JP2000246020A - Filter unit - Google Patents

Filter unit

Info

Publication number
JP2000246020A
JP2000246020A JP11054105A JP5410599A JP2000246020A JP 2000246020 A JP2000246020 A JP 2000246020A JP 11054105 A JP11054105 A JP 11054105A JP 5410599 A JP5410599 A JP 5410599A JP 2000246020 A JP2000246020 A JP 2000246020A
Authority
JP
Japan
Prior art keywords
filter medium
filter
fluid
treated
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11054105A
Other languages
Japanese (ja)
Inventor
Toshiaki Hirai
利明 平井
Yasuhiro Takagi
康裕 高木
Shigeru Narakino
滋 楢木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11054105A priority Critical patent/JP2000246020A/en
Publication of JP2000246020A publication Critical patent/JP2000246020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter unit not marring deep filtering effect, having large filtering capacity, capable of filtering contaminant particles with various particle sizes highly accurately and reduced in pressure loss. SOLUTION: A filter unit is equipped with a filter container 2 having an inflow port 3 of a fluid to be treated and a discharge port 4 of a filtered fluid, the filter material 5, which has a porous elastomer freely stretchable in the direction vertical to the passing direction of the fluid to be treated, housed in the filter container 2, the support member 7 provided to the filter material 5 and the means 8 for driving the support member 7 and expanding and contracting the filter material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体中の汚染粒子
を除去するフィルターユニットに関し、特に深層濾過の
効果を損なうことのない、濾過容量が大きく高精度なフ
ィルターユニットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter unit for removing contaminant particles in a fluid, and more particularly to a filter unit having a large filtration capacity and high accuracy without impairing the effect of deep filtration.

【0002】[0002]

【従来の技術】近年、生活習慣の多様化に伴い、風呂水
を循環させながら浄化して使用する入浴装置が注目され
ている。しかしながら、風呂水は毛髪、皮膚片等の比較
的大きな汚れから細菌、皮脂等の微細な汚れまで幅広い
大きさの汚染粒子を含んでいるので、物理的な濾過作用
のみで除去する場合には汚染粒子の粒径分布の最小径に
合わせて小孔径濾材を選択しなければならず、短期間で
濾材の日詰まりが生じ圧力損失が高くなるため、濾材の
洗浄又は交換を頻繁に行う必要があり、長期間の使用が
非常に困難であったため、微生物を用いて分解し浄化す
る、複雑で高価な浄化装置が一般的で、単純な構造で安
価な濾過装置が待望されていた。
2. Description of the Related Art In recent years, with the diversification of lifestyles, a bathing apparatus that purifies and uses bath water while circulating it has attracted attention. However, bath water contains a wide range of contaminant particles ranging from relatively large stains such as hair and skin fragments to microscopic stains such as bacteria and sebum. It is necessary to select a small pore size filter medium according to the minimum diameter of the particle size distribution of the particles.Since the filter medium is clogged in a short period of time and the pressure loss increases, it is necessary to frequently wash or replace the filter medium. Since long-term use is extremely difficult, a complicated and expensive purification device for decomposing and purifying by using microorganisms is generally used, and a low-cost filtration device with a simple structure has been desired.

【0003】そこで、濾材をユニット化し、物理的に流
体中の汚染粒子を除去し、汚染粒子を洗浄により除く種
々のフィルターユニットが検討されている。
[0003] Therefore, various filter units have been studied in which a filter medium is unitized, contaminant particles in a fluid are physically removed, and the contaminant particles are removed by washing.

【0004】例えば、特開昭63−258609号公報
(以下、イ号公報という)には、多孔質弾性体濾材を濾
材として使用し、非圧縮状態で濾過し、圧縮状態で捕捉
粒子を押し出して清浄化する方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 63-258609 (hereinafter referred to as “A”) discloses a method in which a porous elastic filter material is used as a filter material, which is filtered in an uncompressed state and extruded in a compressed state. A method of cleaning is disclosed.

【0005】特開平9−14763号公報(以下、ロ号
公報という)には、「圧縮状態で濾過する場合には流体
の流れと同方向に圧縮することにより見掛け上小孔径と
なった濾材で汚染粒子を捕捉し、非圧縮状態で捕捉され
た汚染粒子を開放し、洗浄再生を行うフィルターユニッ
ト」が開示されている。
Japanese Patent Application Laid-Open No. 9-14763 (hereinafter referred to as “B”) discloses that “in the case of filtration in a compressed state, a filter medium having an apparent small pore diameter by compressing in the same direction as the flow of fluid. A filter unit that captures contaminant particles, releases contaminant particles captured in an uncompressed state, and performs washing and regeneration ”is disclosed.

【0006】特表平9−506821号公報(以下、ハ
号公報という)には、前記ロ号公報と同様の圧縮状態で
濾過する濾材として、「複数の気孔率の異なるフィルタ
ーエレメントを積層したもの」が開示されている。
Japanese Unexamined Patent Publication No. Hei 9-506821 (hereinafter referred to as Japanese Patent Application Publication No. Hei 9-506821) discloses, as a filter medium to be filtered in the same compressed state as that of the above Japanese Patent Application Publication No. Hei 9-506821, "a laminate of a plurality of filter elements having different porosity. Is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来のフィルターユニットは、以下のような課題を有して
いた。
However, the above-described conventional filter unit has the following problems.

【0008】イ号公報に記載のフィルターユニットは、 1) 深層濾過により多量の汚染粒子を捕捉でき、大き
な濾過容量が期待できるという利点を有しているが、濾
材の平均孔径が流体の流れ方向に沿ってほぼ均一とな
り、孔径分布範囲内の大きさである汚染粒子のうち比較
的大きな粒子が濾材の深部まで到達するため、洗浄によ
る除去が困難となり充分に濾過性能を回復できないとい
う問題点を有していた。
[0008] The filter unit described in JP-A No. 1 has the following advantages: 1) a large amount of contaminant particles can be trapped by deep-layer filtration, and a large filtration capacity can be expected; however, the average pore size of the filter medium depends on the flow direction of the fluid. And the relatively large particles among the contaminated particles having a size within the pore size distribution range reach the deep part of the filter medium, so that it is difficult to remove the particles by washing, and the filtration performance cannot be sufficiently recovered. Had.

【0009】2) 除去する汚染粒子が幅広い粒子径分
布を有する場合、濾材の孔径を汚染粒子の最小径に合わ
せて選択する必要があり、従って層内全体にわたって孔
径の小さい濾材を使用することになり、濾過時に流体が
濾材を通過する際の抵抗が大きくなるという問題点を有
していた。
2) If the contaminant particles to be removed have a wide particle size distribution, it is necessary to select the pore size of the filter medium according to the minimum size of the contaminant particles. Therefore, it is necessary to use a filter medium having a small pore size throughout the layer. Therefore, there is a problem that resistance when the fluid passes through the filter medium at the time of filtration increases.

【0010】また、ロ号、ハ号公報に記載のフィルター
ユニットは、 3) 圧縮により濾材内の孔が一様に小孔径となるの
で、濾材の表層近傍で捕捉された大きな汚染粒子により
濾過能力が低下するという問題点を有していた。
[0010] The filter units described in B and C have the following features: 3) Since the pores in the filter medium are uniformly reduced in size by compression, the filter capacity is increased by large contaminant particles trapped near the surface layer of the filter medium. However, there is a problem in that

【0011】4) 濾材を圧縮する圧縮部材が有孔のデ
ィスクで形成されるので、被処理流体が接触する濾材の
面積が減少し、大量の被処理流体の濾過には適さないと
いう問題点を有していた。
4) Since the compression member for compressing the filter medium is formed by a perforated disk, the area of the filter medium with which the fluid to be treated comes into contact is reduced, which is not suitable for filtering a large amount of fluid to be treated. Had.

【0012】5) 被処理流体の通過方向に圧縮して濾
過するため、被処理流体が通過する濾材が薄くなり、深
層濾過の効果が減少するという問題点を有していた。
5) Since the filter is compressed while being filtered in the passage direction of the fluid to be treated, the thickness of the filter medium through which the fluid to be treated passes becomes thin, and the effect of deep filtration is reduced.

【0013】更に、ハ号公報に記載のフィルターユニッ
トは、 6) 各フィルターエレメントにおいては、上記と同様
に表層での濾過であり、深層濾過の効果を期待すべく孔
径を微細化するため、各層を形成する異なる孔径のフィ
ルターエレメントを何層も積層しなければならないとい
う問題点を有していた。
[0013] Further, the filter unit described in Japanese Patent Application Laid-Open Publication No. C-3] has the following characteristics. 6) In each filter element, filtration is performed on the surface layer in the same manner as described above. However, there is a problem that many layers of filter elements having different pore diameters must be laminated.

【0014】7) 各々気孔率の異なるフィルターエレ
メントを積層したものを圧縮する場合には、フィルター
エレメント毎の機械的弾性が異なるため、最も柔軟なフ
ィルターエレメントが最も大きく圧縮されるという問題
点を有していた。
7) When compressing a stack of filter elements each having a different porosity, there is a problem in that the most flexible filter element is compressed the most because the mechanical elasticity of each filter element is different. Was.

【0015】8) 積層時の圧縮率が、各層の単位濾材
の全部を圧縮するのに充分な圧縮ではない場合には、圧
縮手段又は圧縮部材との接触面を有する第1層のフィル
ターエレメントのみに圧縮力が伝わり、第2層以降の深
部では圧縮が行われず、第1層と第2層以降のフィルタ
ーエレメント中の孔径の大きさが逆転するという問題点
を有していた。
8) When the compression ratio at the time of lamination is not enough compression to compress all of the unit filter media of each layer, only the filter element of the first layer having a contact surface with the compression means or the compression member is provided. , The compression force is not transmitted to the deep portion after the second layer, and the size of the pore diameters in the filter elements of the first layer and the second and subsequent layers are reversed.

【0016】本発明は、上記従来の課題を解決するもの
で、深層濾過の効果を損なうことがなく、濾過容量が大
きく種々の粒子径を有する汚染粒子を高精度に濾過する
ことができ、圧力損失の少ない、フィルターユニットを
提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and can contaminate particles having a large filtration capacity and various particle sizes with high precision without impairing the effect of deep filtration. An object of the present invention is to provide a filter unit with low loss.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するた
め、本発明のフィルターユニットは、被処理流体の導入
口と濾過流体の排出口を備えた濾過容器と、前記濾過容
器の内部に収納され被処理流体の通過方向に対し垂直方
向に伸縮自在な多孔質弾性体を有する濾材と、前記濾材
に配設された支持部材と、前記支持部材を駆動するとと
もに前記濾材を伸縮する伸縮手段と、を備えた構成を有
している。
In order to solve the above-mentioned problems, a filter unit according to the present invention is provided with a filtration container provided with an inlet for a fluid to be treated and a discharge outlet for a filtration fluid, and is housed inside the filtration container. A filter medium having a porous elastic body that can expand and contract in the direction perpendicular to the passage direction of the fluid to be processed, a support member disposed on the filter medium, and an expansion and contraction unit that drives the support member and expands and contracts the filter medium, Is provided.

【0018】これにより、多孔質弾性体濾材が圧縮され
ると、濾材全体に圧縮力が伝達されるとともに、濾材が
被処理流体の通過方向に薄くならないため、濾材の深層
濾過効果を損なうことなく、濾材全体にわたり均一に孔
径を微細にすることができる。
Thus, when the porous elastic filter medium is compressed, the compressive force is transmitted to the entire filter medium, and the filter medium does not become thin in the passage direction of the fluid to be treated, so that the deep filtration effect of the filter medium is not impaired. In addition, the pore size can be uniformly reduced over the entire filter medium.

【0019】[0019]

【発明の実施の形態】本発明の請求項1に記載のフィル
ターユニットは、被処理流体の導入口と濾過流体の排出
口を備えた濾過容器と、前記濾過容器の内部に収納され
被処理流体の通過方向に対し垂直方向に伸縮自在な多孔
質弾性体を有する濾材と、前記濾材に配設された支持部
材と、前記支持部材を駆動するとともに前記濾材を伸縮
する伸縮手段と、を備えた構成を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A filter unit according to a first aspect of the present invention is a filter container having an inlet for a fluid to be treated and an outlet for a filtered fluid; A filter medium having a porous elastic body capable of expanding and contracting in the direction perpendicular to the direction in which the filter medium passes, a support member disposed on the filter medium, and an expansion and contraction unit that drives the support member and expands and contracts the filter medium. It has a configuration.

【0020】この構成により、濾過時には伸縮手段によ
り濾材を圧縮させて濾材内の孔径を微細にし、非濾過時
には孔径を拡大できるので、洗浄効率が高いフィルター
ユニットとすることができる。また、濾材が被処理流体
の通過方向に対し垂直方向に伸縮自在なので、圧縮時に
も濾材が被処理流体の通過方向に薄くならないため、濾
材の深層濾過効果を損なうことなく、大量の被処理流体
を濾過することができる。
With this configuration, the filter medium can be compressed by the expansion and contraction means during filtration to make the pore diameter in the filter medium fine, and the pore diameter can be enlarged during non-filtration, so that a filter unit with high washing efficiency can be obtained. In addition, since the filter medium can expand and contract in the direction perpendicular to the direction of passage of the fluid to be treated, the filter medium does not become thin in the direction of passage of the fluid to be treated even during compression. Can be filtered.

【0021】濾過時に濾材を圧縮し、非濾過時には濾材
を伸長させることにより、洗浄効果が増大するととも
に、濾材の機械的疲労による劣化を防止し、不必要な性
能低下を防止することができる。
By compressing the filter medium at the time of filtration and elongating the filter medium at the time of non-filtration, the washing effect is increased, the deterioration of the filter medium due to mechanical fatigue can be prevented, and unnecessary performance deterioration can be prevented.

【0022】ここで、濾材としては、網目状、スポンジ
状、フェルト状、糸巻きフィルター状等の連続孔を有す
る多孔質弾性体が使用される。
Here, as the filter medium, a porous elastic body having continuous holes such as a mesh, a sponge, a felt, and a wound filter is used.

【0023】濾材の形状は、ブロック状、中空筒状等に
形成される。
The filter medium is formed in a block shape, a hollow cylindrical shape or the like.

【0024】伸縮手段の支持部材としては、濾材に接着
等して固定した板状のものや、濾材に覆設したキャップ
状のもの等が使用される。
As the support member of the expansion / contraction means, a plate-shaped member fixed to the filter medium by bonding or the like, a cap-shaped member covered with the filter medium, or the like is used.

【0025】支持部材を駆動する手段としては、空気圧
や油圧等の流体圧を利用するシリンダーやバネ、モータ
ー等が使用される他、支持部材に磁石を埋設し、濾過容
器外に配設した電磁コイルにより非接触式で濾材を伸縮
させることも可能である。また、形状記憶合金バネを用
いて温度差で駆動することも可能である。
As a means for driving the support member, a cylinder, a spring, a motor, or the like using a fluid pressure such as air pressure or hydraulic pressure is used. In addition, a magnet is buried in the support member and an electromagnetic wave is provided outside the filtration container. It is also possible to expand and contract the filter medium in a non-contact manner by a coil. Further, it is also possible to drive with a temperature difference using a shape memory alloy spring.

【0026】濾材の圧縮は、濾材の内部に全体に応力が
分布するためには、充分な圧縮が必要であるが、多量の
汚染粒子を濾材内に捕捉するためには濾材内部の汚染粒
子の孔部を消滅させないことが好ましく、圧縮率(%)
=[(非圧縮時濾材容積−圧縮時濾材容積)/非圧縮時
濾材容積]×100で示される圧縮率は、10%以上9
5%以下が好ましく、30%以上70%以下がより好ま
しい。
The compression of the filter medium requires sufficient compression in order for stress to be distributed throughout the inside of the filter medium. However, in order to capture a large amount of contaminant particles in the filter medium, the compression of the contaminant particles inside the filter medium is required. It is preferable that the pores do not disappear, and the compression ratio (%)
= [(Filter material volume at non-compression-filter media volume at compression) / filter material volume at non-compression] x 100
It is preferably at most 5%, more preferably at least 30% and at most 70%.

【0027】ここで、濾材の大きさや形状、材質等にも
よるが、圧縮率が30%より小さくなると、濾材内の孔
径を充分に縮小することが困難になるばかりか、材料に
よっては支持部材及び固定部材から最も遠い位置となる
中央部で非圧縮状態となる傾向がみられ、圧縮率が70
%より大きくなると、孔径が縮小されすぎ濾過時の抵抗
が大きくなりすぎるばかりか、疎水性の材料では細孔内
に水が入りにくくなり圧縮が上昇する傾向がみられるの
で、いずれも好ましくない。圧縮率が10%より小さく
なるか、95%より大きくなると上記の傾向が著しくな
るため、より好ましくない。
Here, depending on the size, shape, material, etc. of the filter medium, if the compressibility is smaller than 30%, it becomes difficult not only to sufficiently reduce the pore diameter in the filter medium but also, depending on the material, the supporting member. And a tendency to be in a non-compressed state at the central portion which is furthest from the fixing member, and the compression ratio is 70%.
%, The pore diameter is too small, the resistance at the time of filtration becomes too large, and in the case of a hydrophobic material, water does not easily enter the pores and the compression tends to increase. When the compression ratio is smaller than 10% or larger than 95%, the above tendency is remarkable, and therefore, it is not preferable.

【0028】本発明の請求項2に記載のフィルターユニ
ットは、請求項1において、前記濾材が、各々気孔率の
異なる複数の単位濾材を被処理流体の通過方向に積層し
て及び/又は分離して配設されてなる構成を有してい
る。
According to a second aspect of the present invention, there is provided a filter unit according to the first aspect, wherein the filter medium is formed by stacking and / or separating a plurality of unit filter media each having a different porosity in the passage direction of the fluid to be treated. It has a configuration that is arranged in the same manner.

【0029】この構成により、各単位濾材内では略同一
の孔径を有し、各単位濾材毎に孔径が異なる単位濾材を
組み合わせることにより、被処理流体の通過方向に沿っ
て孔径を多段階に変化させ、被処理流体中の汚染粒子の
粒径分布に応じて濾材の孔径分布を適切に構成すること
ができる。
With this configuration, by combining unit filter media having substantially the same pore size in each unit filter media and having different pore sizes for each unit filter media, the pore size can be changed in multiple stages along the passage direction of the fluid to be treated. Thus, the pore size distribution of the filter medium can be appropriately configured according to the particle size distribution of the contaminant particles in the fluid to be treated.

【0030】本発明の請求項3に記載のフィルターユニ
ットは、請求項1又は2において、前記濾材が、被処理
流体の流入側の表面に形成された凹部を備えている構成
を有している。
According to a third aspect of the present invention, there is provided a filter unit according to the first or second aspect, wherein the filter medium has a concave portion formed on the surface on the inflow side of the fluid to be treated. .

【0031】この構成により、請求項1又は2で得られ
る作用の他、多孔質弾性体濾材の圧縮時には凹部を有す
る被処理流体の流入側表面では、凹部は幅が狭くなるだ
けで濾材に発生する応力が小さく、凹部が形成されてい
ない被処理流体の流出側では応力が大きくなるので、濾
材の連通孔を流入側から流出側に向かって微細化するこ
とができる。
With this structure, in addition to the effect obtained in claim 1 or 2, in addition to the effect obtained in claim 1, on the inflow side surface of the fluid to be treated having the concave portion when the porous elastic filter medium is compressed, the concave portion is generated on the filter medium only by reducing its width. Since the applied stress is small and the stress increases on the outflow side of the fluid to be treated in which the concave portion is not formed, the communication hole of the filter medium can be miniaturized from the inflow side to the outflow side.

【0032】ここで、凹部の形状としては、溝状、穴状
等に形成される。また、凹部内の壁面は濾材表面に対し
て、斜面状、曲面状、垂直面状、段階状等に形成され
る。
Here, the shape of the concave portion is formed in a groove shape, a hole shape or the like. Further, the wall surface in the concave portion is formed in a slanted shape, a curved shape, a vertical shape, a step shape, or the like with respect to the surface of the filter medium.

【0033】例えば、凹部内の壁面を斜面状に形成した
場合は、所定の縮小率で孔径を縮小することができる。
汚染粒子の粒径分布が比較的広い場合に、その粒径分布
に合った孔径の勾配を設けることができる。
For example, when the wall surface inside the concave portion is formed in a slope, the hole diameter can be reduced at a predetermined reduction rate.
When the particle size distribution of the contaminant particles is relatively wide, a gradient of the pore size that matches the particle size distribution can be provided.

【0034】壁面を曲面状に形成した場合は、縮小率を
変化させながら孔径を縮小することができるので、特定
の粒子径を中心とした粒径分布をもつ汚染粒子を含む被
処理流体を処理する場合に特に好適に使用することがで
きる。
When the wall surface is formed in a curved shape, the pore diameter can be reduced while changing the reduction ratio, so that the processing target fluid containing contaminant particles having a particle size distribution centered on a specific particle size can be treated. In particular, it can be suitably used.

【0035】壁面を垂直面状に形成した場合には、比較
的大径の汚染粒子を大量に濾過することができる。
When the wall surface is formed in a vertical plane, a large amount of relatively large-diameter contaminant particles can be filtered.

【0036】壁面を階段状に形成した場合は、段階的に
孔径を変えることができるので、比較的孔径分布が狭い
数種類の汚染粒子を除去する際に好適に使用することが
できる。
When the wall surface is formed stepwise, the pore diameter can be changed stepwise, so that it can be suitably used when removing several types of contaminant particles having a relatively narrow pore diameter distribution.

【0037】本発明の請求項4に記載のフィルターユニ
ットは、請求項1乃至3の内いずれか1項において、被
処理流体の流出側の前記支持部材に前記濾材を局部的に
圧縮する凸部が形成されている構成を有している。
According to a fourth aspect of the present invention, there is provided the filter unit according to any one of the first to third aspects, wherein the support member on the outflow side of the fluid to be treated locally compresses the filter medium. Is formed.

【0038】この構成により、請求項1乃至3で得られ
る作用の他、濾材の材質や形状に関わらず、支持部材の
凸部が接触する部分の濾材には大きい圧縮力を与えるこ
とができるので、被処理流体の通過方向に沿って濾材内
の孔径を縮小することができる。
With this configuration, in addition to the effects obtained in the first to third aspects, a large compressive force can be applied to the filter medium at the portion where the projection of the support member contacts, regardless of the material and shape of the filter medium. The diameter of the pores in the filter medium can be reduced along the passage direction of the fluid to be treated.

【0039】ここで、凸部の形状としては、台状、階段
状、斜面状、曲面状等になるように形成できる。
Here, the shape of the convex portion can be formed in a trapezoidal shape, a step shape, a slope shape, a curved shape, or the like.

【0040】例えば、台状や階段状に形成した場合は、
孔径を段階的に変えることができるので、汚染粒子が種
類毎の粒径分布の幅は比較的狭いが、多種の汚染粒子か
らなる場合に好適に使用することができる。
For example, when formed in a trapezoidal or stepped shape,
Since the pore diameter can be changed stepwise, the width of the particle size distribution for each type of contaminating particles is relatively narrow, but the present invention can be suitably used when various types of contaminating particles are used.

【0041】壁面を斜面状に形成した場合は、所定の縮
小率で濾材内の孔径を変えることができる。汚染粒子の
粒径分布が比較的広い場合に、その粒径分布に合った孔
径の勾配を設けることができる。
When the wall surface is formed in a slanted shape, the pore diameter in the filter medium can be changed at a predetermined reduction ratio. When the particle size distribution of the contaminant particles is relatively wide, a gradient of the pore size that matches the particle size distribution can be provided.

【0042】壁面を曲面状に形成した場合は、縮小率を
変化させながら孔径を縮小することができるので、特定
の粒子径を中心とした粒径分布をもつ汚染粒子を含む被
処理流体を処理する場合に特に好適に使用することがで
きる。
When the wall surface is formed in a curved shape, the pore diameter can be reduced while changing the reduction ratio, so that the processing target fluid containing contaminant particles having a particle size distribution centered on a specific particle size can be treated. In particular, it can be suitably used.

【0043】本発明の請求項5に記載のフィルターユニ
ットは、請求項1乃至4の内いずれか1項において、前
記多孔質弾性体が有機高分子を含有している構成を有し
ている。
According to a fifth aspect of the present invention, there is provided a filter unit according to any one of the first to fourth aspects, wherein the porous elastic body contains an organic polymer.

【0044】この構成により、請求項1乃至4で得られ
る作用の他、有機高分子が容易に圧縮に必要な弾性が得
られるとともに、孔径の制御が容易なため、被除去対象
である汚染粒子の粒子径に最適なフィルターユニットと
することができる。
With this configuration, in addition to the effects obtained in claims 1 to 4, the organic polymer can easily obtain the elasticity required for compression, and the pore diameter can be easily controlled, so that the contaminated particles to be removed are removed. The filter unit can be optimized for the particle size of the above.

【0045】ここで、有機高分子としては、ポリエチレ
ン,ポリプロピレン,ポリスチレン等のポリオレフィ
ン,ポリウレタン,天然ゴム,ブタジエン,シリコーン
等のゴム,ポリテトラフロロエチレン,ポリビニルアル
コール,ポリアミノ酸,ポリ乳酸等の合成高分子または
その誘導体、セルロース,マンノース等の多糖類,ポリ
ペプチド等の天然高分子等またはその誘導体等が使用さ
れ。これらの素材は単一または複数で使用される。
Here, as organic polymers, synthetic polymers such as polyolefins such as polyethylene, polypropylene and polystyrene, polyurethanes, natural rubbers, rubbers such as butadiene and silicone, polytetrafluoroethylene, polyvinyl alcohol, polyamino acids and polylactic acid are used. Molecules or derivatives thereof, polysaccharides such as cellulose and mannose, natural polymers such as polypeptides and derivatives thereof are used. These materials are used alone or in combination.

【0046】上記素材は発泡体がより好ましく、発泡体
のインチ当りの孔数が10から90であるものがさらに
好ましい。
The above material is more preferably a foam, and more preferably a foam having 10 to 90 holes per inch.

【0047】ここで、孔数が10より小さくなるにつれ
微細径の連続気泡とならないため、粒子径の細かな汚染
粒子の捕捉ができなくなる傾向がみられ、90より大き
くなるにつれ圧縮時の通水抵抗が著しく増加するので好
ましくない。
Here, as the number of pores becomes smaller than 10, the cells do not become fine-diameter open cells, so that there is a tendency that contaminant particles having a fine particle diameter cannot be trapped. This is not preferable because the resistance increases significantly.

【0048】本発明の請求項6に記載のフィルターユニ
ットは、請求項1乃至5の内いずれか1項において、前
記濾材が中空筒状に形成され、前記濾材の外周側から内
周側へ被処理流体が通過する構成を有している。
According to a sixth aspect of the present invention, there is provided a filter unit according to any one of the first to fifth aspects, wherein the filter medium is formed in a hollow cylindrical shape, and is covered from the outer peripheral side to the inner peripheral side of the filter medium. It has a configuration through which the processing fluid passes.

【0049】この構成により、外周側の表面積が大き
く、濾材の単位体積あたりの濾過能力が高くなるので、
大量の被処理流体を処理でき、相対的にフィルターユニ
ット全体を小型化することができる。
With this configuration, the surface area on the outer peripheral side is large, and the filtering capacity per unit volume of the filter medium is increased.
A large amount of the fluid to be treated can be processed, and the entire filter unit can be relatively reduced in size.

【0050】以下、本発明の実施の形態について、図1
及び図2を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0051】(実施の形態1)図1(a)は本発明の実
施の形態1におけるフィルターユニットの非濾過時の状
態を示す断面図であり、図1(b)はその濾過時の状態
を示す断面図である。
(Embodiment 1) FIG. 1 (a) is a cross-sectional view showing a state of a filter unit in Embodiment 1 of the present invention at the time of non-filtration, and FIG. 1 (b) shows a state at the time of filtration. FIG.

【0052】図1(a)、(b)において、1はフィル
ターユニット、2は略円筒型の濾過容器、3は濾過容器
2の側面に配設された被処理流体の導入口、4は濾過容
器2の底面の略中央部に配設された濾過流体の排出口、
5はインチあたりの孔数が10〜90となる連続孔を有
する多孔質弾性体で形成された略円筒型の濾材、5aは
濾材5の外周面の円周方向に断面が略正三角形の溝状に
形成した凹部、6は略円筒形の濾材5の底面を濾過容器
2の内部に固定する固定部材、7は濾材5の上面に接着
され濾材5を伸縮させる支持部材、8は支持部材7を移
動させ濾材5を伸縮させる伸縮手段、8aは支持部材7
と伸縮手段8とを連結するロッド部である。
1 (a) and 1 (b), reference numeral 1 denotes a filter unit, 2 denotes a substantially cylindrical filtration container, 3 denotes an inlet for a fluid to be treated disposed on the side of the filtration container 2, and 4 denotes a filter. An outlet for the filtered fluid, which is disposed substantially at the center of the bottom surface of the container 2,
5 is a substantially cylindrical filter medium formed of a porous elastic body having continuous holes having 10 to 90 holes per inch, and 5a is a groove having a substantially equilateral triangular cross section in the circumferential direction of the outer peripheral surface of the filter medium 5. A fixing member for fixing the bottom surface of the substantially cylindrical filter medium 5 to the inside of the filtration container 2; a support member 7 adhered to the upper surface of the filter medium 5 to expand and contract the filter medium 5; Is extended and retracted to expand and contract the filter medium 5.
And a rod section for connecting the expansion and contraction means 8.

【0053】以上のように構成された実施の形態1のフ
ィルターユニットについて、以下その動作を説明する。
The operation of the filter unit according to the first embodiment configured as described above will be described below.

【0054】図1(a)に示したように、被処理流体を
濾過しない場合は、ロッド部8aが縮小し、濾材5は伸
長されている。
As shown in FIG. 1A, when the fluid to be treated is not filtered, the rod portion 8a is contracted, and the filter medium 5 is extended.

【0055】濾過時には、図1(b)に示したように、
ロッド部8aが伸縮手段8から伸びて濾材5が圧縮され
る。導入口3から導入された被処理流体は、略円筒形の
濾材5の外周面側から内周面側に向かって流れ、濾材5
内で濾過され排出口4から排出される。濾材5の底部は
固定部材6で濾過容器2の底部に固定されており、濾材
5を通過した濾過流体と通過していない被処理流体は濾
過容器2内では混合しない。
At the time of filtration, as shown in FIG.
The rod portion 8a extends from the expansion and contraction means 8, and the filter medium 5 is compressed. The fluid to be treated introduced from the inlet 3 flows from the outer peripheral surface side to the inner peripheral surface side of the substantially cylindrical filter medium 5, and the filter medium 5
It is filtered out and discharged from the outlet 4. The bottom of the filter medium 5 is fixed to the bottom of the filter container 2 by a fixing member 6, and the filtered fluid that has passed through the filter medium 5 and the fluid that has not passed through do not mix in the filter container 2.

【0056】ここで、濾材5が圧縮されるにつれて、濾
材5の外周表面では凹部5aの幅が狭くなるが、凹部5
aの周囲の濾材5は支持部材7からの圧縮力が伝播しな
いので、濾材5の応力は低く孔径の圧縮率は低い。濾材
5の中心軸に近い濾過水排出側である深層部では圧縮力
が大きくなり応力が大きく、表層から深層部に向かうに
つれて応力が増大し、結果として濾材5の表層から深層
に向かって連続孔の孔径が微細化される。
Here, as the filter medium 5 is compressed, the width of the recess 5a on the outer peripheral surface of the filter medium 5 becomes narrower.
Since the compressive force from the supporting member 7 does not propagate to the filter medium 5 around the point a, the stress of the filter medium 5 is low and the compressibility of the pore diameter is low. The compressive force is large and the stress is large in the deep part on the filtered water discharge side near the center axis of the filter medium 5, and the stress increases from the surface to the deep part. As a result, continuous pores are formed from the surface of the filter medium 5 to the deep layer. Is reduced in size.

【0057】尚、本実施の形態では、濾材5を略円筒型
に形成し、被処理流体は濾材5の外周面から流入し、濾
材5内部を通過しながら浄化された濾過流体が濾材5の
内周面から濾材5内部空間内に流出するように構成した
が、中空の多角形筒状等に形成してもよい。また、略円
筒型の濾材5、濾材5内部の空隙は濾過容器2の中心軸
と同軸でかつ濾過流体排出口4とも同軸上に配設した
が、特に限定されるものではない。
In the present embodiment, the filter medium 5 is formed in a substantially cylindrical shape, and the fluid to be treated flows in from the outer peripheral surface of the filter medium 5, and the filtered fluid that has been purified while passing through the inside of the filter medium 5 is used as the filter medium 5. Although the filter medium 5 is configured to flow out from the inner peripheral surface into the internal space, the filter medium 5 may be formed in a hollow polygonal cylindrical shape or the like. The substantially cylindrical filter medium 5 and the space inside the filter medium 5 are arranged coaxially with the center axis of the filtration container 2 and coaxially with the filtration fluid discharge port 4, but are not particularly limited.

【0058】濾材5と濾過容器2の間隙と、濾材5内部
の濾過流体通路と、排出口4及び導入口3を通過する際
に受ける抵抗及び濾過流体が排出口4を通過する際に受
ける抵抗が、濾材5を圧縮して濾過する際に被処理流体
が受ける抵抗より、小さくすることが好ましい。
The gap between the filter medium 5 and the filter container 2, the filtration fluid passage inside the filter medium 5, the resistance received when passing through the outlet 4 and the inlet 3, and the resistance received when the filtered fluid passes through the outlet 4. However, it is preferable to reduce the resistance of the fluid to be treated when compressing and filtering the filter medium 5.

【0059】支持部材7は濾材5の上面と同形に形成し
たが、特に形状に制限を設けるものではなく、支持部材
7の可動部が濾過容器2内で充分移動可能な大きさで濾
材5の被圧縮面を充分に覆いかつ被処理流体の濾過容器
2内の流れを妨げないように濾過容器2との間の被処理
流体流路面積を排出口4または導入口3と同等以上有す
るものであればよく、その位置も濾材5に対し上方から
圧縮する配置に限定されるものではない。
The support member 7 is formed in the same shape as the upper surface of the filter medium 5, but there is no particular limitation on the shape. The movable member of the support member 7 is large enough to move in the filter vessel 2. The surface of the fluid to be treated, which has a surface area equal to or larger than that of the discharge port 4 or the inlet 3, so as to sufficiently cover the surface to be compressed and not to obstruct the flow of the fluid to be treated in the filtration vessel 2. The position is not limited to the arrangement where the filter medium 5 is compressed from above.

【0060】また、伸縮手段8を構成する駆動手段とし
ては、バネ等を利用してもよく、空気や油等の流体圧を
利用したシリンダー等でも構成可能である。
As the driving means constituting the expansion / contraction means 8, a spring or the like may be used, or a cylinder using a fluid pressure such as air or oil may be used.

【0061】また、濾過容器2を蓋部と筐体部に分割
し、伸縮手段8を何れか一方と一体化しても構わない。
濾過容器2内に濾材5が設置され、蓋を閉じた状態で圧
縮固定可能なものでもあっても構わない。また、濾材5
接触部に磁石を埋設し、濾過容器2外に電磁コイルを配
設した非接触式とすることもでき、更に、モーター等の
電動機構を利用したものであっても構わない。
The filtering container 2 may be divided into a lid and a housing, and the expansion / contraction means 8 may be integrated with either one.
The filter medium 5 may be provided in the filtration container 2 and can be compressed and fixed with the lid closed. Filter media 5
A non-contact type in which a magnet is buried in the contact portion and an electromagnetic coil is disposed outside the filtration container 2 may be used, and an electric mechanism such as a motor may be used.

【0062】更に、支持部材7の移動幅を制限するスト
ッパーを、濾過容器2内面または濾材5内部空隙あるい
は伸縮手段8、ロッド部8a等に設け、濾材5の伸縮率
を一定にしてもよい。これにより、濾材5の濾過性能を
常に一定に維持することができる。
Further, a stopper for limiting the moving width of the support member 7 may be provided on the inner surface of the filtration container 2 or the inner space of the filter medium 5, or the expansion / contraction means 8, the rod portion 8a, etc., so that the expansion / contraction rate of the filter medium 5 is constant. Thereby, the filtering performance of the filter medium 5 can be constantly maintained.

【0063】(実施の形態2)図2(a)は本発明の実
施の形態2におけるフィルターユニットの非濾過時の状
態を示す断面図であり、図2(b)は濾過時の断面図で
ある。
(Embodiment 2) FIG. 2 (a) is a cross-sectional view showing a non-filtration state of a filter unit in Embodiment 2 of the present invention, and FIG. 2 (b) is a cross-sectional view at the time of filtration. is there.

【0064】図2(a)、(b)において、1’は実施
の形態2のフィルターユニット、5’は略円筒型の濾
材、6’は略円筒型の濾材5’の底面を濾過容器2の内
部に固定する固定部材、7’は濾材5’の下面に配設さ
れ濾材5’を伸縮させる支持部材、9、10はそれぞれ
固定部材6’、支持部材7’の濾材5’に接触する部分
に形成された略円形台状の凸部である。
2 (a) and 2 (b), reference numeral 1 'denotes a filter unit according to the second embodiment, 5' denotes a substantially cylindrical filter medium, and 6 'denotes a bottom surface of the substantially cylindrical filter medium 5'. A fixing member 7 'is provided on the lower surface of the filter medium 5' to support the filter medium 5 '. The fixing members 9 and 10 are in contact with the fixing member 6' and the filter medium 5 'of the support member 7', respectively. It is a substantially circular trapezoidal convex portion formed in the portion.

【0065】2は濾過容器、3は被処理流体の導入口、
4は濾過流体の排出口、8は伸縮手段、8aはロッド部
であり、これらは実施の形態1と同様のものであるの
で、同一の符号を付して説明を省略する。
2 is a filtration container, 3 is an inlet for the fluid to be treated,
Reference numeral 4 denotes a discharge port for the filtered fluid, 8 denotes expansion / contraction means, and 8a denotes a rod portion, which are the same as those in the first embodiment.

【0066】実施の形態2が実施の形態1と異なる点
は、濾材5’が円筒型の発泡体で表面の凹部が形成され
ていない点と、濾材5’を濾過容器2に固定する固定部
材6、濾材5’を伸縮する支持部材7’にそれぞれ凸部
9、10が形成されている点である。
The second embodiment is different from the first embodiment in that the filter medium 5 ′ is a cylindrical foam and has no concave portion on the surface, and a fixing member for fixing the filter medium 5 ′ to the filtration container 2. 6. The point is that protrusions 9 and 10 are formed on the support member 7 'that expands and contracts the filter medium 5'.

【0067】尚、本実施の形態では、凸部9、10を台
形に形成したが、被処理流体中に含まれる汚染粒子の種
類、量、粒径分布等に応じて、階段状や斜面状、膨出状
等に形成してもよい。
In the present embodiment, the projections 9 and 10 are formed in a trapezoidal shape. However, depending on the type, amount, particle size distribution, etc. of the contaminant particles contained in the fluid to be processed, the projections 9 and 10 may be stepped or sloped. , May be formed in a swollen shape or the like.

【0068】以上のように構成された実施の形態2のフ
ィルターユニットにつき、以下に動作を説明する。
The operation of the filter unit according to the second embodiment configured as described above will be described below.

【0069】図2(b)のように濾材5’を支持部材
7’で圧縮すると、濾材5’の外周側は圧縮率が低く、
内周側は固定部材6’、支持部材7’に形成した凸部
9、10により圧縮率が高くなるため、濾材5’内の応
力が被処理流体の通過方向に沿って増加し、内部の孔径
が縮小する。
When the filter medium 5 'is compressed by the support member 7' as shown in FIG. 2B, the outer peripheral side of the filter medium 5 'has a low compression ratio,
On the inner peripheral side, the compression ratio is increased by the convex portions 9 and 10 formed on the fixing member 6 ′ and the support member 7 ′, so that the stress in the filter medium 5 ′ increases along the passage direction of the fluid to be treated, and The pore size is reduced.

【0070】凸部9、10を適宜選択することにより、
局部的に発生する応力分布を変化させることができ、孔
径分布、圧縮率分布を自由に設計することができる。
By appropriately selecting the projections 9 and 10,
The distribution of locally generated stress can be changed, and the pore size distribution and the compressibility distribution can be freely designed.

【0071】濾材5’の被処理流体の通過方向への厚み
は減少しないので、深層濾過の効果が損なわれずに濾過
を行うことができる。
Since the thickness of the filter medium 5 ′ in the passage direction of the fluid to be treated does not decrease, the filtration can be performed without impairing the effect of the deep filtration.

【0072】[0072]

【実施例】以下、本発明の具体例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the present invention will be described below.

【0073】(実施例1)実施の形態1で示したフィル
ターユニット1を用いて、風呂水の濾過を行った。
(Example 1) Bath water was filtered using the filter unit 1 described in the first embodiment.

【0074】浴槽に管を配設し、水流ポンプを介してフ
ィルターユニット1の導入口3に風呂水を導入し、流出
口4から管を介して浴槽内に循環させるように構成し
た。
A tube was provided in the bathtub, bath water was introduced into the inlet 3 of the filter unit 1 via a water flow pump, and the bath water was circulated from the outlet 4 through the tube into the bathtub.

【0075】水流ポンプを駆動させ風呂水を濾過しなが
ら、大人4人に入浴中に浴槽内で垢をおとしてもらい、
浴槽内の浴水の濁り変化を観察した結果、浴水の濁り増
加は濾過しない場合と比較して約10%未満に抑えられ
た。また、濾材5’の圧力損失上昇は1%以下であり、
濾過精度が高く、濾過容量が大きく、圧力損失の低い濾
過が可能であった。
While driving the water flow pump and filtering the bath water, four adults were asked to remove dirt in the bathtub while taking a bath.
As a result of observing the change in the turbidity of the bath water in the bath tub, the increase in the turbidity of the bath water was suppressed to less than about 10% as compared with the case where no filtration was performed. Also, the pressure loss rise of the filter medium 5 'is 1% or less,
Filtration with high filtration accuracy, large filtration capacity, and low pressure loss was possible.

【0076】(実施例2)実施の形態1で示したフィル
ターユニット1を用いて、風呂水の濾過を行ったとこ
ろ、濾過を行う前に浴水中に含まれていた濁りの70%
が除去できた。また、その圧力損失上昇は初期圧力損失
に対し1%以下であり、低圧力損失で高精度な濾過が可
能であった。
(Example 2) When the bath water was filtered using the filter unit 1 shown in Embodiment 1, 70% of the turbidity contained in the bath water before the filtration was performed.
Was removed. Further, the increase in pressure loss was 1% or less of the initial pressure loss, and high-precision filtration with low pressure loss was possible.

【0077】[0077]

【発明の効果】以上のように本発明の請求項1に記載の
フィルターユニットによれば、被処理流体の導入口と濾
過流体の排出口を備えた濾過容器と、前記濾過容器の内
部に収納され被処理流体の通過方向に対し垂直方向に伸
縮自在な多孔質弾性体を有する濾材と、前記濾材に配設
された支持部材と、前記支持部材を駆動するとともに前
記濾材を伸縮する伸縮手段と、を備えているので、濾材
を圧縮した際に濾材全体に均一に圧縮力を加えることが
可能であり、濾材の深層濾過の効果を損なうことなく、
濾材の孔径を微細に変化させることができ、高精度のフ
ィルターユニットを得ることができるという効果があ
る。
As described above, according to the filter unit of the first aspect of the present invention, a filtration container provided with an inlet for the fluid to be treated and a discharge outlet for the filtration fluid, and the filter container is housed inside the filtration container. A filter medium having a porous elastic body that can expand and contract in the direction perpendicular to the passage direction of the fluid to be treated, a support member disposed on the filter medium, and an expansion and contraction unit that drives the support member and expands and contracts the filter medium. , So that when the filter medium is compressed, it is possible to uniformly apply a compressive force to the entire filter medium, without impairing the effect of deep filtration of the filter medium,
There is an effect that the pore size of the filter medium can be finely changed, and a highly accurate filter unit can be obtained.

【0078】請求項2に記載のフィルターユニットによ
れば、請求項1において、前記濾材が、各々気孔率の異
なる複数の単位濾材を被処理流体の通過方向に積層して
及び/又は分離して配設されているので、被処理流体の
通過方向に沿って孔径を多段階に変化させることができ
るとともに、被処理流体中の汚染粒子の粒径分布に応じ
て濾材の孔径分布を適切に構成することができるという
有利な効果が得られる。
According to the filter unit of the second aspect, in the first aspect, the filter medium is obtained by laminating and / or separating a plurality of unit filter media each having a different porosity in the passage direction of the fluid to be treated. Since it is arranged, the pore size can be changed in multiple steps along the passage direction of the fluid to be treated, and the pore size distribution of the filter medium is appropriately configured according to the particle size distribution of the contaminant particles in the fluid to be treated. This has the advantageous effect that it can be performed.

【0079】請求項3に記載のフィルターユニットによ
れば、請求項1又は2において、前記濾材が、被処理流
体の流入側の表面に形成された凹部を備えているので、
多孔質弾性体濾材の圧縮時に被処理流体の流入側表面の
凹部は幅が小さくなるが、凹部以外の部分は応力が生じ
ず、凹部が形成されていない被処理流体の流出側には応
力が増大するので、濾材の連通孔を流入側から流出側に
向かって微細化し、被処理流体中に含まれる汚れの粒子
径に幅がある場合でも、その大きさに応じて濾材内の孔
径を微細化させることができ、濾過容量の大きな高精度
のフィルターユニットを得ることができるという効果が
ある。
According to the filter unit of the third aspect, in the first or second aspect, the filter medium has a concave portion formed on the surface on the inflow side of the fluid to be treated.
When the porous elastic filter medium is compressed, the width of the concave portion on the surface on the inflow side of the fluid to be treated becomes smaller, but no stress occurs in portions other than the concave portion, and stress is applied to the outflow side of the fluid to be treated where no concave portion is formed. Since it increases, the communication holes of the filter medium are made finer from the inflow side to the outflow side, and even if the particle diameter of the dirt contained in the fluid to be treated has a wide range, the pore diameter in the filter medium is made fine according to the size. And a high-precision filter unit having a large filtration capacity can be obtained.

【0080】請求項4に記載のフィルターユニットによ
れば、請求項1乃至3の内いずれか1項において、被処
理流体の流出側の前記支持部材に前記濾材を局部的に圧
縮する凸部が形成されている構成を有しているので、請
求項1乃至3で得られる効果の他、濾材の材質や形状に
関わらず、伸縮手段の凸部が接触する部分の濾材には大
きい圧縮力を与えることができるので、濾材内の孔径を
縮小することができるという有利な効果が得られる。
According to the filter unit of the fourth aspect, in any one of the first to third aspects, the convex member for locally compressing the filter medium is provided on the support member on the outflow side of the fluid to be treated. Since it has a configuration in which it is formed, in addition to the effects obtained in claims 1 to 3, a large compressive force is applied to a portion of the filter medium where the convex portion of the expansion / contraction means contacts regardless of the material or shape of the filter medium. Since it can be provided, the advantageous effect that the pore diameter in the filter medium can be reduced can be obtained.

【0081】請求項5に記載のフィルターユニットによ
れば、請求項1乃至4の内いずれか1項において、前記
多孔質弾性体が有機高分子を含有しているので、圧縮に
必要な弾性が得られるとともに、孔径の制御が容易なた
め、被除去対象である汚染粒子の粒子径に最適なフィル
ターユニットとすることができるという有利な効果が得
られる。
According to the filter unit of the fifth aspect, in any one of the first to fourth aspects, since the porous elastic body contains an organic polymer, the elasticity required for compression is low. In addition, since the pore size can be easily controlled, the advantageous effect that a filter unit optimal for the particle size of the contaminated particles to be removed can be obtained.

【0082】請求項6に記載のフィルターユニットによ
れば、請求項1乃至5の内いずれか1項において、前記
濾材が中空筒状に形成され、前記濾材の外周側から内周
側へ被処理流体が通過するので、外周側の表面積が大き
く、濾材の単位体積あたりの濾過能力が高くなるので、
大量の被処理流体を処理でき、相対的にフィルターユニ
ット全体を小型化することができるという有利な効果が
得られる。
According to a sixth aspect of the present invention, in the filter unit according to any one of the first to fifth aspects, the filter medium is formed in a hollow cylindrical shape, and the filter medium is processed from the outer peripheral side to the inner peripheral side of the filter medium. Since the fluid passes through, the surface area on the outer peripheral side is large, and the filtering capacity per unit volume of the filter medium increases,
An advantageous effect that a large amount of the fluid to be processed can be processed and the entire filter unit can be relatively reduced in size can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施の形態1におけるフィルタ
ーユニットの非濾過時の状態を示す断面図 (b)濾過時の状態を示す断面図
FIG. 1A is a cross-sectional view showing a state of a filter unit according to Embodiment 1 of the present invention at the time of non-filtration; FIG.

【図2】(a)本発明の実施の形態2におけるフィルタ
ーユニットの非濾過時の状態を示す断面図 (b)濾過時の状態を示す断面図
FIG. 2A is a cross-sectional view illustrating a state of a filter unit according to a second embodiment of the present invention at the time of non-filtration; FIG.

【符号の説明】[Explanation of symbols]

1、1’ フィルターユニット 2 濾過容器 3 導入口 4 排出口 5、5’ 濾材 5a 凹部 6、6’ 固定部材 7、7’ 支持部材 8 伸縮手段 8a ロッド部 9、10 凸部 DESCRIPTION OF SYMBOLS 1, 1 'Filter unit 2 Filtration container 3 Inlet 4 Outlet 5, 5' Filter material 5a Depression 6, 6 'Fixing member 7, 7' Supporting member 8 Telescopic means 8a Rod part 9, 10 Convex part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楢木野 滋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D019 AA03 BA12 BA13 BB02 BB03 BB07 BD02 BD03 CA03 CB01 CB02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shigeru Narakino 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 4D019 AA03 BA12 BA13 BB02 BB03 BB07 BD02 BD03 CA03 CB01 CB02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被処理流体の導入口と濾過流体の排出口を
備えた濾過容器と、前記濾過容器の内部に収納され被処
理流体の通過方向に対し垂直方向に伸縮自在な多孔質弾
性体を有する濾材と、前記濾材に配設された支持部材
と、前記支持部材を駆動するとともに前記濾材を伸縮す
る伸縮手段と、を備えたことを特徴とするフィルターユ
ニット。
1. A filtration container provided with an inlet for a fluid to be treated and a discharge outlet for a filtration fluid, and a porous elastic body housed inside the filtration container and capable of expanding and contracting in a direction perpendicular to the passage direction of the fluid to be treated. A filter unit comprising: a filter medium having: a filter member; a support member disposed on the filter medium; and an expansion / contraction device that drives the support member and expands / contracts the filter medium.
【請求項2】前記濾材が、各々気孔率の異なる複数の単
位濾材を被処理流体の通過方向に積層して及び/又は分
離して配設されてなることを特徴とする請求項1に記載
のフィルターユニット。
2. The filter medium according to claim 1, wherein a plurality of unit filter media each having a different porosity are stacked and / or separated in the direction in which the fluid to be treated passes. Filter unit.
【請求項3】前記濾材が、被処理流体の流入側の表面に
形成された凹部を備えていることを特徴とする請求項1
又は2に記載のフィルターユニット。
3. The filter medium according to claim 1, wherein the filter medium has a concave portion formed on the surface on the inflow side of the fluid to be treated.
Or the filter unit of 2.
【請求項4】被処理流体の流出側の前記支持部材に前記
濾材を局部的に圧縮する凸部が形成されていることを特
徴とする請求項1乃至3の内いずれか1項に記載のフィ
ルターユニット。
4. The method according to claim 1, wherein a convex portion for locally compressing the filter medium is formed on the support member on the outflow side of the fluid to be treated. Filter unit.
【請求項5】前記多孔質弾性体が有機高分子を含有して
いることを特徴とする請求項1乃至4の内いずれか1項
に記載のフィルターユニット。
5. The filter unit according to claim 1, wherein the porous elastic body contains an organic polymer.
【請求項6】前記濾材が中空筒状に形成され、前記濾材
の外周側から内周側へ被処理流体が通過することを特徴
とする請求項1乃至5の内いずれか1項に記載のフィル
ターユニット。
6. The filter according to claim 1, wherein the filter medium is formed in a hollow cylindrical shape, and the fluid to be processed passes from an outer peripheral side to an inner peripheral side of the filter medium. Filter unit.
JP11054105A 1999-03-02 1999-03-02 Filter unit Pending JP2000246020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11054105A JP2000246020A (en) 1999-03-02 1999-03-02 Filter unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11054105A JP2000246020A (en) 1999-03-02 1999-03-02 Filter unit

Publications (1)

Publication Number Publication Date
JP2000246020A true JP2000246020A (en) 2000-09-12

Family

ID=12961342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11054105A Pending JP2000246020A (en) 1999-03-02 1999-03-02 Filter unit

Country Status (1)

Country Link
JP (1) JP2000246020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256760A (en) * 2010-06-08 2011-12-22 Aisan Industry Co Ltd Dust filter
KR101182941B1 (en) * 2010-09-06 2012-09-13 전원배 Water purifing filter
CN109626612A (en) * 2018-12-21 2019-04-16 九阳股份有限公司 A kind of scale inhibition element kit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256760A (en) * 2010-06-08 2011-12-22 Aisan Industry Co Ltd Dust filter
KR101182941B1 (en) * 2010-09-06 2012-09-13 전원배 Water purifing filter
CN109626612A (en) * 2018-12-21 2019-04-16 九阳股份有限公司 A kind of scale inhibition element kit
CN109626612B (en) * 2018-12-21 2022-05-03 九阳股份有限公司 Scale inhibition filter element assembly

Similar Documents

Publication Publication Date Title
US4039452A (en) Self-cleaning filter
AU2021204234B2 (en) Filter arrangement including prefiltration filter element and filter device
KR20000023082A (en) Filter element
JPH11179114A (en) Filter comprising variable filter layer
US7241383B2 (en) Fluid treating method and apparatus
JP2000246020A (en) Filter unit
US4239627A (en) Filtering member and method for manufacturing the same
US5958242A (en) In situ filter cleaning
JPH03196891A (en) Water purifier
JPH10216484A (en) Microfilter
JPH0226605A (en) Air filter for removing small particle
JP3004815B2 (en) Seal structure of filter and ceramic membrane filter
KR200179085Y1 (en) Industrial high-flow filter
KR200366200Y1 (en) Filter cartridge and filter
JP3857164B2 (en) Filter installation structure
JP2004033939A (en) Air cleaner
CN201179380Y (en) Electrostatic accurate filter for ceramic
KR19990030247A (en) Permanent filtration device with variable filter layer
JPH0632175Y2 (en) Hollow fiber membrane module cartridge
CN101249344B (en) Electrostatic ceramic fine filter
JPH0474584A (en) Treatment of waste water
KR102056148B1 (en) Apparatus for double backflow filtration
JPH07251016A (en) Filter membrane with asymmetric structure and filter apparatus wherein the filter membrane is used
JPS6150645B2 (en)
JP2001162110A (en) Laminated filter and filtering device using the same