JP2000247779A - Carbonaceous crucible for pulling up single crystal and its production - Google Patents

Carbonaceous crucible for pulling up single crystal and its production

Info

Publication number
JP2000247779A
JP2000247779A JP11055233A JP5523399A JP2000247779A JP 2000247779 A JP2000247779 A JP 2000247779A JP 11055233 A JP11055233 A JP 11055233A JP 5523399 A JP5523399 A JP 5523399A JP 2000247779 A JP2000247779 A JP 2000247779A
Authority
JP
Japan
Prior art keywords
sic
crucible
pores
cvi
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055233A
Other languages
Japanese (ja)
Other versions
JP4218853B2 (en
Inventor
Masatake Yamamoto
優威 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP05523399A priority Critical patent/JP4218853B2/en
Publication of JP2000247779A publication Critical patent/JP2000247779A/en
Application granted granted Critical
Publication of JP4218853B2 publication Critical patent/JP4218853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonaceous crucible which is used for pulling up a single crystal and has excellent durability and a long use life by lowering the reactivity with a quartz crucible to control the generation of SiO gas and preventing the formation of SiC in the pores of the carbonaceous crucible due to the SiO gas, and to provide a method for producing the same. SOLUTION: This carbonaceous crucible for pulling up the single crystal comprises a C/C(carbon fiber-reinforced carbon material) substrate-SiC composite product prepared by filling 35-50 vol.% of the total pore volume of the C/C substrate with the SiC deposited by CVI method. The method for producing the carbonaceous crucible comprises setting the C/C substrate to a CVI device, evacuating the CVI device up to 4 Torr, instantaneously charging a raw material gas containing a halogenated organic silicon compound in a concentration of 8-25 mol.% into the evacuated device at a temperature of 1,100-1,200 deg.C, retaining the charged state for a prescribed time, and repeating a series of the operations as one pulse prescribed times to deposit and fill the produced SiC in the pores of the C/C substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョコラルスキー
法(以下「CZ法」という)によるシリコンなどの単結
晶引上げ装置に使用される石英ルツボを支持するために
用いる炭素質ルツボに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous crucible used for supporting a quartz crucible used in an apparatus for pulling a single crystal of silicon or the like by the Czochralski method (hereinafter referred to as "CZ method").

【0002】[0002]

【従来の技術】ICやLSIなどの製造に用いるシリコ
ンなどの単結晶は、通常CZ法により製造されている。
CZ法は、高純度の石英ルツボの中にシリコン多結晶を
入れ、石英ルツボを所定速度で回転させながらヒータに
よりシリコン多結晶を加熱溶融し、シリコン多結晶の溶
融液の表面に種結晶(シリコン単結晶)を接触させて、
所定速度で回転させながらゆっくりと引上げることによ
りシリコン多結晶の溶融液を凝固させて、シリコン単結
晶に成長させるものである。
2. Description of the Related Art Single crystals such as silicon used for manufacturing ICs and LSIs are usually manufactured by the CZ method.
In the CZ method, a silicon polycrystal is put into a high-purity quartz crucible, and the silicon polycrystal is heated and melted by a heater while rotating the quartz crucible at a predetermined speed. Single crystal)
By slowly pulling up while rotating at a predetermined speed, the melt of the polycrystalline silicon is solidified and grown into a silicon single crystal.

【0003】しかしながら、石英ルツボは高温において
は軟化し、強度も充分でないので、通常、石英ルツボは
炭素ルツボ内に嵌合され炭素ルツボで石英ルツボを支持
することにより補強して用いられている。この石英ルツ
ボを嵌合する炭素ルツボとしては高温強度が高く、耐熱
性や熱伝導率が大きい黒鉛材が一般的に使用されてい
る。しかしながら、黒鉛材は表面から黒鉛の微粉が離
脱、飛散し易いので装置内を浮遊してシリコン溶融液中
に混入し、シリコン単結晶の品質を低下させる難点があ
る。
However, quartz crucibles are softened at high temperatures and have insufficient strength. Therefore, quartz crucibles are usually fitted in carbon crucibles and reinforced by supporting the quartz crucibles with carbon crucibles. As a carbon crucible to which this quartz crucible is fitted, a graphite material having high high-temperature strength, high heat resistance and high thermal conductivity is generally used. However, the graphite material has a problem that graphite fine powder is easily separated and scattered from the surface, so that the graphite material floats in the apparatus and is mixed into the silicon melt, thereby deteriorating the quality of the silicon single crystal.

【0004】また、材質上石英と黒鉛とは熱膨張係数が
大きく異なるために、加熱、冷却を繰り返し行っている
間に加熱時には石英ルツボが軟化して黒鉛ルツボに密着
し、一方冷却時には黒鉛ルツボの収縮量が石英ルツボの
収縮量に比べて大きくなることにより石英ルツボから内
圧を受けることとなり、黒鉛ルツボの変形、割損などが
生じる難点もある。
[0004] Further, since quartz and graphite differ greatly in thermal expansion coefficient due to the material, the quartz crucible softens during heating and adheres closely to the graphite crucible during repeated heating and cooling, while the graphite crucible during cooling. When the amount of shrinkage is larger than the amount of shrinkage of the quartz crucible, the crucible receives an internal pressure, and there is a disadvantage that the graphite crucible is deformed and broken.

【0005】更に、高温加熱時に石英ルツボ(Si
2 )と黒鉛ルツボ(C)とは接触する嵌合面において
反応してSiOガスを発生し、発生したSiOガスは黒
鉛ルツボ表層部の気孔内に浸透しながら黒鉛ルツボ
(C)と反応して黒鉛ルツボの表層部の気孔内から次第
に内部にまでSiCに転化する。したがって、このよう
な加熱処理が繰り返し行われると、黒鉛ルツボ内におけ
る黒鉛とSiCとの材質性状、例えば熱膨張係数の相違
によりミクロクラックが発生して、遂には黒鉛ルツボの
割損を招くこととなる。
Further, when heated to a high temperature, a quartz crucible (Si
O 2 ) and the graphite crucible (C) react at the fitting surface in contact with each other to generate SiO gas, and the generated SiO gas reacts with the graphite crucible (C) while penetrating into the pores of the surface portion of the graphite crucible. Thus, the graphite crucible is converted into SiC gradually from inside the pores of the surface layer portion to inside. Therefore, if such a heat treatment is repeatedly performed, microcracks occur due to differences in the material properties of graphite and SiC in the graphite crucible, for example, differences in thermal expansion coefficients, and eventually lead to breakage of the graphite crucible. Become.

【0006】この難点を解決するために、特開昭63−
166789号公報には、少なくとも黒鉛の気孔の内部
表面を有機珪素高分子化合物であるポリカルボシランを
原料とする炭化珪素膜で被覆してなるシリコン単結晶引
上装置用黒鉛製ルツボ、及びポリカルボシランを少なく
とも黒鉛の気孔の内部に含浸充填した後、酸性雰囲気中
の50〜400 ℃下で不融化させ、さらに不活性雰囲気中の
1000〜2000℃下で焼成し前記ポリカルボシランを熱分解
して形成するシリコン単結晶引上装置用黒鉛製ルツボの
製造方法が提案されている。
In order to solve this difficulty, Japanese Patent Application Laid-Open No.
JP-A-166789 discloses a graphite crucible for a silicon single crystal pulling apparatus in which at least the inner surface of pores of graphite is coated with a silicon carbide film made of polycarbosilane as an organic silicon polymer compound, and polycarbo. After impregnating and filling at least the inside of the pores of graphite with silane, it is made infusible at 50 to 400 ° C in an acidic atmosphere, and further in an inert atmosphere.
There has been proposed a method for producing a graphite crucible for a silicon single crystal pulling apparatus which is formed by firing at 1000 to 2000 ° C. and thermally decomposing the polycarbosilane.

【0007】この特開昭63−166789号公報の技
術によれば、石英ルツボを嵌合する黒鉛ルツボの内部表
面の気孔内をSiCに転化して、石英ルツボと黒鉛ルツ
ボの反応を抑止することによりSiOガスの発生を抑制
し、またSiOガスとの反応による黒鉛ルツボ内部表面
のSiC化を防止するものである。しかしながら、有機
珪素高分子化合物であるポリカルボシランの含浸充填
は、アセトンやヘキサンなどの有機溶媒にポリカルボシ
ランを溶解した溶液中に黒鉛素材を浸漬するなどの方法
により行われるので、黒鉛素材の表面部に存在する、例
えば数十ミクロン以下の微細な気孔中に充填することは
極めて困難である。
According to the technique disclosed in Japanese Patent Application Laid-Open No. 63-166789, pores on the inner surface of a graphite crucible to which a quartz crucible is fitted are converted into SiC to suppress the reaction between the quartz crucible and the graphite crucible. Accordingly, generation of SiO gas is suppressed, and formation of SiC on the inner surface of the graphite crucible due to reaction with the SiO gas is prevented. However, the impregnated filling of polycarbosilane, which is an organosilicon polymer compound, is performed by a method such as immersing the graphite material in a solution in which polycarbosilane is dissolved in an organic solvent such as acetone or hexane. It is extremely difficult to fill fine pores existing on the surface, for example, several tens of microns or less.

【0008】そこで、黒鉛に比べて強度特性に優れ、ま
た石英との熱膨張係数の差異が少ない炭素繊維強化炭素
材(以下「C/C材」ともいう)を用いて炭素ルツボを
構成する提案も行われており、例えば、少なくとも側壁
部分が一体のC/C材により構成されてなる単結晶引き
上げ用ルツボ(実開昭63−7174号公報)、ルツボ内側を
炭素繊維クロス積層体または炭素繊維フェルト積層体を
用いたC/C材とし、ルツボ外側をフィラメントワイン
ディング法により成形したC/C材で構成した二層より
なるシリコン単結晶引き上げ用炭素繊維強化炭素ルツボ
(特開平9−263482号公報)、などが提案されている。
In view of the above, a proposal has been made to construct a carbon crucible using a carbon fiber reinforced carbon material (hereinafter also referred to as "C / C material") which is superior in strength characteristics to graphite and has a small difference in thermal expansion coefficient from quartz. For example, a single crystal pulling crucible having at least a side wall portion made of an integral C / C material (Japanese Utility Model Application Laid-Open No. 63-7174), a carbon fiber cloth laminate or a carbon fiber A carbon fiber reinforced carbon crucible for pulling a silicon single crystal composed of two layers composed of a C / C material using a felt laminate and a C / C material formed on the outside of the crucible by a filament winding method (Japanese Patent Laid-Open No. 9-263482) ), Etc. have been proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これら
のC/C材からなる炭素ルツボであっても、上記した石
英ルツボとの反応によるSiOガスの発生や発生したS
iOガスが炭素ルツボ表層部の気孔内部に拡散し気孔内
面と反応してSiCへ転化させる現象を防止することは
できないという問題点がある。
However, even with these carbon crucibles made of C / C materials, the generation of SiO gas and the generation of S gas due to the reaction with the quartz crucible described above.
There is a problem that it is not possible to prevent the iO gas from diffusing into the pores in the surface layer of the carbon crucible and reacting with the pore inner surface to be converted into SiC.

【0010】そこで、本発明者は、黒鉛材に比べて強度
特性に優れたC/C材を対象として耐久性に優れた炭素
質ルツボの開発について鋭意研究を進めた結果、化学的
気相充填法によりSiCを析出させることによりC/C
材の表層部に存在する微細な気孔内部にまでSiCを充
填させることが可能であり、更にその炭素質ルツボを用
いて、多数回の単結晶引き上げ操作を繰り返し安定に行
うことのできることを見出した。
Accordingly, the present inventors have conducted intensive research on the development of a carbonaceous crucible having excellent durability for a C / C material having excellent strength characteristics as compared with graphite material. C / C by depositing SiC by the method
It has been found that it is possible to fill the inside of the fine pores existing in the surface layer of the material with SiC, and that the carbonaceous crucible can be used to stably perform a number of single crystal pulling operations repeatedly. .

【0011】本発明は、この知見に基づいて完成したも
のであり、その目的は石英ルツボとの反応性が抑制され
てSiOガスの発生を抑止し、また発生したSiOガス
が炭素質ルツボ表層部の気孔内部に拡散し気孔内面と反
応してSiCに転化する現象が抑止されることにより、
多数回の引き上げ操作を安定に繰り返し行うことが可能
な単結晶引き上げ用炭素質ルツボとその製造方法を提供
することにある。
The present invention has been completed based on this finding, and its purpose is to suppress the reactivity with the quartz crucible to suppress the generation of SiO gas, and to generate the SiO gas in the surface layer of the carbonaceous crucible. By suppressing the phenomenon of diffusing into the pores and reacting with the pore inner surface and converting to SiC,
An object of the present invention is to provide a single crystal pulling carbonaceous crucible capable of stably repeating a large number of pulling operations, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の単結晶引き上げ用炭素質ルツボは、炭素繊
維強化炭素材を基材とし、該基材の全気孔容積の35〜
50 vol%がCVI法により析出したSiCで充填され
た炭素繊維強化炭素材とSiCの複合体からなることを
構成上の特徴とする。
According to the present invention, there is provided a single crystal pulling carbonaceous crucible according to the present invention, comprising a carbon fiber reinforced carbon material as a base material, and having a total pore volume of from 35 to 35%.
A structural feature is that 50 vol% is composed of a composite of carbon fiber reinforced carbon material and SiC filled with SiC deposited by the CVI method.

【0013】また、その製造方法は、炭素繊維にマトリ
ックス樹脂を含浸、硬化したルツボ成形体を非酸化性雰
囲気下に焼成炭化して得られた炭素繊維強化炭素材を基
材とし、該基材をCVI装置にセットして、系内を4To
rr以下の圧力に真空排気する工程、1100〜1200
℃の温度に加熱しながらハロゲン化有機珪素化合物と水
素との混合ガスを原料ガスとして原料ガス中のハロゲン
化有機珪素化合物の濃度を8〜25 mol%に設定して瞬
間導入する工程、原料ガスをCVI反応により熱分解し
てSiCを析出させるために所定時間保持する工程、と
からなる一連の操作を1パルスとして繰り返し行い、基
材の気孔内にSiCを析出充填することを構成上の特徴
とする。
[0013] Further, the method for producing the same comprises using a carbon fiber-reinforced carbon material obtained by impregnating a carbon fiber with a matrix resin and firing and carbonizing a cured crucible molded body in a non-oxidizing atmosphere as a base material. Is set on the CVI device, and 4To
evacuating to a pressure of rr or less, 1100 to 1200
A step of setting the concentration of the halogenated organosilicon compound in the raw material gas to 8 to 25 mol% and instantaneously introducing the mixed gas of the halogenated organic silicon compound and hydrogen as the raw material gas while heating the raw material gas A step of holding for a predetermined time in order to thermally decompose the SiC by the CVI reaction to precipitate SiC, as a single pulse, thereby repeatedly depositing and filling the pores of the base material with the SiC. And

【0014】[0014]

【発明の実施の形態】本発明の単結晶引き上げ用炭素質
ルツボは、ポリアクリロニトリル系、レーヨン系、ピッ
チ系などの各種原料から製造された炭素繊維を強化材と
して、これらの炭素繊維がフェノール系やフラン系など
の熱硬化性樹脂を焼成炭化した炭化物により結着され、
一体化されたC/C材を基材として、このC/C基材の
全気孔容積の35〜50 vol%がCVI法により析出し
たSiCにより充填されたC/C材とSiCの複合体の
組織構造から構成された点に特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon crucible for pulling a single crystal of the present invention uses a carbon fiber produced from various raw materials such as polyacrylonitrile, rayon, pitch and the like as a reinforcing material, and these carbon fibers are phenol-based. It is bound by a char obtained by firing and carbonizing a thermosetting resin such as or furan,
With the integrated C / C material as the base material, 35-50 vol% of the total pore volume of the C / C base material is a composite of the C / C material and SiC filled with SiC precipitated by the CVI method. The feature is that it is composed of the organizational structure.

【0015】C/C材には種々の大きさの気孔が存在し
ており、C/C材を用いてCZ法による単結晶引き上げ
用の炭素ルツボを作製した場合には、高温加熱時に嵌合
する石英ルツボとの接触面において石英ルツボと反応し
てSiOガスを発生し、生成したSiOガスがこの気孔
内を速やかに浸透して、C/C材の気孔内面部が容易に
SiCに転化される。その結果、炭素ルツボの気孔内が
次第にSiC化していき、その結果ミクロクラックが発
生し易く、強度特性に優れたC/C材であっても割損す
ることとなる。
The C / C material has pores of various sizes. When a carbon crucible for pulling a single crystal by the CZ method is manufactured by using the C / C material, the carbon crucible is fitted when heated at a high temperature. Reacts with the quartz crucible at the contact surface with the quartz crucible to generate SiO gas, and the generated SiO gas quickly penetrates into the pores, and the pore inner surface of the C / C material is easily converted to SiC. You. As a result, the pores of the carbon crucible gradually become SiC, and as a result, microcracks are likely to occur, and even a C / C material having excellent strength characteristics will be broken.

【0016】そこで、本発明の炭素質ルツボは、C/C
基材に存在する全気孔容積のうち、その35〜50 vol
%をCVI法 (Chemical Vapor Infiltration ; 化学的
気相浸透法)により析出沈着させたSiCにより充填し
たC/C材を用いて、すなわち炭素質ルツボをC/C材
とSiCとの複合体から構成することにより、SiOガ
スの発生及び気孔内へのSiOガスの浸透によるSiC
化を効果的に阻止するものである。
Therefore, the carbonaceous crucible of the present invention has a C / C
35-50 vol of the total pore volume of the substrate
% Using a C / C material filled with SiC deposited and deposited by the CVI method (Chemical Vapor Infiltration method), that is, the carbonaceous crucible is composed of a composite of the C / C material and SiC. By doing so, SiC due to generation of SiO gas and penetration of SiO gas into pores
Is effectively prevented.

【0017】この場合、SiCの充填量として全気孔容
積の35〜50 vol%の範囲に設定するのは、充填量が
35 vol%未満では石英ルツボとの反応によるSiOガ
スの発生ならびにSiOガスの気孔内への浸透によるS
iC化の阻止効果が充分でないためである。しかしなが
ら、50 vol%を超えてSiCを充填しても、CVI法
によるSiCを析出沈着させる作業の煩雑さに比べてS
iOガスの発生及び気孔内のSiC化を阻止する効果が
小さくなるためである。
In this case, the filling amount of SiC is set in the range of 35 to 50 vol% of the total pore volume because when the filling amount is less than 35 vol%, generation of SiO gas due to reaction with the quartz crucible and generation of SiO gas are performed. S by penetration into pores
This is because the effect of inhibiting iC formation is not sufficient. However, even when the SiC is filled in an amount exceeding 50 vol%, the amount of SC is reduced as compared with the complexity of the operation of depositing and depositing SiC by the CVI method.
This is because the effect of inhibiting generation of iO gas and formation of SiC in the pores is reduced.

【0018】本発明の単結晶引き上げ用炭素質ルツボは
下記の方法により製造される。先ず、常法により炭素繊
維織布をマトリックス樹脂液に浸漬またはマトリックス
樹脂液を塗布するなどの方法で炭素繊維にマトリックス
樹脂を含浸し、半硬化したプリプレグを所望のルツボ形
状に成形し、硬化した成形体を非酸化性雰囲気に保持さ
れた加熱炉中で焼成炭化することによりC/C材からな
るルツボ成形体を作製する。なお、マトリックス樹脂と
してはフェノール樹脂、フラン樹脂などの高炭化性の熱
硬化性樹脂が用いられる。
The carbonaceous crucible for pulling a single crystal of the present invention is produced by the following method. First, a carbon fiber woven fabric was impregnated with a matrix resin in a carbon fiber by a method such as immersing a carbon fiber woven fabric in a matrix resin solution or applying a matrix resin solution, and a semi-cured prepreg was molded into a desired crucible shape and cured. The formed body is calcined and carbonized in a heating furnace maintained in a non-oxidizing atmosphere to produce a crucible formed of a C / C material. Note that a highly carbonizable thermosetting resin such as a phenol resin and a furan resin is used as the matrix resin.

【0019】あるいは、連続炭素繊維にマトリックス樹
脂液を含浸し、フィラメントワインディング法によりル
ツボ形状に成形した成形体を硬化したのち、非酸化性雰
囲気に保持された加熱炉中で焼成炭化することによりC
/C材からなるルツボ成形体を作製することもできる。
Alternatively, a continuous carbon fiber is impregnated with a matrix resin solution, a molded body formed into a crucible shape by a filament winding method is cured, and then calcined and carbonized in a heating furnace maintained in a non-oxidizing atmosphere.
/ C material can also be produced.

【0020】このようにして作製したC/C材からなる
ルツボ成形体をCVI装置にセットして、特定のCVI
反応条件で処理することにより本発明の全気孔容積の3
5〜50 vol%が気相析出して気孔内に沈着したSiC
により充填されたC/C材とSiCとの複合組織からな
る炭素質ルツボが製造される。
The crucible formed from the C / C material thus prepared is set in a CVI device and a specific CVI
By treating under reaction conditions, the total pore volume of the present invention can be reduced to 3%.
SiC deposited in pores by vapor deposition of 5 to 50 vol%
Produces a carbonaceous crucible composed of a composite structure of the C / C material and SiC filled.

【0021】CVI法 (Chemical Vapor Infiltration)
は、CVD法(Chemical Vapor Dep-osition)と異なり、
微細な気孔または空隙内のミクロ表面へ気相蒸着するこ
とができる。CVI法はその手法によって、 (a)均熱・
定圧型CVI、 (b)強制流動CVI、 (c)パルスCV
I、などに大別される。このうち、パルスCVI法は、 反応系を真空排気して細孔中のガスの除去、反応系
への原料ガスの瞬間導入、反応析出のための所定時間
保持、を1パルスとして数千から数十万回繰り返すこと
により比較的短時間で気孔深部まで析出物を充填するこ
とを可能とするものであり、本発明の目的にはパルスC
VI法が好ましく適用される。但し、パルスCVI法に
限定されるものではない。
CVI method (Chemical Vapor Infiltration)
Is different from CVD (Chemical Vapor Dep-osition),
Vapor phase deposition can be performed on micro surfaces in fine pores or voids. The CVI method uses the following methods:
Constant pressure CVI, (b) forced flow CVI, (c) pulse CV
I, etc. Among them, the pulse CVI method is a method in which the reaction system is evacuated to remove gas in the pores, instantaneously introduces a raw material gas into the reaction system, and holds for a predetermined time for reaction deposition, and a pulse is used for several thousand to several times. By repeating 100,000 times, it is possible to fill the precipitate deep into the pores in a relatively short time.
The VI method is preferably applied. However, it is not limited to the pulse CVI method.

【0022】C/C材からなるルツボ成形体は、CVI
反応装置の基材受台に載置して加熱し、供給した原料ガ
スを気相熱分解してSiCを析出沈着させることによ
り、ルツボ成形体の気孔内を充填する。原料ガスには1
分子中にSi原子とC原子とを含むメチルトリクロロシ
ラン(CH3SiCl3)、メチルジクロロシラン(CH3SiHCl2) な
どのハロゲン化有機珪素化合物と水素との混合ガスが用
いられる。
The crucible formed of C / C material is CVI
The raw material gas is placed on a substrate support of the reactor and heated, and the supplied raw material gas is subjected to gas phase pyrolysis to deposit and deposit SiC, thereby filling the pores of the crucible molded body. 1 for source gas
A mixed gas of hydrogen and a halogenated organosilicon compound such as methyltrichlorosilane (CH 3 SiCl 3 ) or methyldichlorosilane (CH 3 SiHCl 2 ) containing Si and C atoms in a molecule is used.

【0023】CVI法により原料ガスを気孔内に浸透さ
せて気相熱分解し、気孔内にSiCを析出充填させるた
めにはCVI反応条件を次のように設定制御する。 反応系内を真空排気して4Torr以下の減圧下に維持し
て、C/C基材の気孔内に存在するガスを排出除去す
る。減圧度が4Torrを超えると脱ガスの効果が不充分と
なり、気孔内深部に存在するガスを充分に排出除去でき
ないために結果的に気孔深部にまでSiCを析出充填す
ることが困難となる(真空排気工程)。
The CVI reaction conditions are set and controlled as follows in order to infiltrate the raw material gas into the pores by the CVI method and pyrolyze in the gas phase to deposit and fill SiC into the pores. The inside of the reaction system is evacuated and maintained under a reduced pressure of 4 Torr or less to discharge and remove the gas present in the pores of the C / C base material. If the degree of pressure reduction exceeds 4 Torr, the effect of degassing becomes insufficient, and the gas present in the deep part of the pore cannot be sufficiently discharged and removed. As a result, it becomes difficult to deposit and fill SiC to the deep part of the pore (vacuum) Exhaust process).

【0024】反応系内を1100〜1200℃の温度
に加熱しながら、ハロゲン化有機珪素化合物と水素との
混合ガスを原料ガスとして瞬間的に導入する。この場
合、加熱温度が1100℃未満であると析出したSiC
中に非晶質Siの遊離頻度が高くなり、また1200℃
を超えると気孔内部、特に気孔深部へ充填することが難
しくなる。更に、原料ガス中のハロゲン化有機珪素化合
物の濃度を8〜25 mol%の範囲に設定する。ハロゲン
化有機珪素化合物の濃度が8 mol%未満であるとC/C
基材の気孔内部への原料ガスの拡散に比べて原料ガスへ
の伝熱が速くなるためC/C基材表面への析出が優先す
る結果、気孔内部へのSiC充填が困難となる。しかし
ながら、濃度が25 mol%を超えると、気孔内部への原
料ガス拡散に比較してC/C基材表面での反応頻度が高
くなって基材面へのSiC析出が優先する結果、C/C
基材の気孔内部へのSiC充填が困難となる(原料ガス
瞬間導入工程)。この場合、気孔内部への最大充填量は
35 vol%未満である。
While heating the reaction system to a temperature of 1100 to 1200 ° C., a mixed gas of a halogenated organosilicon compound and hydrogen is instantaneously introduced as a raw material gas. In this case, the SiC deposited when the heating temperature is less than 1100 ° C.
The frequency of release of amorphous Si increases during
If the ratio exceeds, it is difficult to fill the inside of the pores, especially the deep part of the pores. Further, the concentration of the halogenated organosilicon compound in the source gas is set in the range of 8 to 25 mol%. If the concentration of the halogenated organosilicon compound is less than 8 mol%, C / C
Since the heat transfer to the source gas is faster than the diffusion of the source gas into the pores of the base material, the deposition on the surface of the C / C base material is prioritized. As a result, it becomes difficult to fill the inside of the pores with SiC. However, when the concentration exceeds 25 mol%, the reaction frequency on the surface of the C / C substrate increases as compared with the diffusion of the raw material gas into the pores, and SiC deposition on the substrate surface takes precedence. C
It becomes difficult to fill SiC into the pores of the substrate (instantaneous gas source introduction step). In this case, the maximum filling amount in the pores is less than 35 vol%.

【0025】上記で設定したCVI反応条件に所定
時間保持することにより、気孔内部に所定量のSiCを
析出充填する(保持工程)。
By maintaining the CVI reaction conditions set as described above for a predetermined time, a predetermined amount of SiC is deposited and filled in the pores (holding step).

【0026】この真空排気工程、原料ガス瞬間導入
工程、保持工程、という一連の工程を1パルスとし
て、数千から数十万回繰り返すことによりC/C基材の
気孔深部にまでSiCを析出沈着させることができ、全
気孔容積の35〜50 vol%の気孔内を充填することが
可能となる。このようにして、炭素質ルツボを構成する
C/C基材の気孔内部及び表層面は高強度で耐酸化性に
優れたSiCで充填、被覆され、シリコン単結晶引き上
げ時の高温加熱時にも、石英ルツボとの反応性が低下
し、SiOガスの発生及びC/C基材の気孔内部への浸
透は効果的に抑止される。
The series of steps of the evacuation step, the source gas instantaneous introduction step, and the holding step are repeated as one pulse several thousand to several hundred thousand times, thereby depositing and depositing SiC to the deep part of the pores of the C / C base material. It is possible to fill the pores of 35 to 50 vol% of the total pore volume. In this way, the inside of the pores and the surface layer of the C / C base material constituting the carbonaceous crucible are filled and covered with SiC having high strength and excellent oxidation resistance, and even at the time of high temperature heating at the time of pulling a silicon single crystal, The reactivity with the quartz crucible is reduced, and the generation of SiO gas and the permeation of the C / C substrate into the pores are effectively suppressed.

【0027】以下、本発明の実施例を比較例と対比して
具体的に説明する。
Hereinafter, examples of the present invention will be specifically described in comparison with comparative examples.

【0028】実施例1〜3、比較例1〜5 ポリアクリロニトリル系炭素繊維の二次元織クロスにフ
ェノール樹脂初期縮合物を塗布して含浸し、風乾して作
成したプリプレグシートを積層してモールドに入れ、2
50℃の温度に加熱して樹脂成分を硬化した。次いで、
窒素ガス雰囲気に保持した加熱炉中で10℃/hrの昇温
速度により2000℃に加熱し、5時間保持して焼成炭
化した。このようにして、25×25×4mmのC/C基
材(Vf:約60%)からなるテストピースを作製した。
Examples 1 to 3 and Comparative Examples 1 to 5 A prepreg sheet prepared by applying a phenol resin precondensate to a two-dimensional woven cloth of polyacrylonitrile-based carbon fiber, impregnating the cloth, and air-drying is laminated to form a mold. Put 2
The resin component was cured by heating to a temperature of 50 ° C. Then
In a heating furnace maintained in a nitrogen gas atmosphere, it was heated to 2000 ° C. at a rate of temperature increase of 10 ° C./hr, and was held for 5 hours for calcination. Thus, a test piece made of a 25 × 25 × 4 mm C / C base material (Vf: about 60%) was produced.

【0029】このテストピースを外熱式横型パルスCV
I装置の反応炉内にセットし、系内を真空排気して炉内
を3〜4Torrに減圧した。次いで、加熱して所定温度に
達したのち、トリクロロメチルシラン(CH3SiCl3)と水素
との混合ガスを原料ガスとして炉内に導入し、所定の時
間反応させて、CVI反応によりテストピースの気孔内
にSiCを析出、充填した。この真空排気工程、原料ガ
ス瞬間導入工程、保持工程、の一連の操作を1パルスと
して繰り返しCVI反応を行い、SiCの析出、充填に
よる重量増加率が25wt%前後になるまで繰り返し行っ
た。この際、反応温度、原料ガス中のトリクロロメチル
シラン濃度、パルス回数、などのCVI反応条件を変更
した。なお、その他のCVI反応条件は下記のとおりで
ある。 真空排気工程:排気時間;1.9秒 原料ガス導入工程;導入圧;200Torr、導入時間;0.7秒 保持工程;保持時間;1.0秒 1パルス; 3.6秒
The test piece was subjected to an external heat type horizontal pulse CV.
The reactor was set in a reaction furnace of the apparatus I, and the inside of the system was evacuated to a vacuum of 3 to 4 Torr. Next, after reaching a predetermined temperature by heating, a mixed gas of trichloromethylsilane (CH 3 SiCl 3 ) and hydrogen is introduced into the furnace as a raw material gas, reacted for a predetermined time, and subjected to a CVI reaction to form a test piece. SiC was deposited and filled in the pores. A series of operations of the vacuum evacuation step, the source gas instantaneous introduction step, and the holding step were repeated as one pulse, and the CVI reaction was repeatedly performed until the weight increase rate due to the deposition and filling of SiC was about 25 wt%. At this time, CVI reaction conditions such as the reaction temperature, the concentration of trichloromethylsilane in the source gas, and the number of pulses were changed. In addition, other CVI reaction conditions are as follows. Vacuum evacuation process: evacuation time; 1.9 seconds Source gas introduction process; introduction pressure; 200 Torr, introduction time; 0.7 seconds Holding process; holding time; 1.0 seconds 1 pulse; 3.6 seconds

【0030】このようにしてテストピースにSiCを析
出、充填したCVI反応条件を対比して表1に示した。
Table 1 shows the CVI reaction conditions in which SiC was deposited and filled in the test piece as described above.

【0031】[0031]

【表1】 (注)*1 トリクロロメチルシラン(CH3SiCl3)と水素と
を混合した原料ガス中のトリクロロメチルシランの濃度
[Table 1] (Note) * 1 Concentration of trichloromethylsilane in raw material gas obtained by mixing trichloromethylsilane (CH 3 SiCl 3 ) and hydrogen

【0032】比較例6 キシレンにポリカルボシランを20重量%の濃度に溶解
した溶液中にテストピースを浸漬してポリカルボシラン
を含浸し、乾燥してキシレンを除去したのち、大気中2
50℃の温度に5時間加熱して不融化処理した。この処
理を3回繰り返した後、窒素ガス雰囲気中で1500℃
の温度に加熱してポリカルボシランを熱分解し、テスト
ピースにSiC被膜を形成した。
Comparative Example 6 A test piece was immersed in a solution in which polycarbosilane was dissolved in xylene at a concentration of 20% by weight to impregnate the polycarbosilane, and dried to remove xylene.
The mixture was heated at a temperature of 50 ° C. for 5 hours for infusibility treatment. After repeating this process three times, the temperature is increased to 1500 ° C. in a nitrogen gas atmosphere.
, And polycarbosilane was thermally decomposed to form a SiC coating on the test piece.

【0033】次に、これらのSiCを析出、充填したテ
ストピースについて、下記の方法により重量増加率、表
面膜厚、充填率、表面膜質などを測定し、また耐酸化性
試験を行った。得られた結果を表2に示した。
Next, with respect to the test pieces on which SiC was deposited and filled, the weight increase rate, surface film thickness, filling rate, surface film quality, etc. were measured by the following methods, and an oxidation resistance test was performed. Table 2 shows the obtained results.

【0034】(1) 重量増加率;反応前後のテストピース
の重量変化量を電子天秤で測定し、重量変化量を反応前
のテストピースの重量で除して算出した。 (2) 表面膜厚;反応後のテストピースを切断し、切断面
を走査型電子顕微鏡で観察して膜厚を計測して、平均し
た。 (3) 充填率;反応後の体積増加分(Δw/ρ)cm3 から
テストピースの表面析出体積(hS0 )cm3 を減じて得
られる内部析出体積が、テストピースの細孔容積(V
p)cm3/g に占める割合を充填率として、次式より算出
した。 充填率(vol%)=〔(Δw/ρ)−(hS0 )〕/(w0
Vp)×100 但し、Δw;重量増加量、h;走査型電子顕微鏡写真か
ら計測したテストピース表面の析出物膜厚、w0 ;テス
トピースの重量、S0 ;テストピースの表面積ρ;Si
Cの密度(3.10g/cm3) 、Vp;0.1452(cm3/g) で
ある。 (4) 表面膜質;X線回折によってテストピース表面の結
晶強度を評価した。 (5) 耐酸化性試験;大気雰囲気の電気炉に入れて加熱
し、500℃の温度に30分間保持したのち炉から取り
出し常温まで自然冷却した。次に600℃の温度に加熱
して30分間保持したのち炉から取り出し常温まで自然
冷却した。このように100℃づつ昇温して加熱する操
作を1000℃まで行い、その時の重量減少率を下記式
から算出して、耐酸化性を評価した。 重量減少率(%)=(W0 −W1000)/(W0 )×10
0 但し、W0 は耐酸化試験前のテストピースの重量、W
1000は1000℃まで加熱試験を行った後のテストピー
スの重量
(1) Weight increase rate: The change in weight of the test piece before and after the reaction was measured by an electronic balance, and calculated by dividing the change in weight by the weight of the test piece before the reaction. (2) Surface film thickness: The test piece after the reaction was cut, the cut surface was observed with a scanning electron microscope, and the film thickness was measured and averaged. (3) Filling ratio: The internal precipitation volume obtained by subtracting the surface precipitation volume (hS 0 ) cm 3 of the test piece from the volume increase (Δw / ρ) cm 3 after the reaction is the pore volume (V) of the test piece.
p) The ratio occupied in cm 3 / g was calculated as the filling rate according to the following equation. Filling rate (vol%) = [(Δw / ρ) − (hS 0 )] / (w 0
Vp) × 100 where Δw: weight increase, h: thickness of deposit on the test piece surface measured from a scanning electron micrograph, w 0 : weight of test piece, S 0 : surface area ρ of test piece; Si
The density of C (3.10 g / cm 3 ), Vp: 0.1452 (cm 3 / g). (4) Surface film quality: The crystal strength of the test piece surface was evaluated by X-ray diffraction. (5) Oxidation resistance test; heated in an electric furnace in an air atmosphere, kept at a temperature of 500 ° C. for 30 minutes, then taken out of the furnace and cooled naturally to room temperature. Next, it was heated to a temperature of 600 ° C. and held for 30 minutes, then taken out of the furnace and naturally cooled to room temperature. The operation of increasing the temperature by 100 ° C. and heating was performed up to 1000 ° C., and the weight loss rate at that time was calculated from the following equation to evaluate the oxidation resistance. Weight reduction rate (%) = (W 0 −W 1000 ) / (W 0 ) × 10
0 where W 0 is the weight of the test piece before the oxidation resistance test, W
1000 is the weight of the test piece after performing the heating test up to 1000 ° C

【0035】[0035]

【表2】 [Table 2]

【0036】表1、2の結果から、実施例ではCVI法
で析出したSiCにより気孔容積の35〜50vol %が
充填されており、酸化処理による重量減少率が低位にあ
ることが認められる。一方、比較例1、2でも実施例1
〜3と同等の耐酸化性を示しているが、表面に形成され
た膜は非晶質Siであるため酸化処理によりSiO2
転化して重量の増大を招き、重量減少率が見掛け上低位
にあるものと判断される。更に、CVI温度が低いので
パルス回数を大幅に増やす必要があり、非効率となる。
比較例3では原料濃度が低いためにパルス回数を多くし
てもSiCの充填率が低く、酸化試験による減少率が大
きいことが判る。比較例4では原料濃度が高いために基
材面での膜厚が厚くクラックが発生し、そのうえSiC
の充填率も低いために酸化試験による減少率が大きいこ
とが判る。また、比較例5ではCVI温度が高いために
表面での膜厚を厚くできるがクラックが発生しそのうえ
SiCの充填率も低いために酸化試験による減少率が大
きいことが判る。
From the results shown in Tables 1 and 2, it can be seen that in the examples, 35 to 50 vol% of the pore volume was filled with SiC precipitated by the CVI method, and the weight reduction rate by the oxidation treatment was low. On the other hand, in Comparative Examples 1 and 2,
However, since the film formed on the surface is amorphous Si, the film is converted to SiO 2 by oxidation treatment to increase the weight, and the weight reduction rate is apparently low. It is determined that there is. Furthermore, since the CVI temperature is low, it is necessary to greatly increase the number of pulses, which is inefficient.
In Comparative Example 3, the filling rate of SiC was low even when the number of pulses was increased because the raw material concentration was low, and the reduction rate by the oxidation test was large. In Comparative Example 4, since the raw material concentration was high, the film thickness on the substrate surface was large and cracks occurred.
It can be seen that the rate of decrease in the oxidation test is large because the filling rate of the sample is low. In Comparative Example 5, the film thickness on the surface can be increased because the CVI temperature is high, but cracks occur and the filling rate of SiC is low, so that the reduction rate by the oxidation test is large.

【0037】[0037]

【発明の効果】以上のとおり、本発明の単結晶引き上げ
用炭素質ルツボは、C/C基材の全気孔容積の35〜5
0 vol%をCVI法により析出したSiCで充填したC
/C材とSiCの複合体から構成されているので石英ル
ツボとの反応性が低く、SiOの発生が効果的に抑止さ
れるのでSiOガスによる炭素質ルツボのSiC化が抑
制され、使用寿命が長く、耐久性に優れた炭素質ルツボ
が提供される。また、その製造方法によれば、CVI反
応条件を特定することにより耐久性に優れた炭素質ルツ
ボを容易に製造することが可能となる。
As described above, the carbonaceous crucible for pulling a single crystal of the present invention has a total pore volume of 35 to 5% of the C / C base material.
0 vol% C filled with SiC deposited by CVI method
Since it is composed of a composite of the C / C material and SiC, the reactivity with the quartz crucible is low, and the generation of SiO is effectively suppressed. A long, durable carbonaceous crucible is provided. Further, according to the manufacturing method, it is possible to easily manufacture a carbonaceous crucible having excellent durability by specifying CVI reaction conditions.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素材を基材とし、該基材
の全気孔容積の35〜50 vol%がCVI法により析出
したSiCで充填された炭素繊維強化炭素材とSiCの
複合体からなることを特徴とする単結晶引き上げ用炭素
質ルツボ。
1. A composite of a carbon fiber reinforced carbon material and SiC filled with SiC deposited by CVI method, wherein 35-50 vol% of the total pore volume of the carbon fiber reinforced carbon material is used as a base material. A carbonaceous crucible for pulling a single crystal, comprising:
【請求項2】 炭素繊維にマトリックス樹脂を含浸、硬
化したルツボ成形体を非酸化性雰囲気下に焼成炭化して
得られた炭素繊維強化炭素材を基材とし、該基材をCV
I装置にセットして、系内を4Torr以下の圧力に真空排
気する工程、1100〜1200℃の温度に加熱しなが
らハロゲン化有機珪素化合物と水素との混合ガスを原料
ガスとして原料ガス中のハロゲン化有機珪素化合物の濃
度を8〜25 mol%に設定して瞬間導入する工程、原料
ガスをCVI反応により熱分解してSiCを析出させる
ために所定時間保持する工程、とからなる一連の操作を
1パルスとして繰り返し行い、基材の気孔内にSiCを
析出充填することを特徴とする請求項1記載の単結晶引
き上げ用炭素質ルツボの製造方法。
2. A carbon fiber reinforced carbon material obtained by impregnating a carbon fiber with a matrix resin and curing and calcining a cured crucible molded body in a non-oxidizing atmosphere as a base material.
Setting the apparatus in an I apparatus and evacuating the system to a pressure of 4 Torr or less, while heating the mixture to a temperature of 1100 to 1200 ° C. and using a mixed gas of a halogenated organosilicon compound and hydrogen as a source gas, A step of setting the concentration of the organosilicon compound to 8 to 25 mol% and instantaneously introducing the same, and a step of holding the material gas for a predetermined time to thermally decompose the raw material gas by CVI reaction to precipitate SiC. 2. The method for producing a carbonaceous crucible for pulling a single crystal according to claim 1, wherein the step is repeated as one pulse to deposit and fill SiC into pores of the substrate.
JP05523399A 1999-03-03 1999-03-03 Carbonaceous crucible for pulling single crystal and method for producing the same Expired - Fee Related JP4218853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05523399A JP4218853B2 (en) 1999-03-03 1999-03-03 Carbonaceous crucible for pulling single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05523399A JP4218853B2 (en) 1999-03-03 1999-03-03 Carbonaceous crucible for pulling single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000247779A true JP2000247779A (en) 2000-09-12
JP4218853B2 JP4218853B2 (en) 2009-02-04

Family

ID=12992897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05523399A Expired - Fee Related JP4218853B2 (en) 1999-03-03 1999-03-03 Carbonaceous crucible for pulling single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4218853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942893B2 (en) * 2000-12-19 2005-09-13 Snecma Moteurs Densifying hollow porous substrates by chemical vapor infiltration
US8951345B2 (en) 2008-08-27 2015-02-10 Amg Idealcast Solar Corporation High temperature support apparatus and method of use for casting materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942893B2 (en) * 2000-12-19 2005-09-13 Snecma Moteurs Densifying hollow porous substrates by chemical vapor infiltration
US8951345B2 (en) 2008-08-27 2015-02-10 Amg Idealcast Solar Corporation High temperature support apparatus and method of use for casting materials

Also Published As

Publication number Publication date
JP4218853B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US6203904B1 (en) Silicon carbide fibers with boron nitride coatings
EP0549224B1 (en) Ceramic matrix composites and method for making same
JP5231316B2 (en) Carbon fiber reinforced carbon composite material, member for single crystal pulling apparatus, and method for producing carbon fiber reinforced carbon composite material
JP4077601B2 (en) Method for producing C / C crucible for pulling single crystal
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JP2000095567A (en) Carbon fiber reinforced carbon composite material and member for single crystal pulling up device
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JPH11292645A (en) Oxidation resistant c/c composite material and its production
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH11199354A (en) Oxidation-resistant c/c composite material and its production
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JPH0442878A (en) Method for antioxidizing treatment of carbon-fiber reinforced carbon material
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JP2002173392A (en) C/c member for single crystal pulling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees