JP2000243409A - Separator member for sold polymer fuel cell and its manufacture - Google Patents

Separator member for sold polymer fuel cell and its manufacture

Info

Publication number
JP2000243409A
JP2000243409A JP11043035A JP4303599A JP2000243409A JP 2000243409 A JP2000243409 A JP 2000243409A JP 11043035 A JP11043035 A JP 11043035A JP 4303599 A JP4303599 A JP 4303599A JP 2000243409 A JP2000243409 A JP 2000243409A
Authority
JP
Japan
Prior art keywords
separator member
fuel cell
temperature
thermosetting resin
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11043035A
Other languages
Japanese (ja)
Other versions
JP3807708B2 (en
Inventor
Ichiro Inada
一郎 稲田
Wataru Sato
弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP04303599A priority Critical patent/JP3807708B2/en
Publication of JP2000243409A publication Critical patent/JP2000243409A/en
Application granted granted Critical
Publication of JP3807708B2 publication Critical patent/JP3807708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator member for a solid polymer fuel cell and a manufacturing method of the same, wherein the separator member is capable of improving and stably maintaining cell performance by solving problems of gas leak of fuel gas or oxidizing gas by restraining breakage and fracture of the separator member in starting, stopping, and normally operating a cell, and further in assembling a cell stack. SOLUTION: This separator member is formed with carbon-resin curable molding containing 40-90 wt.% carbon powder and 60-10 wt.% thermosetting resin, having bending strength >=30 MPa at room temperature, decreasing rate of the bending strength <=30% at room temperature to 100 deg.C, camber <=0.5 mm, Shore hardness <=100, bending elasticity <=20 GPa, and thickness accuracy within ±0.05 mm. The carbon powder and the thermosetting resin are mixed at a predetermined weight ratio, and are crushed and sieved. The crushed powder <=40 mesh are loaded in a die. After pre-loading, the die is opened and gas is discharged and eliminated, and then hot- pressing molding at room temperature to 280 deg.C under 20-400 MPa is provided. After releasing from the die, the molding is held between flat and smooth plates and is heated at 150-280 deg.C for more than five minutes to provide thermosetting process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用、例え
ば自動車をはじめ小型分散型電源などに用いられる固体
高分子型燃料電池用のセパレータ部材及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator member for a fuel cell, for example, a solid polymer type fuel cell used for a small distributed power source such as an automobile or the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、例えばスルホ
ン酸基を有するフッ素樹脂系イオン交換膜のような高分
子イオン交換膜からなる電解質膜と、その両面に設けた
2つの触媒電極と、それぞれの電極に水素などの燃料ガ
スあるいは酸素や空気などの酸化剤ガスを供給するガス
供給溝を設けたセパレータなどからなる単セルを積層す
ることによりスタックを形成している。
2. Description of the Related Art A polymer electrolyte fuel cell is composed of an electrolyte membrane composed of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having sulfonic acid groups, and two catalyst electrodes provided on both sides of the electrolyte membrane. A stack is formed by stacking single cells including separators each having a gas supply groove for supplying a fuel gas such as hydrogen or an oxidizing gas such as oxygen or air to each electrode.

【0003】燃料電池の発電機構は、セルのアノード側
に供給された燃料ガス(水素ガスまたは水素含有ガスな
ど)とカソード側に供給された酸化剤ガス(酸素含有ガ
スなど)が反応して生ずる電子(e- )の流れを電気エ
ネルギーとして外部に取り出すものである。例えば、燃
料ガスに水素ガス、酸化剤ガスに酸素ガスを用いた場
合、次の反応が進行する。 アノード;H2 →2H+ +2e- カソード;(1/2)O2 +2H+ +2e- →H2 O 全反応 ;H2 +(1/2)O2 →H2
A power generation mechanism of a fuel cell is generated by a reaction between a fuel gas (eg, hydrogen gas or hydrogen-containing gas) supplied to an anode side of a cell and an oxidant gas (eg, oxygen-containing gas) supplied to a cathode side. The flow of electrons (e ) is taken out to the outside as electric energy. For example, when hydrogen gas is used as the fuel gas and oxygen gas is used as the oxidant gas, the following reaction proceeds. Anode; H 2 → 2H + + 2e cathode; (1/2) O 2 + 2H + + 2e → H 2 O Total reaction; H 2 + (1/2) O 2 → H 2 O

【0004】したがって、燃料ガスと酸化剤ガスとは完
全に分離した状態で電極に供給することが必要でありセ
パレータ部材には高度のガス不透過性が要求される。ま
た、セパレータ部材の破損や欠損によりガスリークが生
じると、上記の電気化学反応が円滑に進行しないために
電池性能が低下するばかりではなく、燃料ガスと酸化剤
ガスとが混合し、爆発のおそれが発生することとなる。
Therefore, it is necessary to supply the fuel gas and the oxidizing gas to the electrode in a completely separated state, and the separator member is required to have high gas impermeability. Further, when gas leak occurs due to breakage or breakage of the separator member, not only does the above-described electrochemical reaction not smoothly proceed, so that not only does the battery performance deteriorate, but also the fuel gas and the oxidizing gas are mixed, which may cause an explosion. Will occur.

【0005】セパレータ部材の破損や欠損は、主に電池
起動時の昇温過程あるいは電池停止時の降温過程で発生
する不均一な温度分布状態に伴う熱応力によることが多
い。固体高分子型燃料電池の作動時の温度は通常60〜
100℃であるが、ホットスポットと称される最高温度
部では100℃を超える場合もあり、温度分布が局所的
に著しく不均一化して大きな熱応力が発生する。このよ
うな熱応力に対してセパレータ部材の材質強度、寸法精
度、平面度(反り)などの値が適正であれば熱応力によ
る破損や欠損を抑制することができる。
[0005] Breakage or breakage of the separator member is often due to thermal stress due to an uneven temperature distribution state generated during a temperature rise process when the battery is started or a temperature fall process when the battery is stopped. The operating temperature of a polymer electrolyte fuel cell is usually 60 to
Although the temperature is 100 ° C., the temperature may exceed 100 ° C. in the highest temperature portion called a hot spot, and the temperature distribution locally becomes extremely non-uniform, causing a large thermal stress. If the material strength, dimensional accuracy, flatness (warpage), etc. of the separator member are appropriate for such thermal stress, breakage or loss due to thermal stress can be suppressed.

【0006】また、固体高分子型燃料電池は、上記した
単セルを数十層に積層して電池スタックが組み立てられ
るが、この場合、各セル間が充分に密着するように組み
立てることが重要である。密着性が不充分であると接触
電気抵抗が増大して電池の内部抵抗が大きくなり、温度
分布の不均一化が著しくなり電池性能の低下を招くこと
となる。通常、0.05〜1MPa程度の締め付け力で
周囲をボルト締めすることにより組み立てているが、こ
の際に偏加重が生じてセパレータ部材に亀裂が発生して
破損や欠損を生じることがある。この場合にも、セパレ
ータ部材の材質強度、寸法精度、平面度(反り)などが
適正であれば、破損や欠損を抑止することが可能とな
る。
In a polymer electrolyte fuel cell, a battery stack is assembled by stacking the above-described single cells in several tens of layers. In this case, it is important to assemble the cells so that the cells are in close contact with each other. is there. If the adhesion is insufficient, the contact electric resistance increases, the internal resistance of the battery increases, and the temperature distribution becomes more non-uniform, resulting in a decrease in battery performance. Usually, the assembly is performed by bolting the periphery with a tightening force of about 0.05 to 1 MPa. At this time, partial load is generated, and the separator member may be cracked to cause breakage or chipping. Also in this case, if the material strength, dimensional accuracy, flatness (warpage), and the like of the separator member are appropriate, breakage and loss can be suppressed.

【0007】[0007]

【発明が解決しようとする課題】本発明は、固体高分子
型燃料電池における上記した問題点を解消するために、
セパレータ部材の材質強度、形状精度、セル間の密着性
などの要因について多角的に検討を行った結果、特定範
囲の量比で炭素成分と熱硬化性樹脂成分とが複合一体化
した炭素−樹脂硬化成形体の強度、形状精度などを特定
することによりセパレータ部材の破損や欠損を効果的に
抑制できることを見出した。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems in a polymer electrolyte fuel cell.
After conducting multilateral studies on factors such as the material strength, shape accuracy, and cell-to-cell adhesion of the separator member, a carbon-resin in which a carbon component and a thermosetting resin component were combined and integrated in a specific range of the amount ratio It has been found that by specifying the strength, shape accuracy, and the like of the cured molded body, breakage and breakage of the separator member can be effectively suppressed.

【0008】すなわち、本発明は上記の知見に基づいて
開発されたものであって、その目的は電池の発電起動時
や停止時、あるいは通常稼働時、更には電池スタックの
組み立て時、などにおけるセパレータ部材の破損や欠損
を抑止して燃料ガス(水素ガスまたは水素含有ガス)ま
たは酸化剤ガス(酸素含有ガスなど)のガスリークの問
題を解消し、電池性能の安定維持及び向上を可能とする
固体高分子型燃料電池用セパレータ部材及びその製造方
法を提供することにある。
That is, the present invention has been developed on the basis of the above findings, and its object is to separate the separator at the time of starting and stopping the power generation of the battery, during the normal operation, and at the time of assembling the battery stack. A solid height that suppresses damage and loss of members, eliminates the problem of gas leakage of fuel gas (hydrogen gas or hydrogen-containing gas) or oxidant gas (oxygen-containing gas, etc.), and enables stable maintenance and improvement of battery performance An object of the present invention is to provide a molecular fuel cell separator member and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による固体高分子型燃料電池用セパレータ部
材は、炭素粉末40〜90重量%と熱硬化性樹脂60〜
10重量%の組成からなり、室温における曲げ強度が3
0MPa以上で、かつ室温から100℃における曲げ強
度低下率が30%以下、の特性を備える炭素−樹脂硬化
成形体から形成されたことを構成上の特徴とする。
According to the present invention, there is provided a separator member for a polymer electrolyte fuel cell according to the present invention, which comprises 40 to 90% by weight of carbon powder and 60 to 90% of a thermosetting resin.
It has a composition of 10% by weight and has a bending strength of 3 at room temperature.
A structural feature is that it is formed from a carbon-resin-cured molded article having a characteristic of not less than 0 MPa and a rate of decrease in bending strength from room temperature to 100 ° C. of not more than 30%.

【0010】更に、上記のセパレータ部材において、炭
素−樹脂硬化成形体の反りが0.5mm以下、ショア硬度
が100以下、曲げ弾性率が20GPa以下、厚さ精度
が±0.05mm以内に設定される。
Further, in the above separator member, the carbon-resin cured molded body has a warpage of 0.5 mm or less, a Shore hardness of 100 or less, a flexural modulus of 20 GPa or less, and a thickness accuracy of ± 0.05 mm or less. You.

【0011】また、本発明による固体高分子型燃料電池
用セパレータ部材の製造方法は、炭素粉末40〜90重
量%に、ゲル化時間が20分以下、固形分が60%以上
の熱硬化性樹脂を60〜10重量%の量比で混合し、混
合物を粉砕し、篩分けして得られた40メッシュ以下の
粉砕粒を金型に装填し、予圧したのち一旦金型を開放し
て揮発分及び残留空気を排出除去し、次いで、室温〜2
80℃の温度及び20〜400MPaの圧力で熱圧成形
し、離型後、表面平滑な平板で挟持して、150〜28
0℃の温度で5分間以上加熱して熱硬化性樹脂を加熱硬
化処理することを構成上の特徴とする。
Further, the method for producing a separator member for a polymer electrolyte fuel cell according to the present invention is directed to a thermosetting resin having a gelling time of 20 minutes or less and a solid content of 60% or more in 40 to 90% by weight of carbon powder. Is mixed in an amount ratio of 60 to 10% by weight, the mixture is pulverized, and the pulverized particles having a size of 40 mesh or less obtained by sieving are charged into a mold, pre-pressurized, and then the mold is opened once to remove volatile matter. And residual air is removed and then removed from room temperature to 2
It is hot-pressed at a temperature of 80 ° C. and a pressure of 20 to 400 MPa, released from the mold, and sandwiched between flat plates having a smooth surface.
The configuration is characterized in that the thermosetting resin is heated and cured at a temperature of 0 ° C. for 5 minutes or more.

【0012】上記の製造方法において、熱圧成形時にお
ける金型内の温度差を10℃以内に制御することが好ま
しく、また、熱硬化性樹脂の加熱硬化処理を70Pa以
上の圧力下で行うことが望ましい。
In the above manufacturing method, it is preferable to control the temperature difference in the mold during hot pressing to within 10 ° C., and to perform the heat curing of the thermosetting resin under a pressure of 70 Pa or more. Is desirable.

【0013】[0013]

【発明の実施の形態】本発明の固体高分子型燃料電池用
セパレータ部材は、炭素粉末を熱硬化性樹脂を結合材と
して一体化した炭素−樹脂硬化成形体から形成されてお
り、炭素粉末には人造黒鉛、天然黒鉛、膨張黒鉛、コー
クス粉、カーボンブラック及びこれらの混合物などが用
いられる。炭素粉末の結合材として機能する熱硬化性樹
脂は、固体高分子型燃料電池の発電稼働時の温度である
80〜120℃の温度に耐える耐熱性、及びpH2〜3
程度のスルフォン酸や硫酸酸性に耐え得る耐酸性があれ
ば特に制限はなく、例えばフェノール系樹脂、フラン系
樹脂、エポキシ系樹脂などの樹脂を単独または複合した
ものが用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The separator member for a polymer electrolyte fuel cell according to the present invention is formed from a carbon-resin cured molded body obtained by integrating carbon powder with a thermosetting resin as a binder. For example, artificial graphite, natural graphite, expanded graphite, coke powder, carbon black, and mixtures thereof are used. The thermosetting resin that functions as a binder for carbon powder has heat resistance to withstand a temperature of 80 to 120 ° C., which is a temperature during power generation operation of a polymer electrolyte fuel cell, and a pH of 2 to 3.
There is no particular limitation as long as it has an acid resistance enough to withstand sulfonic acid or sulfuric acid acid. For example, a resin such as a phenol-based resin, a furan-based resin, or an epoxy-based resin is used alone or in combination.

【0014】これらの炭素粉末と熱硬化性樹脂の混合比
は、炭素粉末を40〜90重量%、熱硬化性樹脂を60
〜10重量%の量比に設定される。炭素粉末が40重量
%未満、熱硬化性樹脂が60重量%を超えると導電性や
熱伝導性が低くなり、一方、炭素粉末が90重量%を超
え、熱硬化性樹脂が10重量%未満であると成形性が悪
化してガス不透過性や強度が低下し、共にセパレータ部
材としての機能を充分に果たすことができなくなるため
である。
The mixing ratio of the carbon powder and the thermosetting resin is such that the carbon powder is 40 to 90% by weight and the thermosetting resin is 60% by weight.
The amount ratio is set to 10 to 10% by weight. When the carbon powder content is less than 40% by weight and the thermosetting resin content is more than 60% by weight, the electrical conductivity and thermal conductivity are reduced. If there is, the moldability is deteriorated, the gas impermeability and the strength are reduced, and both of them cannot sufficiently function as a separator member.

【0015】本発明の固体高分子型燃料電池用セパレー
タ部材は、この炭素−樹脂硬化成形体が、室温における
曲げ強度が30MPa以上、室温から100℃における
曲げ強度低下率が30%以下の強度特性を備えたもので
あることが必要である。上述したように、電池起動時の
昇温過程や電池停止時の降温過程、また発電中の電池反
応による発熱により電池内部には温度分布が生じて熱応
力が発生し、機械的な歪みが発生する。特に、セパレー
タ部材のガス供給溝は厚さが薄く、この機械的歪みによ
り破損や欠損し易いので、本発明においては材質強度と
して室温における曲げ強度を30MPa以上、室温から
100℃における曲げ強度低下率を30%以下に設定す
るものである。なお、曲げ強度はJIS K6911に
より測定した値であり、曲げ強度低下率は室温及び10
0℃において測定した曲げ強度の値をA、Bとして
〔(A−B)/(A)〕×100 (%) 式により算出し
た値である。
In the separator member for a polymer electrolyte fuel cell according to the present invention, the cured carbon-resin article has a strength characteristic in which the bending strength at room temperature is 30 MPa or more and the bending strength reduction rate from room temperature to 100 ° C. is 30% or less. It is necessary to be equipped with. As mentioned above, the temperature rise process when the battery starts up, the temperature drop process when the battery stops, and the heat generated by the battery reaction during power generation causes a temperature distribution inside the battery, causing thermal stress and mechanical strain. I do. In particular, the gas supply groove of the separator member has a small thickness and is easily damaged or broken due to the mechanical strain. Therefore, in the present invention, the bending strength at room temperature is 30 MPa or more as the material strength, and the bending strength reduction rate from room temperature to 100 ° C. Is set to 30% or less. The bending strength is a value measured according to JIS K6911.
The values of the bending strength measured at 0 ° C. are A and B, which are values calculated by the formula [(AB) / (A)] × 100 (%).

【0016】このように特定した材質強度により破損や
欠損は抑制されるが、更に、炭素−樹脂硬化成形体の反
りが0.5mm以下、ショア硬度が100以下、曲げ弾性
率が20GPa以下、厚さ精度が±0.05mm以内の材
質強度ならびに形状精度を備えたものである場合にはよ
り効果的に破損や欠損を抑制することができる。
Although the material strength specified as described above suppresses breakage and chipping, the cured carbon-resin body has a warpage of 0.5 mm or less, a Shore hardness of 100 or less, a flexural modulus of 20 GPa or less, and a thickness of When the material has a material strength and a shape accuracy within ± 0.05 mm in accuracy, breakage and loss can be more effectively suppressed.

【0017】セルを積層して組み立てる際に、セパレー
タ部材の形状や寸法などの形状精度にバラツキがあった
り、平面性が劣るものである場合にはセルを密着させて
組み立てることが困難となる。そこで、本発明において
は平面性として反りを0.5mm以下に、また厚さ精度を
±0.05mm以内に設定される。更に、ショア硬度を1
00以下、曲げ弾性率を20GPa以下の値に設定する
ことにより、セルを組み立てる際のボルト締め付け時に
破損や欠損することなく、充分に密着した状態で組み立
てることが可能となる。
In stacking and assembling cells, it is difficult to assemble the cells in close contact with each other if the shape accuracy and the shape of the separator members vary and the planarity is poor. Therefore, in the present invention, the warpage is set to 0.5 mm or less as the flatness, and the thickness accuracy is set to within ± 0.05 mm. Furthermore, Shore hardness is 1
By setting the flexural modulus to not more than 00 and not more than 20 GPa, it is possible to assemble the cell in a state of being in close contact with each other without being damaged or broken at the time of bolting when assembling the cell.

【0018】なお、反りは、定盤上にセパレータ部材試
料を置いて基準位置でダイヤルゲージをゼロセットし、
全体で9点について反り量を測定して、その最大値を反
りとし、また厚さ精度は、セパレータ部材試料の9箇所
について厚さをマイクロメータで測定し、平均値、最大
値、最小値から厚さ精度を求め、曲げ弾性率はJISK
6991に準じて測定した値である。
Incidentally, the warpage is set by setting the dial gauge to zero at the reference position with the separator member sample placed on the surface plate.
The amount of warpage is measured at nine points as a whole, and the maximum value is used as the warpage. The thickness accuracy is measured from the average value, the maximum value, and the minimum value by measuring the thickness at nine locations of the separator member sample with a micrometer. Find thickness accuracy and flexural modulus is JISK
It is a value measured according to 6991.

【0019】本発明の固体高分子型燃料電池用セパレー
タ部材は、炭素粉末と熱硬化性樹脂を混合し、混合物を
粉砕した粉砕粒を金型に装填し熱圧成形することにより
製造される。人造黒鉛、天然黒鉛、膨張黒鉛、コークス
粉、カーボンブラックなどの炭素粉末とフェノール系樹
脂、フラン系樹脂、エポキシ系樹脂などの熱硬化性樹脂
を、炭素粉末40〜90重量%、熱硬化性樹脂60〜1
0重量%の量比で混合する。熱硬化性樹脂には強度を維
持するために、ゲル化時間20分以下、固形分60%以
上のものが用いられる。なお、ゲル化時間は試料を15
0℃に保持した状態で攪拌してゲル化までの時間を測定
し、固形分は試料を70℃に保持されたオーブン中に1
50分間置き、デシケーター中で放冷後の重量残渣率を
測定して求めた値である。
The separator member for a polymer electrolyte fuel cell of the present invention is manufactured by mixing a carbon powder and a thermosetting resin, loading the pulverized particles obtained by pulverizing the mixture into a mold, and performing hot-press molding. A carbon powder such as artificial graphite, natural graphite, expanded graphite, coke powder, and carbon black, and a thermosetting resin such as a phenolic resin, a furan-based resin, and an epoxy-based resin. 60-1
Mix in an amount ratio of 0% by weight. In order to maintain the strength, a thermosetting resin having a gel time of 20 minutes or less and a solid content of 60% or more is used. The gelation time was 15 minutes for the sample.
While stirring at 0 ° C., the time until gelation was measured, and the solid content was measured by placing the sample in an oven maintained at 70 ° C. for 1 hour.
It is a value determined by measuring the percentage of weight residue after standing for 50 minutes and cooling in a desiccator.

【0020】セパレータ部材は、通常、厚さ1〜3mm程
度の板状体に加工され、その片面または両面に燃料ガス
あるいは酸化剤ガスを供給するための、通常、深さ0.
5〜1mmのガス供給溝が形成されている。したがって、
これらの加工時に炭素粉末が脱落して気孔空隙が形成さ
れるとガス不透過性が低下する難点があるので、炭素粉
末としては平均粒径が50μm 以下、最大粒径が100
μm 以下の粉末を用いることが望ましい。
The separator member is usually formed into a plate having a thickness of about 1 to 3 mm, and has a depth of about 0.1 mm for supplying a fuel gas or an oxidizing gas to one or both surfaces thereof.
A gas supply groove of 5 to 1 mm is formed. Therefore,
If the carbon powder falls off during these processes and pores are formed, there is a problem that gas impermeability decreases. Therefore, the carbon powder has an average particle size of 50 μm or less and a maximum particle size of 100 μm.
It is desirable to use a powder of μm or less.

【0021】炭素粉末と熱硬化性樹脂との混合は、加圧
型ニーダー、二軸スクリュー式混練機など常用の混練機
により行われれるが、均一に混合するためには熱硬化性
樹脂をアルコールやエーテルなどの適宜な有機溶媒に溶
解して粘度を下げて混合することが好ましい。混合物
は、必要に応じて乾燥して揮発性成分や用いた有機溶媒
などを揮散除去したのち、粉砕機により粉砕し、篩分け
して、40メッシュ以下の粉砕粒を調製する。混合物は
大粒から小粒まで広範囲の粒度分布を有しているが、特
に大粒が存在すると成形時に均質、緻密な成形を阻害す
るので、成形粉には40メッシュ以下の粉砕粒が使用さ
れる。
The mixing of the carbon powder and the thermosetting resin is carried out by a conventional kneader such as a pressurized kneader or a twin screw kneader. It is preferable to dissolve in an appropriate organic solvent such as ether to lower the viscosity and mix. The mixture is dried if necessary to remove volatile components and the used organic solvent, and then pulverized by a pulverizer and sieved to prepare pulverized particles of 40 mesh or less. The mixture has a wide range of particle size distribution from large particles to small particles, but in particular, the presence of large particles hinders uniform and dense molding at the time of molding. Therefore, pulverized particles of 40 mesh or less are used as molding powder.

【0022】粉砕粒は、ガス供給溝を形成するための突
条部を設けた金型に装填し、10MPa程度の圧力で予
圧したのち一旦金型を開放して内在する揮発分及び残留
空気を排出除去する。この揮発分や残留空気の排出除去
により成形体中に発生する組織欠陥が大幅に低減化し、
ガス不透過性の向上や反り発生の防止が図られる。
The pulverized particles are loaded into a mold provided with a ridge for forming a gas supply groove, pre-pressed at a pressure of about 10 MPa, and then the mold is opened once to remove volatile components and residual air contained therein. Discharge and remove. The structural defects that occur in the molded body due to the removal and removal of this volatile matter and residual air are greatly reduced,
Improvement of gas impermeability and prevention of warpage are achieved.

【0023】次いで、金型を閉じ、室温〜280℃の温
度及び20〜400MPaの圧力で熱圧成形したのち、
金型から離型し、得られた板状成形体を黒鉛板やアルミ
ニウム板などの表面が平坦平滑で熱伝導性が良好な平板
に挟持して、150〜280℃の温度に5分間以上保持
して加熱硬化処理を行い、熱硬化性樹脂の硬化反応を進
行させることにより、平面度が高く、反りが少なく、更
に耐蝕性の優れた板状成形体を製造することができる。
Next, the mold is closed and hot-pressed at a temperature of room temperature to 280 ° C. and a pressure of 20 to 400 MPa.
After releasing from the mold, the obtained plate-like molded body is sandwiched between flat surfaces of graphite plate and aluminum plate, etc., which have a flat and smooth surface and good thermal conductivity, and are kept at a temperature of 150 to 280 ° C for 5 minutes or more. By performing a heat-curing treatment to advance the curing reaction of the thermosetting resin, it is possible to produce a plate-like molded body having high flatness, little warpage, and excellent corrosion resistance.

【0024】この熱圧成形時における金型内の温度分布
は、樹脂の硬化反応速度の均一性に影響するため、成形
体組織中の硬化状態の均一化を図るために熱圧成形時の
金型内の温度差、すなわち最高温度部位の温度と最低温
度部位の温度との差は10℃以内に制御される。温度差
が10℃を超えると成形中の硬化状態が部分的に変化す
る度合いが大きくなって熱歪みが生じ、成形体に反りが
生じ易くなる。
Since the temperature distribution in the mold during the hot pressing affects the uniformity of the curing reaction rate of the resin, the temperature distribution in the hot pressing during the hot pressing is made uniform in the structure of the molded body. The temperature difference in the mold, that is, the difference between the temperature of the highest temperature portion and the temperature of the lowest temperature portion is controlled within 10 ° C. If the temperature difference exceeds 10 ° C., the degree of partial change in the cured state during molding is increased, causing thermal distortion, and the molded body is likely to warp.

【0025】また、表面平坦平滑な平板で挟持して熱硬
化性樹脂を加熱硬化処理する際に、70Pa以上の圧力
下で熱処理を行うと、表面平坦で平面性の高い板状成形
体を得ることができる。なお、設計条件によっては、フ
ライス加工、サーフェス加工などの表面平滑化処理や外
周加工処理が施される。
When the thermosetting resin is subjected to heat treatment at a pressure of 70 Pa or more when the thermosetting resin is sandwiched between flat plates having a flat surface and is subjected to heat curing, a plate-shaped molded product having a flat surface and high flatness is obtained. be able to. In addition, depending on design conditions, a surface smoothing process such as a milling process or a surface process or an outer peripheral processing process is performed.

【0026】[0026]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0027】実施例1〜4、比較例1〜7 真比重2.18、平均粒径45μm の炭素粉末と、ゲル
化時間および樹脂固形分の異なるフェノール樹脂をメタ
ノールに溶解した溶液(樹脂濃度20wt%)を異なる量
比で混合し、二軸ニーダーを用いて混合した。得られた
混合物を室温で真空乾燥したのち、奈良式粉砕機により
粉砕し、次いで篩分けして異なる粒度の粉砕粒を調整
し、ガス供給溝を形成するための突条部を設けた金型に
装填した。
Examples 1 to 4, Comparative Examples 1 to 7 A solution prepared by dissolving carbon powder having a true specific gravity of 2.18 and an average particle size of 45 μm, and a phenol resin having a different gelation time and resin solid content in methanol (resin concentration: 20 wt. %) Were mixed in different ratios and mixed using a twin-screw kneader. After vacuum-drying the obtained mixture at room temperature, it is pulverized by a Nara-type pulverizer, and then sieved to adjust pulverized particles having different particle sizes, and a mold provided with a ridge portion for forming a gas supply groove. Was loaded.

【0028】金型には、幅1.5mm、深さ1mmのガス供
給溝に対応する突条部が片面に33本づつ両面に設けら
れており、縦150mm、横150mm、厚さ3mmの板状成
形体が得られるように製作された上型と下型とから構成
されている。この金型を加熱し、10MPaの圧力を5
秒間負荷して予圧したのち、金型を開放して揮発性ガス
及び残留する空気を排出除去した。次いで、温度及び圧
力を変えて3分間保持して熱圧成形した。なお、熱圧成
形時の金型内の温度差(最高温度と最低温度との差)は
8℃に調整した。
The mold has 33 ridges on each side corresponding to a gas supply groove having a width of 1.5 mm and a depth of 1 mm, each having a length of 150 mm, a width of 150 mm and a thickness of 3 mm. It is composed of an upper mold and a lower mold manufactured to obtain a shaped body. The mold is heated and the pressure of 10 MPa is increased to 5
After loading for 2 seconds to pre-press, the mold was opened to discharge and remove volatile gases and residual air. Next, the temperature and pressure were changed and held for 3 minutes to perform hot-press molding. In addition, the temperature difference (difference between the highest temperature and the lowest temperature) in the mold during the hot pressing was adjusted to 8 ° C.

【0029】金型から離型した成形体を表面平滑な黒鉛
板で挟み付け、温度、圧力、時間を変えてフェノール樹
脂を加熱硬化処理した。このようにして製造した炭素−
樹脂硬化成形体からなるセパレータ部材の製造条件を対
比して表1に示した。
The molded product released from the mold was sandwiched between graphite plates having a smooth surface, and the phenol resin was heat-cured while changing the temperature, pressure and time. The carbon thus produced is
Table 1 shows a comparison of the production conditions of the separator member formed of the cured resin body.

【0030】[0030]

【表1】 [Table 1]

【0031】これらのセパレータ部材の曲げ強度、曲げ
強度低下率、反り量、厚さ精度、ショア硬度、曲げ弾性
率、を測定して表2に示した。また、下記の方法により
接触電気抵抗の測定およびガスリーク試験を行ってその
結果も表2に併載した。 接触電気抵抗の測定 セパレータ部材を10枚積層し、1MPaの締付け力で
固定したのち、積層体を100℃に加熱し、次いで10
Aの直流電流を通電して積層されたセパレータ間の接触
電気抵抗を測定した。 ガスリーク試験 接触電気抵抗測定後、積層されたセパレータを解体し、
各セパレータ間に窒素ガスで1MPaの圧力を加えてガ
スリークの有無を調べた。
The flexural strength, flexural strength reduction rate, warpage, thickness accuracy, Shore hardness and flexural modulus of these separator members were measured and are shown in Table 2. Further, the measurement of the contact electric resistance and the gas leak test were performed by the following methods, and the results are also shown in Table 2. Measurement of Contact Electric Resistance Ten separator members were laminated and fixed with a tightening force of 1 MPa, and then the laminate was heated to 100 ° C.
A direct current of A was applied to measure the contact electric resistance between the stacked separators. Gas leak test After measuring the contact electric resistance, the laminated separator was dismantled,
A pressure of 1 MPa was applied between each separator with nitrogen gas, and the presence or absence of gas leak was examined.

【0032】[0032]

【表2】 [Table 2]

【0033】表1の結果より、本発明の範囲内で製造さ
れたセパレータ材は、本発明の特性を有する製品である
ことが判る。また、表2の結果から本発明の特性を有す
るセパレータ材は、接触電気抵抗が小さく、かつ電池組
立時においてリーク発生が解消されていることも判る。
この結果から、本発明で選定された特性が、部材の接触
電気抵抗を低減させ、かつ電池内のガスリークを効果的
に防止できることは明らかである。また、本特性を有す
るセパレータ材は所定の条件で製造することによって確
保可能である。
From the results in Table 1, it can be seen that the separator material manufactured within the scope of the present invention is a product having the characteristics of the present invention. Also, the results in Table 2 show that the separator material having the characteristics of the present invention has a low contact electric resistance and eliminates the occurrence of leakage during battery assembly.
From these results, it is clear that the characteristics selected in the present invention can reduce the contact electric resistance of the members and effectively prevent gas leakage in the battery. Further, the separator material having the above characteristics can be secured by manufacturing it under predetermined conditions.

【0034】[0034]

【発明の効果】以上のとおり、本発明の固体高分子型燃
料電池用セパレータ部材によれば、室温及び高温におけ
る材質強度が大きく、また反り量や厚さ精度などの形状
精度が高い、炭素−樹脂硬化成形体から形成されている
ので、電池起動時の昇温過程や電池停止時の降温過程、
あるいは通常稼働時に生じる不均一な温度分布状態に伴
う熱応力によるセパレータ部材の破損や欠損を効果的に
低減化することが可能となる。また、電池組み立て時に
おいてセル間の密着性が改善されるため接触電気抵抗の
増大が防止され、更に、電池組み立て時の締め付けによ
るセパレータ部材の破損や欠損も防止される。したがっ
て、セパレータ部材の破損や欠損に伴って発生するガス
リークの問題も解消され、電池性能の安定維持及び向上
を可能とする固体高分子型燃料電池用セパレータ部材を
提供することができる。また、本発明の製造方法によれ
ば、これらの優れた性能を備える本発明の固体高分子型
燃料電池用セパレータ部材の製造が可能となる。
As described above, according to the separator member for a polymer electrolyte fuel cell of the present invention, carbon material having high material strength at room temperature and high temperature and high shape accuracy such as warpage and thickness accuracy can be obtained. Since it is formed from a resin cured molded body, the temperature rise process when the battery starts up, the temperature decrease process when the battery stops,
Alternatively, it is possible to effectively reduce breakage or breakage of the separator member due to thermal stress caused by a non-uniform temperature distribution state generated during normal operation. Further, since the adhesion between cells is improved during battery assembly, an increase in contact electric resistance is prevented, and furthermore, breakage or loss of the separator member due to tightening during battery assembly is also prevented. Therefore, the problem of gas leakage generated due to breakage or breakage of the separator member is also solved, and a polymer electrolyte fuel cell separator member capable of maintaining and improving the cell performance stably can be provided. Further, according to the production method of the present invention, it is possible to produce the polymer electrolyte fuel cell separator member of the present invention having these excellent performances.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 31:34 Fターム(参考) 4F202 AA36 AH81 AM32 CA27 CB01 CM12 CN01 CP07 4F203 AA36 AH81 AM32 DA12 DB01 DC01 DK07 DM04 DN10 DW06 5H026 AA06 BB00 BB01 BB02 BB06 BB08 BB10 EE05 EE18 HH00 HH03 HH05 HH08 HH09 HH10──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B29L 31:34 F term (Reference) 4F202 AA36 AH81 AM32 CA27 CB01 CM12 CN01 CP07 4F203 AA36 AH81 AM32 DA12 DB01 DC01 DK07 DM04 DN10 DW06 5H026 AA06 BB00 BB01 BB02 BB06 BB08 BB10 EE05 EE18 HH00 HH03 HH05 HH08 HH09 HH10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末40〜90重量%と熱硬化性樹
脂60〜10重量%の組成からなり、室温における曲げ
強度が30MPa以上で、かつ室温から100℃におけ
る曲げ強度低下率が30%以下、の特性を備える炭素−
樹脂硬化成形体から形成されたことを特徴とする固体高
分子型燃料電池用セパレータ部材。
1. A composition comprising 40 to 90% by weight of carbon powder and 60 to 10% by weight of a thermosetting resin, having a bending strength at room temperature of 30 MPa or more, and a reduction rate of bending strength from room temperature to 100 ° C. of 30% or less. Carbon with the characteristics of
A separator member for a polymer electrolyte fuel cell, wherein the separator member is formed from a cured resin body.
【請求項2】 炭素−樹脂硬化成形体の反りが0.5mm
以下、ショア硬度が100以下、曲げ弾性率が20GP
a以下、厚さ精度が±0.05mm以内であることを特徴
とする請求項1記載の固体高分子型燃料電池用セパレー
タ部材。
2. The carbon-resin cured molded article has a warpage of 0.5 mm.
Below, Shore hardness is 100 or less, flexural modulus is 20GP
2. The separator member for a polymer electrolyte fuel cell according to claim 1, wherein the thickness accuracy is within ± 0.05 mm.
【請求項3】 炭素粉末40〜90重量%に、ゲル化時
間が20分以下、固形分が60%以上の熱硬化性樹脂を
60〜10重量%の量比で混合し、混合物を粉砕し、篩
分けして得られた40メッシュ以下の粉砕粒を金型に装
填し、予圧したのち一旦金型を開放して揮発分及び残留
空気を排出除去し、次いで、室温〜280℃の温度及び
20〜400MPaの圧力で熱圧成形し、離型後、表面
平滑な平板で挟持して、150〜280℃の温度で5分
間以上加熱して熱硬化性樹脂を加熱硬化処理することを
特徴とする固体高分子型燃料電池用セパレータ部材の製
造方法。
3. A thermosetting resin having a gelation time of 20 minutes or less and a solid content of 60% or more is mixed with 40 to 90% by weight of carbon powder in an amount ratio of 60 to 10% by weight, and the mixture is pulverized. The crushed granules having a mesh size of 40 mesh or less obtained by sieving were charged into a mold, and after pre-pressing, the mold was once opened to remove volatile matter and residual air, and then the temperature from room temperature to 280 ° C. It is hot-pressed at a pressure of 20 to 400 MPa, and after releasing, it is sandwiched by flat plates having a smooth surface and heated at a temperature of 150 to 280 ° C. for 5 minutes or more to heat and cure the thermosetting resin. Of producing a separator member for a polymer electrolyte fuel cell.
【請求項4】 熱圧成形時における金型内の温度差を1
0℃以内に制御することを特徴とする請求項3記載の固
体高分子型燃料電池用セパレータ部材の製造方法。
4. The method according to claim 1, wherein the temperature difference in the mold during hot pressing is 1
4. The method for producing a separator for a polymer electrolyte fuel cell according to claim 3, wherein the temperature is controlled within 0 ° C.
【請求項5】 熱硬化性樹脂の加熱硬化処理を70Pa
以上の圧力下で行うことを特徴とする請求項3または4
記載の固体高分子型燃料電池用セパレータ部材の製造方
法。
5. The heat-curing treatment of a thermosetting resin is performed at 70 Pa.
5. The method according to claim 3, wherein the step is performed under the above pressure.
A method for producing a separator member for a polymer electrolyte fuel cell according to the above.
JP04303599A 1999-02-22 1999-02-22 Method for producing separator member for polymer electrolyte fuel cell Expired - Fee Related JP3807708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04303599A JP3807708B2 (en) 1999-02-22 1999-02-22 Method for producing separator member for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04303599A JP3807708B2 (en) 1999-02-22 1999-02-22 Method for producing separator member for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000243409A true JP2000243409A (en) 2000-09-08
JP3807708B2 JP3807708B2 (en) 2006-08-09

Family

ID=12652677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04303599A Expired - Fee Related JP3807708B2 (en) 1999-02-22 1999-02-22 Method for producing separator member for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3807708B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093670A1 (en) 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
EP1460702A1 (en) * 2001-12-27 2004-09-22 Hitachi Chemical Co., Ltd. Fuel cell-use separator
US6949305B2 (en) 2000-12-26 2005-09-27 Aisin Seiki Kabushiki Kaisha Separator for fuel cell, method for producing separator and fuel cell applied with separator
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
US7381493B2 (en) 2003-09-30 2008-06-03 Nichias Corporation Separator for fuel cell and process for producing the same
DE112007000054T5 (en) 2006-06-21 2008-08-07 Matsushita Electric Industrial Co., Ltd., Kadoma fuel cell
EP2015384A1 (en) 2007-06-15 2009-01-14 TUBITAK-Turkiye Bilimsel ve Teknolojik ve Arastima Kurumu A method for producing recyclable bipolar plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949305B2 (en) 2000-12-26 2005-09-27 Aisin Seiki Kabushiki Kaisha Separator for fuel cell, method for producing separator and fuel cell applied with separator
EP1394878A4 (en) * 2001-05-11 2007-10-10 Kureha Corp Separator for solid state polymer type fuel cell and method for producing the same
EP1394878A1 (en) * 2001-05-11 2004-03-03 Kureha Chemical Industry Co., Ltd. Separator for solid state polymer type fuel cell and method for producing the same
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
WO2002093670A1 (en) 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
EP1460702A1 (en) * 2001-12-27 2004-09-22 Hitachi Chemical Co., Ltd. Fuel cell-use separator
EP1460702A4 (en) * 2001-12-27 2009-03-04 Hitachi Chemical Co Ltd Fuel cell-use separator
US7381493B2 (en) 2003-09-30 2008-06-03 Nichias Corporation Separator for fuel cell and process for producing the same
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
DE112007000054T5 (en) 2006-06-21 2008-08-07 Matsushita Electric Industrial Co., Ltd., Kadoma fuel cell
US8557466B2 (en) 2006-06-21 2013-10-15 Panasonic Corporation Fuel cell including separator with gas flow channels
EP2015384A1 (en) 2007-06-15 2009-01-14 TUBITAK-Turkiye Bilimsel ve Teknolojik ve Arastima Kurumu A method for producing recyclable bipolar plate

Also Published As

Publication number Publication date
JP3807708B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP2001325967A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
KR100528010B1 (en) Polymer electrolyte type fuel cell
TWI382579B (en) Isolation material for fuel cell and manufacturing method thereof
JP5057263B2 (en) Separator material for polymer electrolyte fuel cell and method for producing the same
US20060204770A1 (en) Reinforced matrix for molten carbonate fuel cell using porous aluminum support and method for preparing the molten carbonate fuel cell comprising the reinforced matrix
WO2006049319A1 (en) Separator material for solid polymer fuel cell and process for producing the same
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
KR100649516B1 (en) Fuel Cell-Use Separator
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP2000243409A (en) Separator member for sold polymer fuel cell and its manufacture
KR20080074455A (en) Bipolar plate for fuel cell
JP5249609B2 (en) Fuel cell separator and manufacturing method thereof
JP2000021421A (en) Separator member for solid high molecular fuel cell and manufacture thereof
JP2005285774A (en) Separator for fuel cell, its manufacturing method, and fuel cell including the separator
JP3715642B2 (en) Manufacturing method of fuel cell separator
KR100808332B1 (en) Method of preparing separator for fuel cell and separator for fuel cell prepared by the same
JP2002208411A (en) Separator material for solid polymer fuel cell and method of manufacturing it
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2001216977A (en) Separator material for fuel cell
JP2009140849A (en) Fuel cell and fuel cell separator
JP3980229B2 (en) Separator member for polymer electrolyte fuel cell
JP4430962B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
JP2004192878A (en) Manufacturing method of separator material for solid polymer type fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees