas of water and an organic solvent. Always reacts with water at a lower molar ratio in the gas phase of the four-necked flask 1 and the ball inlet cooler 3 to give the general formula II
The target compound isocyanatodisiloxane represented by is produced. After the introduction of water or the mixed gas is completed, the unreacted substances and the solvent are removed, and then distillation under reduced pressure is performed to obtain a target compound. The produced isocyanatodisiloxane has a lower boiling point than that of the raw material isocyanatosilane, so it is liquefied. Further, a side reaction of contacting with water vapor and hydrolyzing to produce a trimeric or higher oligosiloxane is kept to a minimum.

【0019】常圧下で反応を行なう装置を示す図2にお
いて、図1と同じ部分は同じ符号で示される。図2にお
いては4つ口フラスコの二方コック4は直接3つ口なす
型フラスコ11に接続する。3つ口フラスコ11の一つ
の口はニードルバルブ付流量計5、二方コック6を経て
窒素供給源に接続される。操作時は二方コック4を閉
め、反応系を窒素置換する。次いで4つ口フラスコ1に
原料化合物イソシアナトシランを供給し、コック2を開
け、コック4を締めて原料化合物を加熱還流する。次に
水又は水と有機溶媒を3つ口なす型フラスコ11に入れ
る。このフラスコ11に接続するコック4を開け、ニー
ドルバルブにより流量計5を調節しつつ窒素を流す。水
又は水と有機溶媒を導入し、次いで未反応物及び溶剤を
減圧除去し、後減圧蒸留して目的化合物イソシアナトジ
シロキサンを得る。
In FIG. 2 showing an apparatus for performing a reaction under normal pressure, the same parts as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, the two-way cock 4 of the four-necked flask is directly connected to the three-necked flask 11. One port of the three-necked flask 11 is connected to a nitrogen supply source via a flowmeter 5 with a needle valve and a two-way cock 6. During operation, the two-way cock 4 is closed, and the reaction system is purged with nitrogen. Next, the raw material compound isocyanatosilane is supplied to the four-necked flask 1, the cock 2 is opened, the cock 4 is closed, and the raw material compound is heated to reflux. Next, water or water and an organic solvent are charged into a three-necked flask 11. The cock 4 connected to the flask 11 is opened, and nitrogen is allowed to flow while adjusting the flow meter 5 with a needle valve. Water or water and an organic solvent are introduced, and then unreacted substances and the solvent are removed under reduced pressure, followed by distillation under reduced pressure to obtain the target compound isocyanatodisiloxane.

【0020】このように本発明に従ってイソシアナトシ
ランを水と気相で反応させてイソシアナトジシロキサン
を製造するときは、液相系で反応させるときと異なり多
量の溶媒を必要とせず、3量体以上のオリゴマーの副生
が大幅に抑制され、又副生するシアン酸(HNCO)の
分離除去も容易であり、従って目的とするイソシアナト
ジシロキサン化合物を80%にも達するような高い収率
で得ることができる。
As described above, when isocyanatodisiloxane is produced by reacting isocyanatosilane with water in the gas phase according to the present invention, a large amount of solvent is not required unlike the case of reacting in a liquid phase system, By-products of oligomers larger than the isomer are greatly suppressed, and the by-product cyanic acid (HNCO) is easily separated and removed. Therefore, the target isocyanatodisiloxane compound has a high yield of as much as 80%. Can be obtained at

【0021】以下に本発明の実施例と比較例をあげて本
発明を更に説明する。これにより本発明方法によるとき
は従来法によるときも高い収率で目的化合物が得られる
ことが明らかであろう。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples of the present invention. Thus, it will be apparent that the target compound can be obtained in a high yield according to the method of the present invention even in the conventional method.

【0022】[0022]

【実施例】[実施例−1]図1に示す、内容積200m
lの4つ口フラスコ1に、メカニカルスターラー8、二
方コック2を装着した球入冷却器3、温度計9、100
ml2つ口なす型フラスコ7にニードルバルブ付き流量
計5を装着した二方コック4を接続し、反応系内を窒素
置換した。4つ口フラスコ1にメチルトリイソシアナト
シラン67.67g(0.40mol)を入れた後、コ
ック2を開けコック4を締めてから、25mmHg、1
05℃でメチルトリイソシアナトシランを加熱・還流し
た。次に、水3.60g(0.20mol)を入れ35
℃に保たれた100ml2つ口なす型フラスコ7に接続
するコック4をゆっくりと開け、流量計により流量が2
50ml/minになるようにニードルバルブを調節し
た。水の導入終了後、未反応物および溶剤を減圧除去
し、減圧蒸留して1,3−ジメチル−1,1,3,3−
テトライソシアナトジシロキサン(MTIDS)43.
56g(収率80.0%)(B.p.128.1−12
9.9℃/13mmHg)を得た。 [実施例−2]図1に示す、内容積200mlの4つ口
フラスコ1に、メカニカルスターラー8、二方コック2
を装着した球入冷却器3、温度計9、100ml2つ口
なす型フラスコ7にニードルバルブ付き流量計5を装着
した二方コック4を接続し、反応系内を窒素置換した。
4つ口フラスコ1にメチルトリイソシアナトシラン6
7.67g(0.40mol)を入れた後、コック2を
開けコック4を締めてから、25mmHg、105℃で
メチルトリイソシアナトシランを加熱・還流した。次
に、水3.60g(0.20mol)と1,4−ジオキ
サン40mlを入れ35℃に保たれた100ml2つ口
なす型フラスコ7に接続するコック4をゆっくりと開
け、流量計により流量が500ml/minになるよう
にニードルバルブを調節した。混合気体の導入終了後、
未反応物および溶剤を減圧除去し、減圧蒸留してMTI
DS45.95g(収率85.0%)(B.p.12
8.2−129.8℃/13mmHg)を得た。 [実施例−3]図1に示す、内容積200mlの4つ口
フラスコ1に、メカニカルスターラー8、二方コック2
を装着した球入冷却器3、温度計9、100ml2つ口
なす型フラスコ7にニードルバルブ付き流量計5を装着
したコック4を接続し、反応系内を窒素置換した。4つ
口フラスコ1にビニルトリイソシアナトシラン72.4
7g(0.40mol)を入れた後、コック2を開けコ
ック4を締めてから、25mmHg、110℃でビニル
トリイソシアナトシランを加熱・還流した。次に、水
3.60g(0.20mol)と1,4−ジオキサン4
0mlを入れ35℃に保たれた100ml2つ口なす型
フラスコ7に接続するコック4をゆっくりと開け、流量
計により流量が500ml/minになるようにニード
ルバルブを調節した。混合気体の導入終了後、未反応物
および溶剤を減圧除去した後、減圧蒸留して沸点90.
9−94.2℃/0.9mmHgの留分47.09gを
得た。本留分の赤外線吸収スペクトルを図3、 1H N
MRスペクトルを図4、13CNMRスペクトルを図5、
29SiNMRスペクトルを図6に、表1にこれらのスペ
クトルの帰属を示した。これらの結果から、本留分は
1,3−ジビニル−1,1,3,3−テトライソシアナ
トジシロキサン(VTIDS)であることを確認した。
また、質量分析(MS)の結果、主ピークとして1,3
−ジビニル−1,1,3,3−テトライソシアナトジシ
ロキサンからビニル基が一つ脱離した267のピークが
観測され、湿式法による珪素含量は18.9%(理論値
19.1%)で何れもVTIDSに一致した。VTI
DSの収率は80.0%であった。
[Embodiment 1] Internal volume 200 m shown in FIG.
l, a four-necked flask 1, a mechanical stirrer 8, a ball-in cooler 3 equipped with a two-way cock 2, thermometers 9 and 100
A two-way cock 4 equipped with a flow meter 5 with a needle valve was connected to a mold flask 7 having a two-ml bottle, and the inside of the reaction system was purged with nitrogen. After 67.67 g (0.40 mol) of methyltriisocyanatosilane was put into the four-necked flask 1, the cock 2 was opened and the cock 4 was closed.
Methyltriisocyanatosilane was heated and refluxed at 05 ° C. Next, 3.60 g (0.20 mol) of water was added, and 35
The cock 4 connected to the 100 ml two-necked flask 7 kept at a temperature of 2 ° C. was slowly opened, and the flow rate was 2
The needle valve was adjusted to 50 ml / min. After completion of the introduction of water, unreacted substances and the solvent were removed under reduced pressure, and the mixture was distilled under reduced pressure to obtain 1,3-dimethyl-1,1,3,3-.
43. Tetraisocyanatodisiloxane (MTIDS)
56 g (80.0% yield) (Bp. 128.1-12)
9.9 ° C./13 mmHg). [Example 2] A mechanical stirrer 8 and a two-way cock 2 were placed in a four-necked flask 1 shown in FIG.
A two-way cock 4 equipped with a flowmeter 5 with a needle valve was connected to a bulb-containing cooler 3, a thermometer 9, and a 100-ml two-necked flask 7 equipped with a, and the inside of the reaction system was purged with nitrogen.
Methyl triisocyanatosilane 6 in four-necked flask 1
After charging 7.67 g (0.40 mol), cock 2 was opened and cock 4 was closed, and then methyltriisocyanatosilane was heated and refluxed at 25 mmHg and 105 ° C. Next, the cock 4 connected to a 100 ml two-necked flask 7 containing 3.60 g (0.20 mol) of water and 40 ml of 1,4-dioxane and kept at 35 ° C. was slowly opened, and the flow rate was adjusted to 500 ml by a flow meter. / Min was adjusted for the needle valve. After the introduction of the gas mixture,
The unreacted substances and the solvent were removed under reduced pressure, and MTI was distilled under reduced pressure.
DS 45.95 g (85.0% yield) (B.p. 12)
8.2-129.8 ° C./13 mmHg). Example 3 A 200-ml four-necked flask 1 shown in FIG.
A bulb 4 equipped with a flowmeter 5 equipped with a needle valve was connected to a bulb cooler 3, a thermometer 9, and a 100-mL two-neck flask 7 to replace the inside of the reaction system with nitrogen. In a four-necked flask 1, 72.4 vinyltriisocyanatosilane
After charging 7 g (0.40 mol), cock 2 was opened and cock 4 was closed, and then vinyl triisocyanatosilane was heated and refluxed at 25 mmHg and 110 ° C. Next, 3.60 g (0.20 mol) of water and 1,4-dioxane 4
The cock 4 connected to the 100 ml two-necked flask 7 containing 0 ml and kept at 35 ° C. was slowly opened, and the needle valve was adjusted with a flow meter so that the flow rate became 500 ml / min. After completion of the introduction of the mixed gas, unreacted substances and the solvent were removed under reduced pressure, followed by distillation under reduced pressure to obtain a boiling point of 90.
47.09 g of a 9-94.2 ° C./0.9 mmHg fraction was obtained. Figure 3 The infrared absorption spectrum of this fraction, 1 H N
FIG. 4 shows the MR spectrum and FIG. 5 shows the 13 C NMR spectrum.
FIG. 6 shows the 29 Si NMR spectrum, and Table 1 shows the assignment of these spectra. From these results, it was confirmed that this fraction was 1,3-divinyl-1,1,3,3-tetraisocyanatodisiloxane (VTIDS).
In addition, as a result of mass spectrometry (MS), 1, 3
A peak of 267, in which one vinyl group was eliminated from divinyl-1,1,3,3-tetraisocyanatodisiloxane, was observed, and the silicon content by a wet method was 18.9% (theoretical value: 19.1%). All matched VTIDS. VTI
The yield of DS was 80.0%.

【0023】[0023]

【表1】 [実施例−4]図1に示す、内容積200mlの4つ口
フラスコ1に、メカニカルスターラー8、二方コック2
を装着した球入冷却器3、温度計9、100ml2つ口
なす型フラスコ7にニードルバルブ付き流量計5を装着
したコック4を接続し、反応系内を窒素置換した。4つ
口フラスコ1にフェニルトリイソシアナトシラン92.
4g(0.40mol)を入れた後、コック2を開けコ
ック4を締めてから、25mmHg、110℃でフェニ
ルトリイソシアナトシランを加熱・還流した。次に、水
3.60g(0.20mol)と1,4−ジオキサン4
0mlを入れ35℃に保たれた100ml2つ口なす型
フラスコ7に接続するコック4をゆっくりと開け、流量
計により流量が500ml/minになるようにニード
ルバルブを調節した。混合気体の導入終了後、未反応物
および溶剤を減圧除去し、減圧蒸留して1,3−ジフェ
ニル−1,1,3,3−テトライソシアナトジシロキサ
ン(PTIDS)61.34g(収率77.8%)
(B.p.123.2−128.3℃/4.5mmH
g)を得た。 [実施例−5]図1に示す、内容積200mlの4つ口
フラスコ1に、メカニカルスターラー8、二方コック2
を装着した球入冷却器3、温度計9、100ml2つ口
なす型フラスコ7にニードルバルブ付き流量計5を装着
したコック4を接続し、反応系内を窒素置換した。4つ
口フラスコ1にテトライソシアナトシラン78.46g
(0.40mol)を入れた後、コック2を開けコック
4を締めてから、20mmHg、140℃でテトライソ
シアナトシランを加熱・還流した。次に、水3.60g
(0.20mol)と1,4−ジオキサン40mlを入
れ35℃に保たれた100ml2つ口なす型フラスコ7
に接続するコック4をゆっくりと開け、流量計により流
量が500ml/minになるようにニードルバルブを
調節した。混合気体の導入終了後、未反応物および溶剤
を減圧除去し、減圧蒸留してヘキサイソシアナトジシロ
キサン(HIDS)40.13g(収率61.9%)
(B.p.123.3−128.3℃/4.5mmH
g)を得た。 [実施例−6]図2に示す、内容積200mlの4つ口
フラスコ1に、メカニカルスターラー8、二方コック2
を装着した球入冷却器3、温度計9、100ml3口な
す型フラスコ11にニードルバルブ付き流量計5、温度
計10、二方コック4を装着し、二方コック4を200
ml4つ口フラスコ1に接続する。二方コック4を閉め
反応系内を窒素置換した。4つ口フラスコ1にメチルト
リイソシアナトシラン67.67g(0.40mol)
を入れた後、コック2を開けコック4を締めてから、メ
チルトリイソシアナトシランを165℃に加熱・還流し
た。次に、水3.60g(0.20mol)と1,4−
ジオキサン40mlを入れ35℃に保たれた100ml
3つ口なす型フラスコ11に接続するコック4をゆっく
りと開け、流量計により窒素流量が440ml/min
になるようにニードルバルブを調節した。混合気体の導
入終了後、未反応物および溶剤を減圧除去し、減圧蒸留
してMTIDS41.21g(75.0%)を得た。 [比較例−1]液相でのMTIDSの製造法 内容積200mlの4つ口フラスコに、メカニカルスタ
ーラー、コンデンサーおよび滴下漏斗を装着し反応系内
を窒素置換した。このフラスコに、メチルトリイソシア
ナトシラン33.84g(0.20mol)とテトラヒ
ドロフラン40mlを入れ0℃に保持した。ここに、水
1.80g(0.10mol)とテトラヒドロフラン4
0mlの混合物を滴下漏斗から1時間かけて滴下した。
滴下終了後、0℃に保持しながら2時間撹拌し,次いで
70℃で2時間還流した。生成した固体を濾別後、溶媒
を減圧除去した。この濃縮液中には未反応モノマー8
%、目的とする二量体であるイソシアナトジシロキサン
が58%、三量体以上のオリゴマーが34%含まれてい
た。この濃縮液を、減圧蒸留してMTIDS12.37
g(収率45.8%)を得た。 [比較例−2]液相でのVTIDSの製造法 内容積200mlの4つ口フラスコに、メカニカルスタ
ーラー、コンデンサーおよび滴下漏斗を装着し反応系内
を窒素置換した。このフラスコに、ビニルトリイソシア
ナトシラン36.20g(0.20mol)とテトラヒ
ドロフラン40mlを入れ0℃に保持した。ここに、水
1.80g(0.10mol)とテトラヒドロフラン4
0mlの混合物を滴下漏斗から滴下した。滴下終了後、
0℃に保持しながら2時間撹拌し、次いで70℃で2時
間還流した。固体を濾別後溶剤を減圧除去した。この濃
縮液中には未反応モノマーが15%、目的物であるジシ
ロキサンが41%、三量体以上のオリゴマーが44%含
まれていた。この濃縮液を減圧蒸留してVTIDS1
2.37g(収率45.8%)を得た。 [比較例−3]液相でのHIDSの製造法 内容積200mlの4つ口フラスコに、メカニカルスタ
ーラー、コンデンサーおよび滴下漏斗を装着し反応系内
を窒素置換した。このフラスコに、テトライソシアナト
シラン39.23g(0.20mol)とベンゼン40
mlを入れ0℃に保持した。ここに、水1.80g
(0.10mol)とベンゼン40mlの混合物を滴下
漏斗から滴下した。滴下終了後、0℃に保持しながら2
時間撹拌した。固体を濾別後溶剤を減圧除去した。この
濃縮液を減圧蒸留してHIDS8.11g(収率25.
0%)を得た。
[Table 1] [Example-4] A mechanical stirrer 8 and a two-way cock 2 were placed in a four-necked flask 1 shown in FIG.
A bulb 4 equipped with a flowmeter 5 equipped with a needle valve was connected to a bulb cooler 3, a thermometer 9, and a 100-mL two-neck flask 7 to replace the inside of the reaction system with nitrogen. In a four-necked flask 1 phenyl triisocyanatosilane 92.
After charging 4 g (0.40 mol), the cock 2 was opened and the cock 4 was closed, and then phenyltriisocyanatosilane was heated and refluxed at 25 mmHg and 110 ° C. Next, 3.60 g (0.20 mol) of water and 1,4-dioxane 4
The cock 4 connected to the 100 ml two-necked flask 7 containing 0 ml and kept at 35 ° C. was slowly opened, and the needle valve was adjusted with a flow meter so that the flow rate became 500 ml / min. After completion of the introduction of the mixed gas, unreacted substances and the solvent were removed under reduced pressure, and the mixture was distilled under reduced pressure, and 61.34 g of 1,3-diphenyl-1,1,3,3-tetraisocyanatodisiloxane (PTIDS) was obtained (yield 77). .8%)
(B.p. 123.2-128.3 ° C / 4.5 mmH
g) was obtained. [Example-5] A mechanical stirrer 8 and a two-way cock 2 were placed in a four-necked flask 1 having an inner volume of 200 ml as shown in FIG.
A bulb 4 equipped with a flowmeter 5 equipped with a needle valve was connected to a bulb cooler 3, a thermometer 9, and a 100-mL two-neck flask 7 to replace the inside of the reaction system with nitrogen. 78.46 g of tetraisocyanatosilane in the four-necked flask 1
(0.40 mol), the cock 2 was opened and the cock 4 was closed, and then the tetraisocyanatosilane was heated and refluxed at 20 mmHg and 140 ° C. Next, 3.60 g of water
(0.20 mol) and 40 ml of 1,4-dioxane, and a 100 ml two-necked flask kept at 35 ° C.
Was slowly opened, and the needle valve was adjusted with a flow meter so that the flow rate became 500 ml / min. After the completion of the introduction of the mixed gas, unreacted substances and the solvent were removed under reduced pressure, and distilled under reduced pressure to obtain 40.13 g of hexaisocyanatodisiloxane (HIDS) (yield 61.9%).
(B.p. 123.3-128.3 ° C / 4.5 mmH
g) was obtained. [Example-6] A mechanical stirrer 8 and a two-way cock 2 were placed in a four-neck flask 1 having an inner volume of 200 ml as shown in FIG.
A flowmeter with a needle valve 5, a thermometer 10, and a two-way cock 4 were attached to a ball-in cooler 3, a thermometer 9, and a 100 ml three-necked flask 11 equipped with
connected to the four-necked flask. The two-way cock 4 was closed, and the inside of the reaction system was replaced with nitrogen. 67.67 g (0.40 mol) of methyltriisocyanatosilane in the four-necked flask 1
Then, the cock 2 was opened and the cock 4 was closed, and then methyltriisocyanatosilane was heated to 165 ° C. and refluxed. Next, 3.60 g (0.20 mol) of water and 1,4-
100 ml with 40 ml of dioxane and kept at 35 ° C
The cock 4 connected to the three-necked flask 11 was slowly opened, and the flow rate of the nitrogen gas was 440 ml / min.
The needle valve was adjusted so that After the introduction of the mixed gas was completed, unreacted substances and the solvent were removed under reduced pressure, and distilled under reduced pressure to obtain 41.21 g (75.0%) of MTIDS. Comparative Example 1 Method for Producing MTIDS in Liquid Phase A 200-ml four-necked flask equipped with a mechanical stirrer, a condenser and a dropping funnel was purged with nitrogen in the reaction system. 33.84 g (0.20 mol) of methyltriisocyanatosilane and 40 ml of tetrahydrofuran were charged into the flask and kept at 0 ° C. Here, 1.80 g (0.10 mol) of water and tetrahydrofuran 4
0 ml of the mixture was added dropwise from the dropping funnel over 1 hour.
After completion of the dropwise addition, the mixture was stirred for 2 hours while maintaining the temperature at 0 ° C, and then refluxed at 70 ° C for 2 hours. After the generated solid was separated by filtration, the solvent was removed under reduced pressure. Unreacted monomer 8 is contained in this concentrate.
%, The desired dimer isocyanatodisiloxane was 58%, and the trimer or higher oligomer was 34%. This concentrated liquid was distilled under reduced pressure to obtain MTIDS 12.37.
g (45.8% yield). Comparative Example 2 Method for Producing VTIDS in Liquid Phase A 200-ml four-necked flask equipped with a mechanical stirrer, a condenser and a dropping funnel was purged with nitrogen in the reaction system. 36.20 g (0.20 mol) of vinyl triisocyanatosilane and 40 ml of tetrahydrofuran were charged into the flask and kept at 0 ° C. Here, 1.80 g (0.10 mol) of water and tetrahydrofuran 4
0 ml of the mixture was added dropwise from the dropping funnel. After dropping,
The mixture was stirred for 2 hours while maintaining the temperature at 0 ° C, and then refluxed at 70 ° C for 2 hours. After the solid was separated by filtration, the solvent was removed under reduced pressure. The concentrated solution contained 15% of unreacted monomer, 41% of a target disiloxane, and 44% of a trimer or higher oligomer. This concentrated solution is distilled under reduced pressure to obtain VTIDS1.
2.37 g (45.8% yield) were obtained. Comparative Example 3 Method for Producing HIDS in Liquid Phase A mechanical stirrer, a condenser, and a dropping funnel were attached to a 200-ml four-necked flask, and the inside of the reaction system was purged with nitrogen. In this flask, 39.23 g (0.20 mol) of tetraisocyanatosilane and 40 parts of benzene were added.
ml was added and kept at 0 ° C. Here, 1.80 g of water
A mixture of (0.10 mol) and 40 ml of benzene was dropped from a dropping funnel. After the completion of dropping, keep the temperature at 0 ° C for 2 hours.
Stirred for hours. After the solid was separated by filtration, the solvent was removed under reduced pressure. The concentrated solution was distilled under reduced pressure to obtain 8.11 g of HIDS (yield: 25.
0%).

【0024】[0024]

【発明の効果】上述のところから明らかなように、本発
明に従って、イソシアナトシランと水とを常圧下、又は
減圧下で気相で反応させるときは、液相系で行なう場合
のように多量の溶媒を必要とせずオリゴマーの副生が大
幅に抑制され、目的生成物たるイソシアナトジシロキサ
ンを高収率、高選択率で得ることができて誠に有効であ
る。
As is apparent from the above description, when isocyanatosilane and water are reacted in the gas phase under normal pressure or reduced pressure according to the present invention, a large amount of reaction is required as in the case of the liquid phase system. The solvent is not required, the by-product of the oligomer is largely suppressed, and the target product, isocyanatodisiloxane, can be obtained in a high yield and a high selectivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する装置の一例を示す説明
図。
FIG. 1 is an explanatory view showing an example of an apparatus for implementing the method of the present invention.

【図2】本発明方法を実施する装置の他の例を示す説明
図。
FIG. 2 is an explanatory view showing another example of an apparatus for performing the method of the present invention.

【図3】本発明の実施例3の生成物の赤外線吸収スペク
トル。
FIG. 3 is an infrared absorption spectrum of the product of Example 3 of the present invention.

【図4】同生成物の 1H NMRスペクトル。FIG. 4 is a 1 H NMR spectrum of the same product.

【図5】同生成物の13C NMRスペクトル。FIG. 5 is a 13 C NMR spectrum of the same product.

【図6】同生成物の29Si NMRスペクトル。FIG. 6 is a 29 Si NMR spectrum of the same product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡 邉 美 帆 千葉県流山市野々下4−830−45 Fターム(参考) 4H049 VN01 VP02 VQ44 VQ78 VR21 VR53 VR54 VS44 VT32 VT33 VU21 VU36 VV21 VV23 VW02 VW33  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Miho Watanabe 4-830-45 Nonoshita, Nagareyama-shi, Chiba F-term (reference) 4H049 VN01 VP02 VQ44 VQ78 VR21 VR53 VR54 VS44 VT32 VT33 VU21 VU36 VV21 VV23 VW02 VW33

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式(I) RSi(NCO) (I) (式中Rは炭素数1乃至6のアルキル基、アルケニル
基、アルキニル基、炭素数6乃至12のアリール基又は
イソシアナト基である)を有するイソシアナトシラン
を、有機溶媒の非存在下、又は存在下水と気相で反応さ
せて一般式(II) 〔R(NCO)Si〕O (II) (Rは上記の通り)を有するイソシアナトジシロキサン
を製造することを特徴とするイソシアナトジシロキサン
の製造法。
1. A compound of the general formula (I) RSi (NCO) 3 (I) wherein R is an alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, an aryl group having 6 to 12 carbon atoms or an isocyanato group. Is reacted with water in the gas phase in the absence or presence of an organic solvent to produce a compound of the general formula (II) [R (NCO) 2 Si] 2 O (II) (R is as described above) A method for producing an isocyanatodisiloxane, comprising producing an isocyanatodisiloxane having the formula (1).
【請求項2】常圧、もしくは減圧下で反応させることを
特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the reaction is carried out under normal pressure or reduced pressure.
JP11050957A 1999-02-26 1999-02-26 Production of isocyanatodisiloxane Pending JP2000247982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050957A JP2000247982A (en) 1999-02-26 1999-02-26 Production of isocyanatodisiloxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050957A JP2000247982A (en) 1999-02-26 1999-02-26 Production of isocyanatodisiloxane

Publications (1)

Publication Number Publication Date
JP2000247982A true JP2000247982A (en) 2000-09-12

Family

ID=12873308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050957A Pending JP2000247982A (en) 1999-02-26 1999-02-26 Production of isocyanatodisiloxane

Country Status (1)

Country Link
JP (1) JP2000247982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292591A (en) * 2021-06-23 2021-08-24 唐山三孚新材料有限公司 Synthesis method and application of 1, 3-bis (isocyanatoalkyl) -1,1,3, 3-tetramethyldisiloxane
KR20220039729A (en) 2019-07-30 2022-03-29 마츠모토 파인케미칼 가부시키가이샤 Silicon isocyanate compound-containing composition and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039729A (en) 2019-07-30 2022-03-29 마츠모토 파인케미칼 가부시키가이샤 Silicon isocyanate compound-containing composition and method for producing the same
CN113292591A (en) * 2021-06-23 2021-08-24 唐山三孚新材料有限公司 Synthesis method and application of 1, 3-bis (isocyanatoalkyl) -1,1,3, 3-tetramethyldisiloxane

Similar Documents

Publication Publication Date Title
US11555045B2 (en) Halogermanides and methods for the preparation thereof
JPH0317089A (en) Organic silicon compound
JPH054995A (en) Organosilicon compound and production thereof
JP2000247982A (en) Production of isocyanatodisiloxane
WO2002094839A1 (en) Novel silicon compounds and process for preparation thereof
US20060100454A1 (en) Acetylene alcohol and method for preparing the same
JPS5970691A (en) Hydrogen-containing silylcarbamate
JPH04182491A (en) Organosilicon compound and production thereof
JP2010013653A (en) Organic silicon resin having alcoholic hydroxy group and its manufacturing method
JP2002020392A (en) N-alkenylazasilacyclopentane and method for producing the same
JPH0436290A (en) Silane compound
JP2862977B2 (en) Method for producing siloxane compound having diaminoalkyl group
EP0488681A1 (en) N, N-dialkylaminoalkyl-N', N'-dialkylaminodimethylsilane
JPH01249748A (en) Polyoxyalkyleneamine and production thereof
JP3819087B2 (en) New silane coupling agent
JPH02108692A (en) Production of aryldimethyl (3-arylpropyl)silane
KR100537671B1 (en) Process for Preparing 3-[N-(2-aminoethyl)]aminoalkylalkoxysilanes
KR20050062774A (en) Method for preparing organofunctional silanes
JP2000212187A (en) Organosilicon compound and its production
JPH07188257A (en) Production of triisocynatosilane
WO2024106212A1 (en) Composition containing aminoalkyl alkoxy disiloxane compound and aminoalkyl alkoxy oligosiloxane compound, and method for producing same
JP2021017427A (en) Bishaloalkylsiloxane compound and method of producing the same, and method of producing siloxane compound with both terminals functionalized
JPH0474185A (en) Production of 3-glycidoxypropyltris(triorganosiloxy) silane
JPH03135986A (en) Preparation of o-sililate aliphatic hydroxyl compound
JPH0344078B2 (en)