JP2000241593A - Multilayer film spectral element for analyzing fluorescent x rays of carbon - Google Patents

Multilayer film spectral element for analyzing fluorescent x rays of carbon

Info

Publication number
JP2000241593A
JP2000241593A JP11042659A JP4265999A JP2000241593A JP 2000241593 A JP2000241593 A JP 2000241593A JP 11042659 A JP11042659 A JP 11042659A JP 4265999 A JP4265999 A JP 4265999A JP 2000241593 A JP2000241593 A JP 2000241593A
Authority
JP
Japan
Prior art keywords
carbon
layer
multilayer
spectroscopic element
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042659A
Other languages
Japanese (ja)
Inventor
Kazuaki Shimizu
一明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP11042659A priority Critical patent/JP2000241593A/en
Publication of JP2000241593A publication Critical patent/JP2000241593A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer film spectral element for analyzing fluorescent X rays of carbon that enables highly accurate analysis of fluorescent X rays of carbon (C). SOLUTION: Iron (Fe) and carbon (C) are used for a reflecting layer 31 and a spacer 32 respectively, a period length is set at between 7.0 nm and 10.0 nm inclusive and the number of pairs of layers is fixed at between 18 and 25 inclusive. A multilayer spectral element 3 where the outermost surface of the multilayers ends with a carbon (C) layer 32 ensures the strength of analysis that is almost equal to that of a conventional Ni/C multilayer spectral element in comparison of the former with the latter, and makes it possible to obtain the improvement in a ratio of measurement strength (P) to background strength (B) by about 70% and the about 86% increase in a half-value width.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射層とスペーサ
層からなる層対を基板上に多数積層して構成され、炭素
の蛍光X線分析に使用される多層膜分光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer spectroscopic element which is formed by laminating a large number of layer pairs comprising a reflective layer and a spacer layer on a substrate and is used for X-ray fluorescence analysis of carbon.

【0002】[0002]

【従来の技術】ホウ素(B)、炭素(C)、窒素(N)
等の蛍光X線を含むいわゆる軟X線領域においては、そ
の波長が約数nmと比較的長いために、ブラッグ反射を
利用し得る適当な分光結晶が天然には存在せず、軟X線
分光分野の大きな課題となっていた。これに対し、近年
の真空蒸着による成膜技術の進歩に伴って、異なる物質
を交互に積層して成る多層膜素子が軟X線分光素子とし
て非常に有用であることが見出され、現在では硬X線を
含めた広い領域にわたってその実用化が試みられてい
る。
2. Description of the Related Art Boron (B), carbon (C), nitrogen (N)
In a so-called soft X-ray region including fluorescent X-rays such as those described above, since the wavelength is relatively long, about several nm, there is no natural suitable crystal capable of utilizing Bragg reflection. It was a major challenge in the field. On the other hand, with the recent development of the film forming technology by vacuum deposition, a multilayer film element formed by alternately laminating different substances has been found to be very useful as a soft X-ray spectroscopic element. Practical use has been attempted over a wide area including hard X-rays.

【0003】上記の多層膜分光素子を用いた蛍光X線分
析装置の一例を図10に示す。同図において、X線管1
からの1次X線B1を試料2に照射し、この試料2で発
生する蛍光(2次)X線B2を多層膜分光素子3によ
り、ブラッグの式(1)を満足する所定の波長λの蛍光
X線B2のみを入射角θと同一の反射角θでブラッグ反
射させる。その他の蛍光X線B2は、多層膜分光素子3
からほとんど反射されない。 2d・sinθ=mλ (1) (但し、dは周期長、mは反射の次数1,2,3,…) そして、この多層膜分光素子3からの反射X線B3を検
出器4に入射させ、分析器6で分析対象のX線の反射ピ
ークプロファイルを得る。なお、ソーラスリット5はX
線を平行光にするためである。
FIG. 10 shows an example of an X-ray fluorescence analyzer using the above-mentioned multilayer film spectroscopic element. In the figure, an X-ray tube 1
The sample 2 is irradiated with primary X-rays B1 from the sample 2, and the fluorescent (secondary) X-rays B2 generated in the sample 2 are irradiated by the multilayer spectroscopic element 3 at a predetermined wavelength λ satisfying the Bragg equation (1). Only the fluorescent X-ray B2 is Bragg reflected at the same reflection angle θ as the incident angle θ. The other fluorescent X-rays B2 are emitted from the multilayer spectroscopic element 3
Hardly reflected from 2d · sin θ = mλ (1) (where d is the cycle length, m is the order of reflection 1, 2, 3,...) Then, the reflected X-rays B3 from the multilayer film spectral element 3 are made incident on the detector 4. The analyzer 6 obtains a reflection peak profile of an X-ray to be analyzed. The solar slit 5 is X
This is to make the lines parallel light.

【0004】炭素(C)の蛍光X線分析においては、そ
の分光素子として従来Ni/C多層膜が有用であるとさ
れ、ほとんどの分析装置において該多層膜分光素子が使
用されている。また、同波長付近で高い反射率特性を有
する多層膜分光素子についても、理論的または実験的な
立場から研究考察がなされており、例えばスペーサ層と
してCやCaを、反射層としてはV,Cr,Mn,F
e,Co,Ni,Reなどの物質を用いることが提案さ
れている。
In a fluorescent X-ray analysis of carbon (C), a Ni / C multilayer film is conventionally considered to be useful as a spectroscopic element, and the multi-layer spectroscopic element is used in most analyzers. Also, a multilayer spectroscopic element having a high reflectance characteristic near the same wavelength has been studied and studied from a theoretical or experimental standpoint. For example, C or Ca is used as a spacer layer, and V, Cr is used as a reflective layer. , Mn, F
It has been proposed to use substances such as e, Co, Ni, Re.

【0005】[0005]

【発明が解決しようとする課題】一般に、B、C、N等
の軽元素の蛍光X線分析においては、当該元素の蛍光X
線強度が元来非常に弱いため、特に薄膜中の微量分析を
精度よく行うためには、高い反射率(入射X線B2の強
度に対する反射X線B3の強度)であると共に、その測
定強度(P)とバックグラウンド強度(B)の比(P/
B比)もできるだけ大きくなるような分光素子が必要と
されている。P/B比は、正確には(P−B)/Bの比
で示される。また、特に多層膜分光素子を用いた分析に
おいては、測定元素の分析ピークの近傍に、他元素の蛍
光X線の高次ブラッグ反射線が妨害ピークとして出現す
ることがしばしばあり、分析精度の劣化の要因となるこ
とから、何らかの対策が必要とされている。
Generally, in the X-ray fluorescence analysis of light elements such as B, C, and N, the fluorescent X
Since the line intensity is originally very weak, in particular, in order to accurately perform a trace analysis in a thin film, a high reflectance (the intensity of the reflected X-ray B3 relative to the intensity of the incident X-ray B2) and the measured intensity ( P) and the ratio of background intensity (B) (P /
(B ratio) is required as much as possible. The P / B ratio is accurately represented by the ratio of (P−B) / B. In particular, in analysis using a multilayer spectroscopic element, high-order Bragg reflection lines of fluorescent X-rays of other elements often appear as interference peaks in the vicinity of the analysis peak of the element to be measured, which deteriorates the analysis accuracy. Therefore, some countermeasures are required.

【0006】これらの要求に対し、従来炭素(C)の蛍
光X線分析に使用されているNi/C多層膜分光素子で
は、比較的高い反射強度が得られるものの、P/B比に
ついては未だ十分であるとは言えず、また特に酸素
(O)を含むような試料の炭素(C)分析においては、
その蛍光X線分析の高次ブラッグ反射線に起因する妨害
線の影響を強く受けるという欠点もあった。
To meet these requirements, a Ni / C multilayer spectroscopic element conventionally used for X-ray fluorescence analysis of carbon (C) can obtain a relatively high reflection intensity, but still has a P / B ratio. In the case of carbon (C) analysis of a sample which is not sufficient, and particularly contains oxygen (O),
There is also a drawback that the device is strongly affected by interference due to higher-order Bragg reflection lines in the fluorescent X-ray analysis.

【0007】本発明は上記の問題点を解決して、高精度
の炭素(C)の蛍光X線分析が可能な炭素蛍光X線分析
用多層膜分光素子を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multilayer X-ray spectroscopic element for carbon X-ray fluorescence analysis capable of solving the above-mentioned problems and performing high-precision X-ray fluorescence analysis of carbon (C).

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の炭素蛍光X線分析用多層膜分光素子は、
反射層とスペーサ層からなる層対を基板上に多数積層し
て構成され、試料中に含まれる炭素(C)の蛍光X線分
析に使用される多層膜分光素子であって、前記反射層に
鉄(Fe)を、前記スペーサ層に炭素(C)を使用し
て、周期長を7.0nm以上10.0nm以下、層対数
を18層対以上25層対以下とし、多層膜最表面を炭素
(C)層で終端している。
In order to achieve the above object, a multilayer spectroscopic element for carbon X-ray fluorescence analysis according to claim 1 is provided.
A multilayer spectroscopic element for use in X-ray fluorescence analysis of carbon (C) contained in a sample, comprising a plurality of layer pairs composed of a reflective layer and a spacer layer laminated on a substrate. Using carbon (C) as the spacer layer, iron (Fe) has a period length of 7.0 nm or more and 10.0 nm or less, the number of layer pairs is 18 or more and 25 or less, and the outermost surface of the multilayer film is made of carbon. (C) Termination at layer.

【0009】上記構成によれば、反射層に鉄(Fe)
を、スペーサ層に炭素(C)を使用して、周期長を7.
0nm以上10.0nm以下、層対数を18層対以上2
5層対以下とし、多層膜最表面を炭素(C)層で終端し
た多層膜分光素子により、従来のNi/C多層膜分光素
子と比較してほぼ同等の分析強度を確保するとともに、
約1.7倍の測定強度(P)/バックグラウンド強度
(B)の比(P/B比)および約86%の半価幅の改善
を得ることができる。ここで、半価幅は測定スペクトル
の分解能を表すもので、測定スペクトルの半分の強度位
置での、スペクトルの広がりをいう。
According to the above configuration, iron (Fe) is added to the reflection layer.
Using carbon (C) for the spacer layer, and setting the period length to 7.
0 nm or more and 10.0 nm or less, the number of layer pairs is 18 layer pairs or more and 2
With a multilayer spectroscopic element having 5 or less layers and the outermost surface of the multilayer film terminated with a carbon (C) layer, the analysis intensity is almost equal to that of a conventional Ni / C multilayer spectroscopic element, and
An approximately 1.7-fold improvement in measured intensity (P) / background intensity (B) (P / B ratio) and an improvement in half-width of about 86% can be obtained. Here, the half width represents the resolution of the measured spectrum, and refers to the spread of the spectrum at a half intensity position of the measured spectrum.

【0010】請求項2の炭素蛍光X線分析用多層膜分光
素子は、請求項1において、さらに、前記反射層とスペ
ーサ層の膜厚比を1:3または1:1としている。した
がって、酸素(O)を含む試料の炭素(C)の蛍光X線
分析において、Oの高次反射線を抑制することができ
る。
According to a second aspect of the present invention, the film thickness ratio between the reflective layer and the spacer layer is set to 1: 3 or 1: 1. Therefore, in a fluorescent X-ray analysis of carbon (C) of a sample containing oxygen (O), higher-order reflection lines of O can be suppressed.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて説明する。図1は、この発明の一実施形態に
よる炭素(C)蛍光X線分析用多層膜分光素子3を示す
拡大断面図である。この多層膜分光素子3は、反射層3
1とスペーサ層32とからなる層対をシリコンウエハの
ような基板7上に多数積層して構成されており、反射層
31として鉄(Fe)、スペーサ層32に炭素(C)を
用いている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged sectional view showing a multilayer spectroscopic element 3 for carbon (C) X-ray fluorescence analysis according to an embodiment of the present invention. This multilayer film spectroscopic element 3 includes a reflective layer 3
1 and a spacer layer 32, a large number of layer pairs are laminated on a substrate 7 such as a silicon wafer, and iron (Fe) is used as the reflection layer 31 and carbon (C) is used as the spacer layer 32. .

【0012】また、多層膜の最表面はC層32で終端し
ている。これは、一般にFe薄膜は、そのまま大気中に
放置しておくと大気中の水分や酸素と反応を起こし酸化
膜に変化してしまため、最表面がFe層で終端している
多層膜では、その性能に重大な影響を及ぼすことになる
からである。なお、多層膜の最下面の層、つまり多層膜
と基板7の接着層に相当する層もC層32で形成してい
る。これは、Fe層の表面は一般にざらついているのに
対して、C層は表面が滑らかで接着層に適しているから
である。このFe/C多層膜分光素子3は、例えばイオ
ンビームスパッタリング法により成膜される。上記Fe
/C多層膜分光素子3は、試料中に含まれる炭素(C)
の蛍光X線B2をブラッグ反射して反射X線B3を発生
させる。
The outermost surface of the multilayer film is terminated by a C layer 32. This is because, in general, if a Fe thin film is left in the air as it is, it reacts with moisture and oxygen in the air and changes to an oxide film, so in a multilayer film whose outermost surface is terminated with an Fe layer, This is because it will have a significant effect on its performance. The lowermost layer of the multilayer film, that is, the layer corresponding to the adhesive layer between the multilayer film and the substrate 7 is also formed of the C layer 32. This is because the surface of the Fe layer is generally rough, whereas the surface of the C layer is smooth and suitable for an adhesive layer. The Fe / C multilayer film spectral element 3 is formed by, for example, an ion beam sputtering method. The above Fe
/ C multilayer film spectroscopic element 3 is composed of carbon (C) contained in the sample.
The reflected X-ray B2 is generated by Bragg reflection of the fluorescent X-ray B2.

【0013】本発明に係るFe/C多層膜分光素子3に
おいては、〔I 〕周期長dを7.0nm以上10.0n
m以下とし、かつ、〔II〕層対数を18層対以上25層
対以下としているが、以下、上記周期長dおよび層対数
について説明する。
In the Fe / C multilayer film spectroscopic element 3 according to the present invention, the [I] cycle length d is set to 7.0 nm or more and 10.0 n or more.
m and the number of [II] layer pairs is from 18 layer pairs to 25 layer pairs. The period length d and the number of layer pairs will be described below.

【0014】〔I 〕周期長dについて 多層膜分光素子の反射性能は、一般に積層界面の乱れ
(界面ラフネスσ)に大きく影響を受けることが知られ
ており、実際に得られる反射強度(I)は、乱れのない
理想的な場合の反射強度(I0 )に対して近似的に次式
によって表される。 I=I0 ・exp〔−(2πmσ/d)2 〕 (2) ただし、dは多層膜分光素子の周期長を表しており、m
はブラッグの反射次数でこの場合1である。この式から
明らかなように、一般に多層膜分光素子の反射性能は、
その周期長dが小さくなるに従い劣化してしまう傾向に
ある。
[I] Regarding the Period Length d It is known that the reflection performance of a multilayer spectroscopic element is generally greatly affected by the disturbance of the laminated interface (interface roughness σ), and the actually obtained reflection intensity (I) Is approximately expressed by the following equation with respect to the reflection intensity (I 0 ) in an ideal case without disturbance. I = I 0 · exp [− (2πmσ / d) 2 ] (2) where d represents the period length of the multilayer film spectroscopic element, and m
Is the Bragg reflection order, which is 1 in this case. As is clear from this equation, the reflection performance of the multilayer spectroscopic element is generally
It tends to deteriorate as the cycle length d decreases.

【0015】一方、Fe/C多層膜分光素子を、従来の
Ni/C多層膜分光素子に代わる炭素分析用分光素子と
して使用する際には、従来の分析との継続性を考慮すれ
ば、炭素分析強度は少なくとも従来の90%以上である
ことが望ましい。本発明によるFe/C多層膜分光素子
の界面ラフネスσを、その周期長dを変化させた場合の
反射強度の変化から式(2)を使って評価したところ、
約0.8nmであることがわかった。したがって、従来
のNi/C多層膜分光素子の90%以上の分析強度を確
保するためには、式(2)から約7nm以上の周期長d
とすればよいことがわかる。
On the other hand, when the Fe / C multilayer spectroscopic element is used as a spectroscopic element for carbon analysis replacing the conventional Ni / C multilayer spectroscopic element, considering the continuity with the conventional analysis, It is desirable that the analysis intensity is at least 90% or more of the conventional intensity. When the interface roughness σ of the Fe / C multilayer film spectroscopic element according to the present invention was evaluated from the change in the reflection intensity when the period length d was changed, using Expression (2),
It was found to be about 0.8 nm. Therefore, in order to secure the analysis intensity of 90% or more of the conventional Ni / C multilayer film spectroscopic element, it is necessary to obtain the period length d of about 7 nm or more from the equation (2).
It should be understood that

【0016】一方、周期長dの上限は、小さい方が望ま
しい。すなわち、上記ブラッグの式(1)により、周期
長dの小さい方が、入射角θが大きいので、図2(a)
の反射ピークプロファイルのように、波長λが異なる2
つの蛍光X線について、周期長の小さいd1と大きいd
2とでは、周期長の小さいd1の方の反射ピークの分離
が大きくなり、高精度の分析が可能となる。また、図2
(b)のように、多層膜における全反射強度は、入射角
θの大きい方が小さくなるので、反射ピークにこの全反
射強度がバックグラウンドとして重なるから、周期長の
小さい(入射角θの大きい)d1の方がバックグラウン
ドも小さくなり、P/B比が大きくなる。経験的には、
周期長dを約10nm以下とするのが適当である。した
がって、本発明に係る多層膜分光素子3の周期長dの範
囲は7.0nm以上10.0nm以下であることが望ま
しい。好ましくは、8.0nm以上9.0nm以下であ
る。
On the other hand, it is desirable that the upper limit of the period length d be smaller. That is, according to Bragg's formula (1), the smaller the period length d is, the larger the incident angle θ is.
2 having different wavelengths λ like the reflection peak profile of
For one fluorescent X-ray, d1 having a small cycle length and d having a large cycle length
In the case of No. 2, the separation of the reflection peak of d1 having a small cycle length becomes large, and high-precision analysis becomes possible. FIG.
As shown in (b), the total reflection intensity of the multilayer film decreases as the incident angle θ increases, and the total reflection intensity overlaps with the reflection peak as a background. Therefore, the period length is small (the incident angle θ is large). D) The background is smaller and the P / B ratio is larger for d1. Empirically,
It is appropriate that the period length d be about 10 nm or less. Therefore, it is desirable that the range of the period length d of the multilayer film spectral element 3 according to the present invention is not less than 7.0 nm and not more than 10.0 nm. Preferably, it is not less than 8.0 nm and not more than 9.0 nm.

【0017】〔II〕層対数について 一般に、多層膜分光素子の分光性能は、上述した周期長
d以外に、その積層層対数によっても影響を受ける。す
なわち、層対数が少なすぎる場合では、反射に寄与する
層数が不足するため、結果として反射強度が弱くなり、
また半価幅も広くなってしまう。半価幅は測定スペクト
ルの分解能を表すもので、測定スペクトルの半分の強度
位置での、スペクトルの広がりをいう。一方、層対数を
増大させた場合では、ある層対数以上では分光性能は飽
和してしまい、それ以上増大させても、製作にかかる時
間が増大するだけで意味がなくなる。また、場合によっ
ては、界面ラフネスσが層対数と共に増幅し、ある層対
数以上ではかえって分光性能が劣化してしまうこともあ
るので注意を要する。したがって、最良な分光性能を効
率よく得るための最適な層対数の見極めが必要となる。
[II] Regarding the Number of Layer Logs In general, the spectral performance of a multilayer film spectroscopic element is affected by the number of laminated layers in addition to the above-described period length d. That is, if the number of layer pairs is too small, the number of layers contributing to reflection is insufficient, and as a result, the reflection intensity becomes weak,
In addition, the half-value width also increases. The half width represents the resolution of the measured spectrum, and refers to the spread of the spectrum at a half intensity position of the measured spectrum. On the other hand, when the number of layers is increased, the spectral performance is saturated at a certain number of layers or more. It should be noted that, in some cases, the interface roughness σ is amplified together with the number of layers, and if the number of layers exceeds a certain number, the spectral performance may be deteriorated. Therefore, it is necessary to determine the optimum layer logarithm for efficiently obtaining the best spectral performance.

【0018】そこで、Fe/C多層膜分光素子の分光性
能を積層層対数を変えながら調べた結果、図4のよう
に、18層対で十分大きな反射率が得られ、ほぼ20層
対で飽和に達し、さらに30層対に増やしてもその性能
はほとんど変化しなかった。図4の横軸は層対数、縦軸
は飽和状態の反射率を1としてノーマライズした規格化
反射率である。したがって、本発明に係る多層膜分光素
子3において最良な分光性能を得るために必要となる最
適な層対数は、20層対以上25層対以下であることが
わかった。
Then, as a result of examining the spectral performance of the Fe / C multilayer film spectroscopic element while changing the number of laminated layer pairs, as shown in FIG. 4, a sufficiently large reflectance was obtained with 18 layer pairs and saturation was observed with almost 20 layer pairs. , And its performance hardly changed even when the number of layers was further increased to 30. In FIG. 4, the horizontal axis represents the layer logarithm, and the vertical axis represents the normalized reflectance obtained by normalizing the reflectance in a saturated state to 1. Therefore, it has been found that the optimum number of layer pairs necessary for obtaining the best spectral performance in the multilayer spectral element 3 according to the present invention is 20 to 25 layer pairs.

【0019】また、この実施形態では、反射層とスペー
サ層の膜厚比を1:3としており、この点、従来のNi
/C多層膜分光素子と同様である。図5は、測定スペク
トルのピーク強度(実線),半価幅(点線),バックグ
ラウンド(一点鎖線)と、反射層とスペーサ層の膜厚比
との関係を示す。この図から明らかなように、反射層の
膜厚をスペーサ層の膜厚に対して相対的に薄くする程、
半価幅が小さく、つまり分解能が高くなる。
Further, in this embodiment, the thickness ratio between the reflective layer and the spacer layer is set to 1: 3.
This is the same as the / C multilayer spectroscopic element. FIG. 5 shows the relationship between the peak intensity (solid line), the half width (dotted line), the background (dashed line) of the measured spectrum, and the film thickness ratio between the reflective layer and the spacer layer. As is clear from this figure, as the thickness of the reflective layer is made relatively thinner than the thickness of the spacer layer,
The half width is small, that is, the resolution is high.

【0020】図6に、試料にグラファイトを用いて、図
1のようなFe/C多層膜分光素子3において、周期長
dを8.0nm、層対数を20層対、反射(Fe)層3
1とスペーサ(C)層32の膜厚比を1:3とした場合
のグラファイトからの蛍光X線(C−Kα)の分析ピー
クを示す。比較のために従来のNi/C多層膜分光素子
の同一構成のものによる結果も示した。これらの結果か
ら明らかなように、Fe/C多層膜分光素子では、ピー
ク強度は従来のものとほぼ同等の値を保っているととも
に、バックグラウンド強度は約60%程度にまで低減さ
れていることから、P/B比にして約1.7倍の性能改
善が実現されていることがわかる。また、隣り合う分析
ピークの分解能に関わる半価幅でも、約86%程度のよ
り鋭いピーク形状となっている。
FIG. 6 shows a case where graphite is used as a sample, and in the Fe / C multilayer spectroscopy device 3 as shown in FIG. 1, the period length d is 8.0 nm, the number of layers is 20 pairs, and the reflection (Fe) layer 3 is used.
7 shows an analysis peak of fluorescent X-rays (C-Kα) from graphite when the thickness ratio of 1 to the spacer (C) layer 32 is 1: 3. For comparison, the results of a conventional Ni / C multilayer film spectral element having the same configuration are also shown. As is apparent from these results, in the Fe / C multilayer spectroscopy device, the peak intensity is kept almost the same value as the conventional one, and the background intensity is reduced to about 60%. From this, it is understood that a performance improvement of about 1.7 times as a P / B ratio is realized. In addition, the half-value width related to the resolution of adjacent analysis peaks has a sharper peak shape of about 86%.

【0021】炭素(C)の蛍光X線分析において、しば
しば問題となるのが、酸素(O)を含むような試料の分
析であり、この場合、Cの分析ピーク上にOの高次(具
体的には2次)反射ピークが妨害線として重なり合い、
分析精度の大きな劣化を招くこととなっていた。このよ
うな場合においても、本発明に係るFe/C多層膜分光
素子3は、従来のNi/C多層膜分光素子と比較して、
Cの分析性能の改善を図ることができる。
In the X-ray fluorescence analysis of carbon (C), it is often problematic to analyze a sample containing oxygen (O). The secondary) reflection peaks overlap as disturbing lines,
This would lead to a large deterioration in analysis accuracy. Even in such a case, the Fe / C multilayer spectroscopy device 3 according to the present invention has a smaller size than the conventional Ni / C multilayer spectroscopy device.
The analysis performance of C can be improved.

【0022】図7に、試料にガラス板上の炭素(C)薄
膜を用いて、上記と同様に、Fe/C多層膜分光素子の
周期長dを8.0nm、層対数を20層対、膜厚比を
1:3とした場合の蛍光X線(C−Kα)の分析ピーク
を示す。この図から明らかなように、従来のNi/C多
層膜分光素子では、CとO(2次反射)の各反射ピーク
の分離は非常に困難であるが、Fe/C多層膜分光素子
3では、O(2次反射)のピーク強度は半減されると共
に、各ピークの分離状態も改善され、Cの分析性能の大
幅な改善が得られていることがわかる。
FIG. 7 shows that, using a carbon (C) thin film on a glass plate as a sample, the period length d of the Fe / C multilayer film spectroscopic element was 8.0 nm, the number of layers was 20, and The analysis peak of the fluorescent X-ray (C-Kα) when the film thickness ratio is 1: 3 is shown. As is apparent from this figure, it is very difficult to separate the reflection peaks of C and O (secondary reflection) in the conventional Ni / C multilayer spectroscopic element, but in the Fe / C multilayer spectroscopic element 3, , O (secondary reflection), the peak intensity is reduced by half, the separation state of each peak is also improved, and the analysis performance of C is greatly improved.

【0023】一般に、多層膜分光素子においては、その
反射層とスペーサ層の膜厚比を調整することによって、
特定の高次ブラッグ反射を抑制することが可能である。
例えば、膜厚比がH:L(H,Lは正の整数)である場
合には、H+Lの整数倍の高次反射線が抑制されること
になる。したがって、酸素(O)の蛍光X線の2次反射
線に起因する妨害線に対する1つの対策としては、多層
膜分光素子のこの性質を利用して、その膜厚比を1:1
とすることにより、上記妨害線を抑制する方法が考えら
れる。しかしながら、多層膜分光素子の分光性能は、相
対的に反射層の膜厚が厚くなるに従い劣化する傾向にあ
るため、例えば従来のNi/C多層膜分光素子などで
は、非常に使いづらいものとなってしまうという欠点が
あった。本発明に係るFe/C多層膜分光素子3は、こ
のような場合において、分光性能の改善を図ることがで
きる。
In general, in a multilayer spectroscopic element, by adjusting the thickness ratio between the reflective layer and the spacer layer,
It is possible to suppress certain higher-order Bragg reflections.
For example, when the film thickness ratio is H: L (H and L are positive integers), higher-order reflection lines that are integral multiples of H + L are suppressed. Therefore, as one countermeasure against the disturbing line caused by the secondary reflection line of the fluorescent X-ray of oxygen (O), the film thickness ratio is set to 1: 1 by utilizing this property of the multilayer spectroscopic element.
By doing so, a method of suppressing the above interference line is considered. However, since the spectral performance of the multilayer spectroscopic element tends to deteriorate as the thickness of the reflective layer becomes relatively thick, it is very difficult to use, for example, a conventional Ni / C multilayer spectroscopic element. There was a disadvantage that it would. In such a case, the Fe / C multilayer film spectral element 3 according to the present invention can improve spectral performance.

【0024】図8,9に、試料にそれぞれグラファイ
ト,ガラス板上の炭素(C)薄膜を用い、Fe/C多層
膜分光素子の周期長d,層対数を上記と同様とし、膜厚
比を1:1とした場合のC蛍光X線分析ピークの測定結
果を示す。これらの結果から明らかなように、従来のN
i/C多層膜分光素子と比較して、ピーク強度で約1.
1倍、半価幅で約88%、バックグラウンド強度で約6
5%、さらにP/B比で約1.7倍と大幅な性能改善が
得られ、上記妨害線対策用としても非常に有効であるこ
とがわかる。
FIGS. 8 and 9 show that the graphite / carbon (C) thin film on the glass plate was used as the sample, the period length d and the number of layers of the Fe / C multilayer film spectroscopic element were the same as above, and the film thickness ratio was set. The measurement result of the C fluorescent X-ray analysis peak in the case of 1: 1 is shown. As is clear from these results, the conventional N
Compared to the i / C multilayer spectroscopic element, the peak intensity is about 1.
1 time, about 88% in half width, about 6 in background intensity
A significant performance improvement of 5% and a P / B ratio of about 1.7 times was obtained, which proves to be very effective as a countermeasure for the above-mentioned interference line.

【0025】また、図1の多層膜分光素子3の最表面を
C層32で終端したものについて、その長期安定性につ
いて調査を行った。その結果、約3年間大気中に放置し
た後でも、その反射性能はほとんど変化していないこと
がわかった。また、最表面をC層で終端することによ
り、バックグラウンド強度もFe層終端に比べ、半減す
るというメリットも得られた。
The long-term stability of the multilayer spectroscopy device 3 of FIG. 1 in which the outermost surface was terminated by the C layer 32 was examined. As a result, it was found that even after being left in the air for about three years, the reflection performance was hardly changed. In addition, by terminating the outermost surface with the C layer, there was obtained an advantage that the background intensity was reduced by half compared to the Fe layer termination.

【0026】以上のように、炭素(C)の蛍光X線分析
において、反射層31に鉄(Fe)を、スペーサ層32
に炭素(C)を使用して、周期長を7.0nm以上1
0.0nm以下、層対数を18層対以上25層対以下と
し、多層膜最表面を炭素(C)層32で終端したFe/
C多層膜分光素子3により、従来のNi/C多層膜分光
素子と比較してほぼ同等の分析強度を確保する一方で、
約1.7倍のP/B比および約86%の半価幅の改善を
図ることが可能となった。
As described above, in the fluorescent X-ray analysis of carbon (C), iron (Fe) is applied to the reflective layer 31 and the spacer layer 32
, Using carbon (C) for the period length of 7.0 nm or more and 1
0.0 nm or less, the number of layer pairs is 18 or more and 25 or less, and the outermost surface of the multilayer film is Fe / terminated with a carbon (C) layer 32.
While the C multilayer spectroscopic element 3 ensures almost the same analysis intensity as the conventional Ni / C multilayer spectroscopic element,
It became possible to improve the P / B ratio by about 1.7 times and the half width by about 86%.

【0027】[0027]

【発明の効果】本発明によれば、従来のNi/C多層膜
分光素子と比較してほぼ同等の分析強度を確保する一方
で、約1.7倍のP/B比および約86%の半価幅の改
善を図ることが可能となり、高精度の炭素蛍光X線分析
が可能となる。
According to the present invention, the P / B ratio is about 1.7 times and the P / B ratio is about 86%, while the analysis intensity is almost equal to that of the conventional Ni / C multilayer film spectroscopic element. The half width can be improved, and high-accuracy X-ray fluorescence analysis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る炭素蛍光X線分析用
多層膜分光素子を示す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view illustrating a multilayer spectroscopic element for carbon X-ray fluorescence analysis according to an embodiment of the present invention.

【図2】(a),(b)は蛍光X線反射ピークプロファ
イルを示す特性図である。
FIGS. 2A and 2B are characteristic diagrams showing a fluorescent X-ray reflection peak profile.

【図3】蛍光X線反射ピークプロファイルを示す特性図
である。
FIG. 3 is a characteristic diagram showing a fluorescent X-ray reflection peak profile.

【図4】多層膜分光素子の層対数と規格化反射率との関
係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a layer logarithm of a multilayer film spectral element and a normalized reflectance.

【図5】ピーク強度,半価幅,バックグラウンドと膜厚
比との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a peak intensity, a half width, a background, and a film thickness ratio.

【図6】グラファイト試料の炭素蛍光X線分析ピークを
示す特性図である。
FIG. 6 is a characteristic diagram showing a carbon fluorescent X-ray analysis peak of a graphite sample.

【図7】ガラス板上の炭素薄膜試料の炭素蛍光X線分析
ピークを示す特性図である。
FIG. 7 is a characteristic diagram showing a carbon fluorescent X-ray analysis peak of a carbon thin film sample on a glass plate.

【図8】グラファイト試料の炭素蛍光X線分析ピークを
示す特性図である。
FIG. 8 is a characteristic diagram showing a carbon fluorescent X-ray analysis peak of a graphite sample.

【図9】ガラス板上の炭素薄膜試料の炭素蛍光X線分析
ピークを示す特性図である。
FIG. 9 is a characteristic diagram showing a carbon fluorescent X-ray analysis peak of a carbon thin film sample on a glass plate.

【図10】多層膜分光素子を用いた蛍光X線分析装置を
示す側面図である。
FIG. 10 is a side view showing an X-ray fluorescence analyzer using a multilayer spectroscopic element.

【符号の説明】[Explanation of symbols]

3…多層膜分光素子、7…基板、31…反射層、32…
スペーサ層、B2…蛍光X線、B3…回折X線。
3 ... multilayer spectroscopic element, 7 ... substrate, 31 ... reflective layer, 32 ...
Spacer layer, B2: X-ray fluorescence, B3: X-ray diffraction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反射層とスペーサ層からなる層対を基板
上に多数積層して構成され、試料中に含まれる炭素
(C)の蛍光X線分析に使用される多層膜分光素子であ
って、 前記反射層に鉄(Fe)を、前記スペーサ層に炭素
(C)を使用して、周期長を7.0nm以上10.0n
m以下、層対数を18層対以上25層対以下とし、多層
膜最表面を炭素(C)層で終端した炭素蛍光X線分析用
多層膜分光素子。
1. A multilayer spectroscopic element used for X-ray fluorescence analysis of carbon (C) contained in a sample, comprising a multiplicity of layer pairs comprising a reflective layer and a spacer layer laminated on a substrate. Using iron (Fe) for the reflection layer and carbon (C) for the spacer layer, the period length is set to 7.0 nm or more and 10.0 n.
m, the number of layer pairs is 18 to 25, and the outermost surface of the multilayer film is terminated with a carbon (C) layer.
【請求項2】 請求項1において、さらに、 前記反射層とスペーサ層の膜厚比を、1:3または1:
1とした炭素蛍光X線分析用多層膜分光素子。
2. The method according to claim 1, wherein the thickness ratio between the reflective layer and the spacer layer is set to 1: 3 or 1: 3.
2. A multilayer spectroscopic element for X-ray fluorescence analysis of carbon.
JP11042659A 1999-02-22 1999-02-22 Multilayer film spectral element for analyzing fluorescent x rays of carbon Pending JP2000241593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042659A JP2000241593A (en) 1999-02-22 1999-02-22 Multilayer film spectral element for analyzing fluorescent x rays of carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042659A JP2000241593A (en) 1999-02-22 1999-02-22 Multilayer film spectral element for analyzing fluorescent x rays of carbon

Publications (1)

Publication Number Publication Date
JP2000241593A true JP2000241593A (en) 2000-09-08

Family

ID=12642152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042659A Pending JP2000241593A (en) 1999-02-22 1999-02-22 Multilayer film spectral element for analyzing fluorescent x rays of carbon

Country Status (1)

Country Link
JP (1) JP2000241593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101368A1 (en) * 2001-06-11 2002-12-19 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescence x-ray analysis
JP2003168642A (en) * 2001-12-04 2003-06-13 Toyota Central Res & Dev Lab Inc Extreme ultraviolet-ray exposure apparatus
CN110646454A (en) * 2019-10-11 2020-01-03 马鞍山钢铁股份有限公司 Method for measuring contents of aluminum element, iron element, cadmium element and lead element in zinc liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101368A1 (en) * 2001-06-11 2002-12-19 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescence x-ray analysis
US6836533B2 (en) 2001-06-11 2004-12-28 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescene X-ray analysis
JP2003168642A (en) * 2001-12-04 2003-06-13 Toyota Central Res & Dev Lab Inc Extreme ultraviolet-ray exposure apparatus
CN110646454A (en) * 2019-10-11 2020-01-03 马鞍山钢铁股份有限公司 Method for measuring contents of aluminum element, iron element, cadmium element and lead element in zinc liquid

Similar Documents

Publication Publication Date Title
US7848483B2 (en) Magnesium silicide-based multilayer x-ray fluorescence analyzers
CN104266755B (en) A kind of spectral measurement method improving luminous flux and system
JPH11304728A (en) X-ray measuring device
WO2020228047A1 (en) Inverse matrix iterative deconvolution method for spectral resolution enhancement
US20080228844A1 (en) Method of Enhancing Spectral Data
JP3600849B2 (en) Multilayer spectroscopy device for boron X-ray fluorescence analysis
JP2000241593A (en) Multilayer film spectral element for analyzing fluorescent x rays of carbon
Baronova et al. Cauchois–Johansson x-ray spectrograph for 1.5–400 keV energy range
US7424092B2 (en) Fluorescent X-ray spectroscopic apparatus
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP2589638B2 (en) X-ray fluorescence analysis method and apparatus
JP3188393B2 (en) Multilayer spectroscopy element
WO2024042865A1 (en) Soft x-ray multilayer film diffraction grating
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
JP2905723B2 (en) X-ray analyzer
JPH0798285A (en) X-ray evaluation apparatus
JP4253805B2 (en) X-ray fluorescence analyzer and method
JPH0735708A (en) Fluorescent x-ray analysis method
JPH0682400A (en) Total reflection x-ray fluorescence analyser
JP3404338B2 (en) X-ray reflectance measuring method and apparatus
JP2000147197A (en) Multi-layer film spectral element for x-ray fluorescence analysis of boron
JP2002148393A (en) X-ray spectroscopic element and x-ray analysis device using it
JPS63106547A (en) Multiple energy x-ray measuring apparatus
JPH06331323A (en) Measurement of thickness of protective layer of magnetic recording medium
CN111272280A (en) Method for improving resolution of spectrometer system by using inverse convolution