JP2000240990A - Ice heat storage system - Google Patents

Ice heat storage system

Info

Publication number
JP2000240990A
JP2000240990A JP11046022A JP4602299A JP2000240990A JP 2000240990 A JP2000240990 A JP 2000240990A JP 11046022 A JP11046022 A JP 11046022A JP 4602299 A JP4602299 A JP 4602299A JP 2000240990 A JP2000240990 A JP 2000240990A
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
ice
storage system
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11046022A
Other languages
Japanese (ja)
Inventor
Masami Ogata
正実 緒方
Motoji Yoshihara
基司 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYODO KUCHOKI KK
Original Assignee
NISHIYODO KUCHOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYODO KUCHOKI KK filed Critical NISHIYODO KUCHOKI KK
Priority to JP11046022A priority Critical patent/JP2000240990A/en
Publication of JP2000240990A publication Critical patent/JP2000240990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ice heat storage system adaptable to environmental improvement of convenience store, or the like, by conducting air conditioning in correspondence with an air conditioning load while accumulating heat when an air conditioning load, e.g. cooling or heating, is required in night time. SOLUTION: In ice heat storage system comprising a circulation circuit formed by coupling a heat source machine (heat pump) D and a heat storage water tank 20 through refrigerant piping, the heat storage water tank 20 is coupled to the air conditioning load C side through a lower water supply pipe 15 and an upper return pipe 15'. The lower water supply pipe 15 is provided with a three-way mixing valve 16 and a circulation pump 17 and the upper return pipe 15' is provided with a follow-up heat exchanger 13 and piping for branching a part of water delivered from the heat exchanger 13 to the three-way mixing valve 16. Piping for circulating a part of refrigerant to the follow-up heat exchanger 13 is branched from the way of refrigerant piping (a) on the low pressure side of the ice heat storage system and refrigeration flow regulation valves 12B, 12A are provided, respectively, for the refrigerant branch piping and the branched refrigerant piping of the ice heat storage system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は氷蓄熱システムに係
り、特に比較的軽度の空調負荷には夜間であっても対処
することが可能な小型氷蓄熱システム装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage system, and more particularly to a small ice heat storage system device capable of coping with relatively light air-conditioning loads even at night.

【0002】[0002]

【従来技術】従来の空調装置において、非蓄熱式空調装
置の場合は、夜に空調(冷房もしくは暖房)負荷があっ
ても何ら問題はないが、通常の蓄熱システム装置では夜
間22:00から朝8:00までの間を蓄熱のための時
間としてその間は空調対応せずに蓄熱に専念した運転を
行っている。
2. Description of the Related Art In a conventional air conditioner, in the case of a non-heat storage type air conditioner, there is no problem even if there is an air conditioning (cooling or heating) load at night. The operation until 8:00 is a time for heat storage, during which the operation is performed exclusively for heat storage without air conditioning.

【0003】これは、夜間に空調負荷を必要としない業
務であれば問題はないが、例えば24時間営業するコン
ビニエンスストアなどでは夏の夜は気温が低下するとい
ってもまだ暑さが残り、冷房を続けなければならないよ
うな場合が多い。ある種の小型氷蓄熱システムでは夜間
に製氷し、その氷を使用して冷媒運転時の冷媒液を冷却
し、過冷却度を大幅として運転効率を高くすることによ
り、夜間に製氷した氷の冷熱を利用しているが、少ない
動作で大きな冷房能力を得ることができるので昼間の電
力消費量を下げる効果があり、電力負荷の平準面に寄与
している。しかし、この方式の冷房であれば夜間に製氷
できても製氷と同時に冷房することは不可能である。
[0003] This is not a problem if the air conditioning load is not required at night. However, for example, in a convenience store that is open 24 hours, the temperature still drops on summer nights, but the heat still remains. It is often necessary to continue. Certain types of small ice storage systems make ice at night, use the ice to cool the refrigerant liquid during refrigerant operation, increase the degree of supercooling, and increase the operating efficiency, thereby cooling the ice produced at night. However, since a large cooling capacity can be obtained with a small amount of operation, there is an effect of reducing the power consumption in the daytime, which contributes to the level of the power load. However, with this type of cooling, it is impossible to cool at the same time as ice making, even if ice can be made at night.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の如き実
状に対処し、特に夜間、蓄熱だけでなく、夜間において
冷房、暖房など空調負荷の必要性がある場合、蓄熱しな
がら空調も可能とする制御手段を見いだすことにより夜
間蓄熱しているときでも蓄熱しながら比較的軽度の空調
負荷に対応せしめて空調を可能とし、コンビニエンスス
トアなどの環境改善に適応せしめることを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention addresses the above-described situation, and in particular, not only when storing heat at night, but also when the need for air-conditioning load such as cooling and heating is required at night, it is possible to perform air-conditioning while storing heat. It is an object of the present invention to find a control means to perform the heat storage at night even while storing heat at night, thereby making it possible to perform air conditioning by adapting to a relatively light air conditioning load, and to adapt to environmental improvements such as convenience stores.

【0005】[0005]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明氷蓄熱システムの特徴は、通常の氷蓄熱システ
ムに追掛熱交換器、循環器ポンプ、冷媒の流量を調整
し、もしくは冷媒の流れを切り替える冷媒流量調節弁を
付加させると共に、水側の混合三方弁を空調用要求信号
がある場合に夜間でも機能させ、空調を可能とすること
であって、圧縮機、四方弁、空気熱交換器、レシーバ、
アキュムレータ及び蓄熱水槽を冷媒配管により循環回路
に形成せしめた氷蓄熱システムにおいて、蓄熱水槽と空
調負荷側とを下部送水配管と上部戻り配管により連結
し、下部送水配管に混合三方弁と循環ポンプを夫々介設
し、上部戻り配管に追掛熱交換器と、該熱交換器を出た
水の一部を前記混合三方弁に分流せしめる分岐配管を夫
々配設する一方、前記氷蓄熱システムの低圧側冷媒配管
の途中に、該配管より分岐して前記追掛熱交換器に冷媒
の一部を循環せしめる冷媒分岐配管を設け、該冷媒分岐
配管及び分岐後の氷蓄熱システムの冷媒配管の夫々に冷
媒流量調節弁を介設せしめた構成を特徴とする。
That is, the feature of the ice heat storage system of the present invention that meets the above-mentioned object is that a heat exchanger, a circulator pump, and the flow rate of a refrigerant are controlled by following a conventional ice heat storage system. A refrigerant flow control valve for switching the flow of air is added, and the mixing three-way valve on the water side is made to function even at night when there is a request signal for air conditioning, thereby enabling air conditioning. Heat exchangers, receivers,
In an ice heat storage system in which an accumulator and a heat storage water tank are formed in a circulation circuit by a refrigerant pipe, the heat storage water tank and the air conditioning load side are connected by a lower water supply pipe and an upper return pipe, and a mixing three-way valve and a circulation pump are respectively connected to the lower water supply pipe. A heat exchanger that follows the upper return pipe and a branch pipe that diverts a part of the water exiting the heat exchanger to the mixing three-way valve are provided, respectively, while a low pressure side of the ice heat storage system is provided. In the middle of the refrigerant pipe, a refrigerant branch pipe that branches from the pipe and circulates a part of the refrigerant to the follow-up heat exchanger is provided, and the refrigerant branch pipe and the refrigerant pipe of the ice storage system after branching are provided with refrigerant respectively. It is characterized by a configuration in which a flow control valve is provided.

【0006】[0006]

【作用】上記構成よりなる氷蓄熱システムは空調負荷が
なく、製氷に専用する場合は本来の氷蓄熱システムと同
様に使用することができ、追掛熱交換器へ冷媒を分岐流
入せしめることは必要がない。夜間の空調と蓄熱を併用
するときは双方の冷媒流量調節弁を開き、追掛熱交換器
で直接負荷水を冷却すると共に、蓄熱水槽のコイルに低
圧冷媒が流れ水槽の水を冷却しながら製氷の準備を行
う。
The ice heat storage system having the above configuration has no air conditioning load and can be used in the same way as the original ice heat storage system when dedicated to ice making, and it is necessary to branch and flow the refrigerant into the follow-up heat exchanger. There is no. When both night-time air conditioning and heat storage are used, both refrigerant flow control valves are opened, the load heat is directly cooled by the follow-up heat exchanger, and low-pressure refrigerant flows through the coil of the heat storage water tank to cool the water in the water tank while making ice. Prepare for.

【0007】一方、三方混合弁が作動機能して一定水温
で空調負荷に水が供給され、冷房が行われる。(夜間空
調運転の前半) また、追掛熱交換器への冷媒の流れを遮断すると、氷蓄
熱システムの冷媒流量調節弁のみから蓄熱水槽コイルに
低圧冷媒が全量流れ、水槽の水温が低下して0℃近くと
なり、製氷が進んでいる場合(夜間空調運転の後半)に
は混合弁が機能して一定水温で水をに負荷に供給する。
On the other hand, the three-way mixing valve operates to supply water to the air-conditioning load at a constant water temperature to perform cooling. (First half of night air-conditioning operation) Also, when the flow of refrigerant to the follow-up heat exchanger is shut off, the entire low-pressure refrigerant flows only from the refrigerant flow control valve of the ice heat storage system to the heat storage water tank coil, and the water temperature in the water tank decreases. When the temperature is close to 0 ° C. and ice making is in progress (the latter half of the night air-conditioning operation), the mixing valve functions to supply water to the load at a constant water temperature.

【0008】次に昼間の冷房運転については、氷蓄熱シ
ステムのヒートポンプが運転され、低圧冷媒が追掛熱交
換器への冷媒流量調節弁のみを介し、追掛熱交換器に流
れると、追掛熱交換器で直接負荷水が冷却される。この
とき、水槽に溜まっている氷が溶かされ水温度の上昇が
抑えられ、混合弁が機能して水は一定水温で負荷に供給
される。更に、ヒートポンプが停止され、冷媒の流れが
止まるときは、水槽に溜まっている氷が溶かされて水温
度の上昇が抑えられ、混合弁が機能して一定水温で負荷
に供給する。この運転は夏期、電力を使用しない冷房運
転となる。以上のように本発明装置は種々の運転態様が
あり、夫々に応じ運転される。
Next, in the cooling operation in the daytime, when the heat pump of the ice heat storage system is operated, and the low-pressure refrigerant flows through the additional heat exchanger only through the refrigerant flow control valve to the additional heat exchanger, the additional heat exchanger is activated. The load water is cooled directly by the heat exchanger. At this time, the ice accumulated in the water tank is melted, the rise in water temperature is suppressed, and the mixing valve functions to supply water at a constant water temperature to the load. Further, when the heat pump is stopped and the flow of the refrigerant stops, the ice accumulated in the water tank is melted to suppress the rise in water temperature, and the mixing valve functions to supply the load at a constant water temperature. This operation is a cooling operation that does not use electric power in summer. As described above, the device of the present invention has various modes of operation, and is operated according to each of the modes.

【0009】[0009]

【発明の実施の形態】以下、更に添付図面にもとづき本
発明の具体的な態様を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

【0010】図1は本発明に係る氷蓄熱システム装置の
基本態様を夜間の蓄熱運転のみで空調負荷がなく、製氷
に専念している状態で示している。図において、Aは室
外側、Bは蓄熱部、Cは室内側負荷部を夫々示し、室外
側Aは主として熱源機である冷凍回路系ヒートポンプD
よりなり、その冷媒配管aが蓄熱部Bの蓄熱水槽20に
中間部においてジグザグ状をなして収設されて循環回路
を形成しており、その途中に蓄熱水槽20を保護するた
めの氷厚センサ22が、また、蓄熱水槽20の上部に負
荷作動及び逃弁21が夫々設けられている。
FIG. 1 shows a basic mode of an ice heat storage system according to the present invention in a state in which only the nighttime heat storage operation is performed and there is no air conditioning load, and only ice making is performed. In the figure, A indicates the outdoor side, B indicates the heat storage unit, C indicates the indoor load unit, and the outdoor side A indicates the refrigeration circuit heat pump D which is mainly a heat source unit.
An ice thickness sensor for protecting the heat storage water tank 20 in the middle thereof in a zigzag manner at the intermediate portion of the refrigerant pipe a in the heat storage water tank 20 of the heat storage part B. Reference numeral 22 denotes a load operation and a relief valve 21 are provided above the heat storage water tank 20, respectively.

【0011】熱源機となるヒートポンプDは図に示すよ
うに圧縮機1、四方弁2,空気熱交換器3,第2膨張弁
4,電磁弁5,レシーバ6,電磁弁7,第1膨張弁10
を順次連結する冷媒配管及びプロペラファン9ならびに
前記冷媒配管にバイパスする電磁弁8を有する側路より
なる冷媒配管系と、前記四方弁2の切替えによって形成
されるアキュムレータ14を含む冷媒配管系によって基
本回路が構成されている。
As shown in the drawing, a heat pump D serving as a heat source unit includes a compressor 1, a four-way valve 2, an air heat exchanger 3, a second expansion valve 4, a solenoid valve 5, a receiver 6, a solenoid valve 7, and a first expansion valve. 10
And a refrigerant pipe system including a propeller fan 9 and a bypass having an electromagnetic valve 8 bypassing the refrigerant pipe, and a refrigerant pipe system including an accumulator 14 formed by switching the four-way valve 2. The circuit is configured.

【0012】また、蓄熱水槽20と空調負荷部Cのファ
ンコイル31、32との間は下部送水配管15と、上部
戻り配管15′によって連結されており、このうち、下
部送水配管15には混合三方弁16と、室内側ファンコ
イル31、32に送水する循環ポンプ17が順次介設さ
れている。
The heat storage water tank 20 and the fan coils 31 and 32 of the air conditioning load section C are connected by a lower water supply pipe 15 and an upper return pipe 15 '. A three-way valve 16 and a circulation pump 17 for supplying water to the indoor fan coils 31 and 32 are sequentially provided.

【0013】一方、上部戻り配管15′側には追掛熱交
換器13と、該熱交換器13を出た水の一部を前記混合
三方弁16に分流せしめる分岐配管が夫々設けられてい
ると共に、追掛熱交換器13に前記氷蓄熱システムのヒ
ートポンプ回路における低圧側冷媒配管の途中より分岐
した冷媒配管が冷媒の少なくとも一部を循環せしめ得る
ように収設されている。そして、この場合、蓄熱水槽2
0側へ流れる冷媒の流量特開昭、追掛熱交換器13へ流
れる冷媒の流量を適宜調整もしくは冷媒の流れを切り替
える流量調節弁12A、12Bが夫々設けられていて、
各流量の調節を可能ならしめている。なお、図中、19
は架台、11A、11B、11C、11D、11Eはサ
ーミスタ、23は水位センサである。
On the other hand, on the side of the upper return pipe 15 ', a follow-up heat exchanger 13 and a branch pipe for diverting a part of water exiting the heat exchanger 13 to the mixing three-way valve 16 are provided. At the same time, a refrigerant pipe branched from the middle of the low-pressure side refrigerant pipe in the heat pump circuit of the ice heat storage system is provided in the follow-up heat exchanger 13 so that at least a part of the refrigerant can be circulated. And in this case, the heat storage water tank 2
Flow rate of the refrigerant flowing to the 0 side JP-A Sho, flow control valves 12A and 12B for appropriately adjusting the flow rate of the refrigerant flowing to the follow-up heat exchanger 13 or switching the flow of the refrigerant are provided, respectively.
Each flow rate can be adjusted. In the figure, 19
Is a gantry, 11A, 11B, 11C, 11D and 11E are thermistors, and 23 is a water level sensor.

【0014】以上の構成において、送水配管における混
合三方弁16はファンコイル内部に設けられている制御
部33,34の運転監視信号を通じて空調要求の信号と
して室外側Aの制御盤18に伝えられることによって作
動し、蓄熱しながら冷房や暖房負荷の要求に応える。
In the above configuration, the mixing three-way valve 16 in the water supply pipe is transmitted to the control panel 18 on the outside A as an air conditioning request signal through an operation monitoring signal of the control units 33 and 34 provided inside the fan coil. It operates in response to cooling and heating loads while storing heat.

【0015】以下、更に各図を参照しつつ本発明装置の
各運転態様例を説明する。
Hereinafter, examples of operation modes of the apparatus of the present invention will be described with reference to the drawings.

【0016】前記基本的回路として説明した図1は冷房
負荷がなく製氷に専念している夜間の蓄熱運転の場合
で、実線は冷媒配管、点線は水配管を示し、実線太線は
冷媒が流通使用されている場合、実線細線は冷媒流通路
であるが、冷媒が流通使用されていないことを示す。ま
た、点線太線は水配管で使用されている場合、点線細線
は使用されていない場合である。これらは図2以降でも
同様である。なお、特に説明しないが不使用部分におい
ては各弁は閉止されている。
FIG. 1 described as the above basic circuit is a case of nighttime heat storage operation in which there is no cooling load and is dedicated to ice making. A solid line indicates a refrigerant pipe, a dotted line indicates a water pipe, and a solid line indicates a refrigerant flow. In this case, the solid thin line indicates the refrigerant flow passage, but indicates that the refrigerant is not used. The thick dotted line indicates the case where the pipe is used for water piping, and the thin dotted line indicates the case where it is not used. These are the same in FIG. Although not particularly described, each valve is closed at an unused portion.

【0017】図1の場合、冷媒はヒートポンプ冷凍回路
においてのみ矢印方向に進み、追掛熱交換器13への冷
媒配管は閉止され、水配管は不使用状態となっている。
従って、製氷に専念していることが明らかである。
In the case of FIG. 1, the refrigerant advances in the direction of the arrow only in the heat pump refrigeration circuit, the refrigerant pipe to the follow-up heat exchanger 13 is closed, and the water pipe is in an unused state.
Thus, it is clear that he is dedicated to ice making.

【0018】図2及び図3は夜間、冷房と蓄熱を併用し
た運転である。このうち、図2は冷媒の流れを切り替え
る流量調節弁12A、12Bともに開いており、追掛熱
交換器13で直接負荷水を冷却していると共に、併せて
流量調節弁12Aから蓄熱水槽20の配管に一部の冷媒
が流れ、水槽20の水を冷却しながら製氷の準備を行う
状態である。そして、この場合、混合三方弁16が機能
し、また追掛熱交換器13は蒸発器の役割を呈して一定
水温通常、夏季は5〜7℃、冬季は40〜45℃の水温
で負荷に水を供給し、冷房状態を現出する。
FIGS. 2 and 3 show an operation in which cooling and heat storage are used at night. FIG. 2 shows that the flow control valves 12A and 12B for switching the flow of the refrigerant are both opened, and the load heat is directly cooled by the follow-up heat exchanger 13, and the heat storage water tank 20 from the flow control valve 12A is also connected. In this state, a part of the refrigerant flows through the pipe, and the ice making is prepared while cooling the water in the water tank 20. In this case, the mixing three-way valve 16 functions, and the follow-up heat exchanger 13 exhibits the role of an evaporator. The constant water temperature is usually 5 to 7 ° C in summer and 40 to 45 ° C in winter. Supply water to bring out the cooling condition.

【0019】一方、図3は同図矢示の如く冷媒調節弁1
2Aから蓄熱水槽20の配管コイルに低圧冷媒が流れ、
追掛熱交換器13への冷媒の流れは遮断されている。こ
の場合、蓄熱水槽20内の水温は低下して0℃近くとな
り、製氷が進むと共に負荷側との間の水配管は開いてお
り、混合三方弁16は機能して高温の戻り水と、低温の
蓄熱水槽20からの水を混合し前述の如き一水温を保持
して負荷に供給する。
On the other hand, FIG. 3 shows a refrigerant control valve 1 as shown by an arrow in FIG.
The low-pressure refrigerant flows from 2A to the piping coil of the heat storage water tank 20,
The flow of the refrigerant to the follow-up heat exchanger 13 is shut off. In this case, the water temperature in the heat storage water tank 20 decreases to near 0 ° C., as the ice making progresses, the water pipe between the load side is open, and the mixing three-way valve 16 functions to return high-temperature return water and low-temperature water. The water from the heat storage water tank 20 is mixed and supplied to the load while maintaining one water temperature as described above.

【0020】次に図4は冷凍系のヒートポンプが運転さ
れ冷媒調節弁12Bから追掛熱交換器13で直接、負荷
水を冷却している。そして、一方、冷媒調節弁12Aは
閉止され、蓄熱水槽20への冷媒の流れが遮断されてい
るので蓄熱水槽20に溜まっている氷は溶かされる。し
かし、サーミスタ11Cにより水温度の上昇は抑えられ
る。このとき、、混合三方弁16は機能し、蓄熱水槽2
0よりの水と、追掛熱交換器13で冷却された水を混合
し、前述と同様に一定水温で水を負荷に供給し、冷房運
転を行う。これは昼間の冷房運転時の態様である。
Next, FIG. 4 shows that the heat pump of the refrigeration system is operated and the load water is directly cooled by the follow-up heat exchanger 13 from the refrigerant control valve 12B. On the other hand, since the refrigerant control valve 12A is closed and the flow of the refrigerant to the heat storage water tank 20 is shut off, the ice accumulated in the heat storage water tank 20 is melted. However, an increase in the water temperature is suppressed by the thermistor 11C. At this time, the mixing three-way valve 16 functions, and the heat storage water tank 2
Water from 0 and water cooled by the follow-up heat exchanger 13 are mixed, and water is supplied to the load at a constant water temperature in the same manner as described above to perform a cooling operation. This is an aspect during the daytime cooling operation.

【0021】更に図5は同図矢示の如くヒートポンプは
停止され、冷媒の流れのない状態である。この場合、蓄
熱水槽20に溜まっている氷が溶かされて水温度の上昇
は抑えられている。そして、混合三方弁16が機能し、
水配管により負荷水は流れ、蓄熱水槽20よりの水と負
荷水の戻り側の水が混合し、同様に一定水温で負荷に供
給される。この運転は夏季の13:00〜16:00に
氷を利用して電力を使用しない運転として冷房すればピ
ークカット運転となる。これは中間期に最も多い運転の
態様である。
FIG. 5 shows a state in which the heat pump is stopped as shown by the arrow in FIG. In this case, the ice stored in the heat storage water tank 20 is melted, and the rise in water temperature is suppressed. And the mixing three-way valve 16 functions,
The load water flows through the water pipe, and the water from the heat storage water tank 20 and the water on the return side of the load water are mixed and similarly supplied to the load at a constant water temperature. This operation is a peak cut operation if cooling is performed at 13:00 to 16:00 in the summer as an operation using no electricity using ice. This is the most common mode of operation during the interim period.

【0022】以上のように、冷房流量の調整もしくは冷
媒の流れを切り替えることにより本発明システム装置は
種々の運転が容易で、混合三方弁、追掛熱交換器と協動
して負荷側に常に一定水温の水を供給することが出来
る。従って、氷蓄熱システムでありながら夜間の空調負
荷に対し対応することが可能である。
As described above, the system apparatus of the present invention can easily perform various operations by adjusting the cooling flow rate or switching the flow of the refrigerant, and always operates on the load side in cooperation with the mixing three-way valve and the follow-up heat exchanger. It can supply water with a constant water temperature. Therefore, it is possible to cope with nighttime air-conditioning load while using the ice heat storage system.

【0023】次に特に夏季における運転態様について述
べると、以下の如くである。 (1)製氷しながら冷媒の一部を追掛熱交換器に導き空
調する。(図2の場合) このとき、製氷へ回る冷媒量が減少する。 (2)製氷しながら蓄熱槽の冷水を利用して空調負荷に
活用する。(図3) この場合は全量蓄熱槽に冷媒が回り、空調負荷から戻っ
てくる暖かくなった冷水が蓄熱槽に戻り、水槽内部の氷
が溶けることにより、混合三方弁を経由して冷水が一定
温度で供給できるように弁開度調整がなされ、氷が活用
される。一方では製氷が進行している。
Next, a description will be given of an operation mode particularly in the summer season as follows. (1) While making ice, a part of the refrigerant is guided to a follow-up heat exchanger for air conditioning. (Case of FIG. 2) At this time, the amount of refrigerant flowing to the ice making decreases. (2) Utilize the cold water in the heat storage tank while making ice and use it for air conditioning load. (Fig. 3) In this case, the refrigerant flows to the heat storage tank, the warmed cold water returned from the air conditioning load returns to the heat storage tank, and the ice inside the water tank melts, so that the cold water is kept constant via the mixing three-way valve. The valve opening is adjusted so that it can be supplied at a temperature, and ice is used. On the other hand, ice making is in progress.

【0024】(3)上記の2項を併用しながら空調を行
う。 の各ケースである。なお、翌日の冷房のために最低の製
氷・蓄冷は必要なので、夜間のある時刻において製氷量
が少ない場合は、蓄冷を優先して、供給水温を1℃ずつ
上げる制御を行う。直接追掛けする上記(1)の場合、
全量蓄熱槽に冷媒が回る上記(2)の場合、いずれでも
同じ制御とする。
(3) Air conditioning is performed while using the above two items together. In each case. In addition, since the minimum ice making and cold storage are required for cooling the next day, if the amount of ice making is small at a certain time during the night, control is given to increase the supply water temperature by 1 ° C. by giving priority to cold storage. In the case of (1) above,
In the case of the above (2) in which the refrigerant flows in the total amount heat storage tank, the same control is performed in any case.

【0025】また、上記(1)の場合は冷媒の蒸発温度
が空調時の蒸発温度に近くなる。冷媒温度が高めとなる
分、製氷能力は低下する。従って、夜間時間帯の前半で
ある深夜(22:0〜24:00)はまだ外気温度も高
く、空調負荷も大きいし、水槽内の水温も高め(10〜
3℃)なので、この場合に適している。この場合は確実
に製氷するために、混合三方弁は蓄熱槽に対してオフと
する場合もある。
Further, in the case of the above (1), the evaporation temperature of the refrigerant becomes close to the evaporation temperature during air conditioning. The higher the refrigerant temperature, the lower the ice making capacity. Therefore, at midnight (22:00 to 24:00), which is the first half of the night time zone, the outside air temperature is still high, the air conditioning load is large, and the water temperature in the water tank is also high (10 to 24:00).
3 ° C.), which is suitable for this case. In this case, the mixing three-way valve may be turned off with respect to the heat storage tank in order to surely make ice.

【0026】また上記(2)の場合は全量が製氷に回
り、製氷に適した冷媒蒸発温度となり、空調時の蒸発温
度より低いものとなり、やや効率が低下するが、やむを
得ない。夜間時間帯の後半である早朝(3:00〜6:
00)は外気温度も最低となり、空調負荷も小さくなる
ので、この場合に適している。
In the case of the above (2), the whole amount turns to ice making, the refrigerant evaporating temperature becomes suitable for ice making, becomes lower than the evaporating temperature at the time of air conditioning, and the efficiency is slightly lowered, but it is unavoidable. Early morning in the latter half of the night time zone (3:00 to 6:
00) is suitable for this case, since the outside air temperature becomes minimum and the air-conditioning load also decreases.

【0027】(3)の場合は上記のことを考慮して蓄冷
時間帯の前半を(1)の方式、後半は(2)の方式で運
転すると効率が良いことが分かる。
In the case of (3), considering the above, it is understood that the efficiency is good if the first half of the cold storage time zone is operated by the method of (1) and the second half is operated by the method of (2).

【0028】[0028]

【発明の効果】本発明は以上のように氷蓄熱装置に追掛
熱交換器、循環ポンプ、冷媒の流量を調整もしくは切り
替える流量調節弁を設け、かつ、水側配管に空調要求信
号等により機能する、混合三方弁を設けたものであり、
冷媒の一部を追掛熱交換器に導き又は冷媒全量を蓄熱水
槽に導くなど種々の使用態様を形成することにより、氷
蓄熱装置を夜間の蓄熱のみでなく、夜間にも冷房・暖房
負荷の必要のある場合には蓄熱しながら空調も可能とし
て従来、殆ど夜間は蓄熱しか行われていなかった氷蓄熱
システムを蓄熱と併用して夜間の冷房・暖房としても使
用することができる顕著な効果を有している。
According to the present invention, as described above, the ice heat storage device is provided with the follow-up heat exchanger, the circulation pump, and the flow rate control valve for adjusting or switching the flow rate of the refrigerant. To provide a mixing three-way valve,
By forming various usage modes such as guiding a part of the refrigerant to the follow-up heat exchanger or directing the entire amount of the refrigerant to the heat storage water tank, the ice heat storage device can not only store heat at night, but also perform cooling and heating loads at night. When necessary, air conditioning can be performed while storing heat.Conventionally, an ice heat storage system, which used to store heat only at night, can be used as cooling and heating at night in combination with heat storage. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における基本回路と共に夜間の蓄熱運転
の態様を示す系統図である。
FIG. 1 is a system diagram showing an aspect of a nighttime heat storage operation together with a basic circuit according to the present invention.

【図2】上記回路使用による夜間冷房と蓄熱を併用した
運転の1態様を示す系統図である。
FIG. 2 is a system diagram showing one mode of an operation in which night-time cooling and heat storage are both used by using the circuit.

【図3】上記回路使用による夜間冷房と蓄熱を併用した
運転の他の態様を示す系統図である。
FIG. 3 is a system diagram showing another mode of operation using both the night cooling and the heat storage by using the above circuit.

【図4】本発明のシステムを用いた昼間の冷房運転の1
態様(ヒートポンプ運転)を示す系統図である。
FIG. 4 shows a daytime cooling operation using the system of the present invention.
It is a system diagram showing an aspect (heat pump operation).

【図5】本発明のシステムを用いた昼間の冷房運転の他
の態様(ヒートポンプ停止)を示す系統図である。
FIG. 5 is a system diagram showing another mode (heat pump stop) of daytime cooling operation using the system of the present invention.

【符号の説明】[Explanation of symbols]

A 室外側 B 蓄熱側 C 室内側負荷部 D 熱源機(ヒートポンプ) 1 圧縮機 2 四方弁 3 空気熱交換器 4 第2膨張弁 5 電磁弁 6 レシーバ 7 電磁弁 8 電磁弁 9 プロペラファン 10 第1膨張弁 11A〜11E サーミスタ 12A〜12B 流量調節弁 13 追掛熱交換器 14 アキュムレータ 15 送水配管 16 混合三方弁 17 循環ポンプ 20 蓄熱水槽 A Outdoor side B Heat storage side C Indoor side load part D Heat source unit (heat pump) 1 Compressor 2 Four-way valve 3 Air heat exchanger 4 Second expansion valve 5 Solenoid valve 6 Receiver 7 Solenoid valve 8 Solenoid valve 9 Propeller fan 10 First Expansion valve 11A to 11E Thermistor 12A to 12B Flow control valve 13 Tracking heat exchanger 14 Accumulator 15 Water supply pipe 16 Mixing three-way valve 17 Circulation pump 20 Heat storage water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、空気熱交換器、レシー
バ、アキュムレータ及び蓄熱水槽を冷媒配管により循環
回路に形成せしめた氷蓄熱システムにおいて、蓄熱水槽
と空調負荷側とを下部送水配管と上部戻り配管により連
結し、下部送水配管に混合三方弁と循環ポンプを夫々介
設し、上部戻り配管に追掛熱交換器と、該熱交換器を出
た水の一部を前記混合三方弁に分流せしめる分岐配管を
夫々配設する一方、前記氷蓄熱システムの低温側冷媒配
管の途中に、該配管より分岐して前記追掛熱交換器に冷
媒の一部を循環せしめる冷媒分岐配管を設け、該冷媒分
岐配管及び分岐後の氷蓄熱システムの冷媒配管の夫々に
冷媒流量調節弁を介設せしめたことを特徴とする氷蓄熱
システム装置。
1. An ice heat storage system in which a compressor, a four-way valve, an air heat exchanger, a receiver, an accumulator, and a heat storage water tank are formed in a circulation circuit by a refrigerant pipe, a heat storage water tank, an air conditioning load side, and a lower water supply pipe and an upper part. Connected by a return pipe, a mixing three-way valve and a circulation pump are interposed in the lower water supply pipe, respectively, a follow-up heat exchanger in the upper return pipe, and a part of water exiting the heat exchanger is supplied to the mixing three-way valve. While arranging branch pipes to be diverted respectively, in the middle of the low-temperature side refrigerant pipe of the ice heat storage system, a refrigerant branch pipe that branches from the pipe and circulates a part of the refrigerant to the follow-up heat exchanger is provided, An ice heat storage system device, wherein a refrigerant flow control valve is interposed in each of the refrigerant branch pipe and the refrigerant pipe of the ice heat storage system after branching.
JP11046022A 1999-02-24 1999-02-24 Ice heat storage system Pending JP2000240990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11046022A JP2000240990A (en) 1999-02-24 1999-02-24 Ice heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11046022A JP2000240990A (en) 1999-02-24 1999-02-24 Ice heat storage system

Publications (1)

Publication Number Publication Date
JP2000240990A true JP2000240990A (en) 2000-09-08

Family

ID=12735435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11046022A Pending JP2000240990A (en) 1999-02-24 1999-02-24 Ice heat storage system

Country Status (1)

Country Link
JP (1) JP2000240990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748421A (en) * 2015-03-10 2015-07-01 广东申菱空调设备有限公司 High-low temperature environment air-cooled chiller unit and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748421A (en) * 2015-03-10 2015-07-01 广东申菱空调设备有限公司 High-low temperature environment air-cooled chiller unit and control method thereof

Similar Documents

Publication Publication Date Title
US5678626A (en) Air conditioning system with thermal energy storage and load leveling capacity
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
US5467812A (en) Air conditioning system with thermal energy storage and load leveling capacity
US4608836A (en) Multi-mode off-peak storage heat pump
US5211029A (en) Combined multi-modal air conditioning apparatus and negative energy storage system
WO2020067189A1 (en) Air-conditioning system
JP3404133B2 (en) Thermal storage type air conditioner
JP2000240990A (en) Ice heat storage system
JP2002071169A (en) Ice heat storage type air conditioning device and method for controlling the same
JP3370501B2 (en) Cooling system
JP6635223B1 (en) Air conditioning system
JPH086940B2 (en) Building air conditioning system
JPH07160937A (en) Automatic vending machine
JP3276013B2 (en) Thermal storage system
JP3142897B2 (en) Cooling and heating system with heat storage function
KR20230016806A (en) Thermal management system for electric vehicle
JP2001074331A (en) Outdoor unit of air conditioner, and air conditioning system using the same
JP3999874B2 (en) Air conditioning system
JPH10170086A (en) Air conditioner
JPS60256762A (en) Heat pump type air conditioner
JPH0213740A (en) Heat reserve type heat pump airconditioner and its control method
JPH0921567A (en) Heat accumulation type air-conditioning device
JP2003202164A (en) Thermal storage type air-conditioning system
JPH024169A (en) Regeneration type airconditioner
JPH094883A (en) Air conditioning system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302