JP2000240907A - Device and method for hybrid catalyst combustion - Google Patents
Device and method for hybrid catalyst combustionInfo
- Publication number
- JP2000240907A JP2000240907A JP11046399A JP4639999A JP2000240907A JP 2000240907 A JP2000240907 A JP 2000240907A JP 11046399 A JP11046399 A JP 11046399A JP 4639999 A JP4639999 A JP 4639999A JP 2000240907 A JP2000240907 A JP 2000240907A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- gas
- catalytic combustion
- catalytic
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 127
- 239000003054 catalyst Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims abstract description 93
- 239000000446 fuel Substances 0.000 claims abstract description 29
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 20
- 230000005855 radiation Effects 0.000 claims abstract description 12
- 239000012808 vapor phase Substances 0.000 claims abstract 6
- 238000007084 catalytic combustion reaction Methods 0.000 claims description 74
- 239000012071 phase Substances 0.000 claims description 27
- 230000003197 catalytic effect Effects 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 14
- 239000006260 foam Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000007792 gaseous phase Substances 0.000 claims description 2
- 239000000567 combustion gas Substances 0.000 abstract description 5
- 230000035699 permeability Effects 0.000 abstract description 5
- 239000002912 waste gas Substances 0.000 abstract 3
- 230000000414 obstructive effect Effects 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 239000003345 natural gas Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical class 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000010718 Oxidation Activity Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- -1 Alumina-cordelite Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 102220579497 Macrophage scavenger receptor types I and II_F23C_mutation Human genes 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Gas Burners (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃焼流路を内部に
形成する燃焼室を備え、燃焼流路に燃焼触媒からなる触
媒燃焼部を備えるとともに、触媒燃焼部の下流側に気相
燃焼部を備え、触媒燃焼部において燃料の一部を、前記
気相燃焼部で燃料の残部を燃焼するハイブリッド触媒燃
焼技術の応用に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber having a combustion passage formed therein, a catalytic combustion section comprising a combustion catalyst provided in the combustion passage, and a gas phase combustion section provided downstream of the catalytic combustion section. The present invention relates to an application of a hybrid catalytic combustion technique in which a part of fuel is burned in a catalytic combustion part and a remaining fuel is burned in the gaseous phase combustion part.
【0002】[0002]
【従来の技術】家庭用室内開放型温風暖房機、コジェネ
レーション、発電用ガスタービン燃焼機器等、高空気比
で作動される機器にあっては、高空気比における燃焼安
定性の向上によって、大幅な低NOx化が図られる可能
性がある。一方、これらの機器にあっては、一層低NO
x化の要望がある。中でも、家庭用室内開放型温風暖房
機は、生活空間に直接排気を放出しているので、NOx
1ppm(酸素0%)以下の極限までの低NOx化が望
まれている。2. Description of the Related Art In appliances operated at a high air ratio, such as a household indoor open-type warm air heater, a cogeneration system, and a gas turbine combustion device for power generation, an improvement in combustion stability at a high air ratio is required. Significant NOx reduction may be achieved. On the other hand, these devices have lower NO
There is a demand for x conversion. Above all, a household indoor open-air type warm air heater emits exhaust gas directly to the living space, so NOx
It has been desired to reduce NOx to the limit of 1 ppm (0% oxygen) or less.
【0003】図7に示すように、燃焼室3内に、燃焼触
媒を充填した触媒燃焼部1とそれに続く気相燃焼部2と
を設け、断熱理論燃焼温度1500℃以下(空気比約
1.6以上)の燃料と空気の混合ガスを、触媒燃焼部で
部分的に接触酸化燃焼し、その後流の気相燃焼部で気相
酸化を誘発して完全燃焼させる方式(ハイブリッド触媒
燃焼方式と称される)が、超低NOx達成手段として提
案されている(特表平6−506290)。As shown in FIG. 7, a catalytic combustion section 1 filled with a combustion catalyst and a subsequent gas phase combustion section 2 are provided in a combustion chamber 3 and have an adiabatic theoretical combustion temperature of 1500 ° C. or less (air ratio of about 1. (6) or more, in which a mixed gas of fuel and air is partially catalytically oxidized and combusted in a catalytic combustion section, and gas phase oxidation is induced in a downstream gas phase combustion section to complete combustion (referred to as a hybrid catalytic combustion method). Is proposed as a means for achieving ultra-low NOx (Japanese Patent Publication No. 6-506290).
【0004】このようなハイブリッド触媒燃焼は、触媒
燃焼部で部分的に燃焼させる手段として、触媒活性物質
を燃料であるメタンに対して最も低温活性が高く、高温
で自己反応抑制作用のあるパラジウムを主体とするこ
と、更に、金属ハニカムを触媒基体として、触媒コート
層(セル)とコートしない層(セル)とを隣接させ、触
媒酸化による発熱を連接の無触媒層を通過する予混合ガ
スと熱交換させ、物理的に過昇温を防止すること等の手
段をとることにより、触媒燃焼部内にある触媒層では2
0〜70%が接触酸化され、触媒温度は700〜950
℃とされる。[0004] In such a hybrid catalytic combustion, as a means for partially burning in the catalytic combustion section, palladium having the highest activity at a low temperature with respect to methane as a fuel and a self-reaction suppressing action at a high temperature is used as a catalytically active substance. With a metal honeycomb as a catalyst substrate, a catalyst coat layer (cell) and an uncoated layer (cell) are adjacent to each other, and the heat generated by catalytic oxidation is mixed with the premixed gas and heat passing through the connected non-catalyst layer. By taking measures such as exchanging and physically preventing excessive temperature rise, the catalyst layer in the catalytic combustion section has 2
0 to 70% is catalytically oxidized, and the catalyst temperature is 700 to 950
° C.
【0005】[0005]
【発明が解決しようとする課題】このようなハイブリッ
ド触媒燃焼において、超低NOx化を実現するために
は、より高空気比条件で燃焼させることが必要である。
しかし、高空気比で燃焼を行った場合、不完全燃焼が起
こりやすく、安定して燃焼させることが困難であり、C
O等の不完全燃焼成分の発生を抑制する必要がある。
又、家庭用暖房機へ用いる燃焼器においては、ガスター
ビンへ用いるものと異なって、燃焼器へ導入される空気
を予め加温することが困難で、又、燃焼器から排出され
るガス温度は100℃程度でも充分である。一方、ハイ
ブリッド触媒燃焼を行うためには触媒に導入される燃料
と空気の混合ガス温度は燃料の種類に依存するが200
〜600℃に予熱されている必要がある。In such a hybrid catalytic combustion, it is necessary to perform combustion under a higher air ratio condition in order to realize ultra-low NOx.
However, when combustion is performed at a high air ratio, incomplete combustion tends to occur, and it is difficult to perform stable combustion.
It is necessary to suppress the generation of incomplete combustion components such as O.
Also, in a combustor used for a home heater, unlike the one used for a gas turbine, it is difficult to preheat air introduced into the combustor, and the gas temperature discharged from the combustor is About 100 ° C. is sufficient. On the other hand, in order to perform hybrid catalytic combustion, the temperature of a mixed gas of fuel and air introduced into the catalyst depends on the type of fuel.
It must be preheated to ~ 600 ° C.
【0006】又、従来の家庭用暖房機への応用を目指し
たハイブリッド触媒燃焼装置は触媒酸化が比較的容易な
灯油系液体燃料用を意図したものである。このような燃
焼器を触媒酸化活性が最も低いメタンを主成分とする都
市ガス、天然ガス系燃料へは応用し難い問題があった。
つまり都市ガス、天然ガス系燃料に応用する場合には、
触媒へ導入される混合ガスの予熱温度は灯油系液体燃料
のそれに比べて100〜200℃高く設定する必要があ
る。このために、混合ガスの予熱を大きくするために大
きい熱交換器を取り付けた場合、その圧力損失や燃焼器
自体の増大化の問題が生じ、そのために触媒及び気相燃
焼部を更にコンパクトに設計する必要があり、上記の混
合ガス側の熱交換器のみでの熱移動では充分ではなく、
必要な予熱を達成できない。従って、主として都市ガ
ス、天然ガス系燃料に応用する燃焼器は、更に改良した
燃焼器構造の開発が必要であった。Further, a conventional hybrid catalytic combustion apparatus aimed at application to a home heater is intended for a kerosene-based liquid fuel in which catalytic oxidation is relatively easy. There is a problem that such a combustor is difficult to apply to a city gas or a natural gas based fuel containing methane having the lowest catalytic oxidation activity as a main component.
In other words, when applied to city gas and natural gas fuel,
It is necessary to set the preheating temperature of the mixed gas introduced into the catalyst 100 to 200 ° C. higher than that of the kerosene-based liquid fuel. For this reason, when a large heat exchanger is installed to increase the preheating of the mixed gas, problems such as pressure loss and increase in the combustor themselves arise. For this reason, the catalyst and the gas-phase combustion section are designed to be more compact. It is necessary to perform heat transfer with only the heat exchanger on the mixed gas side described above.
The required preheating cannot be achieved. Therefore, for a combustor mainly applied to city gas and natural gas-based fuel, it was necessary to develop a further improved combustor structure.
【0007】よって、本発明は、このような事情に鑑み
て、超低NOx燃焼を実現するとともに、燃焼安定性に
優れたハイブリッド触媒燃焼を実現することを目的とす
る。Accordingly, in view of such circumstances, an object of the present invention is to realize ultra-low NOx combustion and to realize hybrid catalytic combustion excellent in combustion stability.
【0008】[0008]
【課題を解決するための手段】ハイブリッド触媒燃焼装
置では、燃焼装置からの排ガスが持ち去る顕熱損失を抑
制することが重要であり、本発明にあっては、燃焼流路
を内部に形成する燃焼室を備え、前記燃焼流路に燃焼触
媒からなる触媒燃焼部を備えるとともに、前記触媒燃焼
部の下流側に気相燃焼部を備え、前記触媒燃焼部におい
て燃料と空気の混合ガスの一部を、前記気相燃焼部で混
合ガスの残部を燃焼するハイブリッド触媒燃焼装置を構
成するに、請求項1に記載されているように、前記気相
燃焼部の出口部に、通気性を有し、気体の顕熱を輻射に
変換して上流側に放出する伝熱変換体を備える。即ち、
本発明に係るハイブリッド触媒燃焼装置は、燃焼触媒か
らなる触媒燃焼部、その下流側の気相燃焼部からなる燃
焼室の出口部に排ガスの顕熱を輻射に変換し、その上流
側に放出する伝熱変換体を配置し、触媒燃焼部において
混合ガスの一部を、気相燃焼部において混合ガスの残部
を燃焼させ、排ガスが気相燃焼部から伝熱変換体を通っ
て排出される構成とする。排ガスの顕熱により加熱され
た伝熱変換体は上流側の燃焼室に優先的に放射伝熱され
るので、燃焼室からの対流熱損失を抑制し、熱を好適に
上流側へフィードバックすることができ、より高い空気
比で運転しても、燃焼が安定し、燃焼反応のピーク温度
を下げることにより、一層の低NOxを達成できる。In a hybrid catalytic combustion device, it is important to suppress a sensible heat loss carried away by exhaust gas from the combustion device. A combustion chamber comprising a catalytic combustion unit comprising a combustion catalyst in the combustion flow path, a gas phase combustion unit downstream of the catalytic combustion unit, and a part of a mixed gas of fuel and air in the catalytic combustion unit. To configure a hybrid catalytic combustion device that burns the remainder of the mixed gas in the gas-phase combustion section, as described in claim 1, the outlet of the gas-phase combustion section has air permeability, A heat transfer converter that converts sensible heat of gas into radiation and discharges it to the upstream side is provided. That is,
The hybrid catalytic combustion device according to the present invention converts the sensible heat of exhaust gas into radiation at the outlet of a combustion chamber comprising a catalytic combustion section comprising a combustion catalyst and a gas phase combustion section downstream thereof, and discharges the sensible heat to the upstream side thereof. A configuration in which a heat transfer converter is arranged, a portion of the mixed gas is burned in the catalytic combustion section, and the remaining portion of the mixed gas is burned in the gas phase combustion section, and exhaust gas is discharged from the gas phase combustion section through the heat transfer converter. And Since the heat transfer converter heated by the sensible heat of the exhaust gas is radiatively transferred to the upstream combustion chamber preferentially, convective heat loss from the combustion chamber can be suppressed, and the heat can be suitably fed back to the upstream side. Even if the operation is performed at a higher air ratio, the combustion is stabilized, and a lower NOx can be achieved by lowering the peak temperature of the combustion reaction.
【0009】このようなハイブリッド触媒燃焼装置は、
請求項2に記載されているように、前記伝熱変換体が、
三次元骨格構造のセラミックフォーム、若しくはハニカ
ム構造のセラミックで構成されることが好ましい。この
ように、伝熱変換体がセラミックフォーム、若しくはセ
ラミックハニカムで構成されていることにより、伝熱変
換体は大きな骨格表面積を持ち、効率よく排ガスの顕熱
が伝熱変換体へ伝わり、熱の大部分が上流側へ放射され
ることとなり、排ガスの顕熱損失が大幅に抑制され、よ
り高空気比側で燃焼が完了できるようになり、低NOx
を達成できる燃焼量範囲も拡大できる。又、セラミック
フォームとしては、網目径0.3〜10mm、空隙率6
0〜95%が好ましく、材質としてはコーデイライト、
アルミナ−コーデイライト、アルミナチタニア、ムライ
ト、炭化珪素が好ましい。又、セラミックハニカムとし
ては、開口径0.3〜10mm、空隙率60〜95%が
好ましく、材質としてはコーデイライト、アルミナ−コ
ーデイライト、アルミナチタニア、ムライト、炭化珪素
が好ましい。更に、伝熱変換体の厚みは、5〜25mm
程度が好ましく、好適に気体の顕熱を上流側へ輻射する
ことができる。Such a hybrid catalytic combustion device is
As described in claim 2, the heat transfer converter,
It is preferable to be formed of a ceramic foam having a three-dimensional skeletal structure or a ceramic having a honeycomb structure. As described above, since the heat transfer converter is formed of ceramic foam or ceramic honeycomb, the heat transfer converter has a large skeletal surface area, and the sensible heat of the exhaust gas is efficiently transferred to the heat transfer converter, and the heat transfer is performed. Most is radiated to the upstream side, sensible heat loss of exhaust gas is greatly suppressed, and combustion can be completed at a higher air ratio side.
The combustion amount range that can achieve the above can be expanded. Further, as a ceramic foam, a mesh diameter of 0.3 to 10 mm, a porosity of 6
0 to 95% is preferable, and the material is cordierite,
Alumina-cordelite, alumina titania, mullite and silicon carbide are preferred. The ceramic honeycomb preferably has an opening diameter of 0.3 to 10 mm and a porosity of 60 to 95%, and the material is preferably cordierite, alumina-cordelite, alumina titania, mullite, or silicon carbide. Further, the thickness of the heat transfer converter is 5 to 25 mm.
The degree is preferable, and the sensible heat of the gas can be suitably radiated to the upstream side.
【0010】一般に、低NOxを実現するべく、高空気
比条件の燃焼を行うと、不完全燃焼が起こりやすい条件
となる。しかし、本発明に係るハイブリッド触媒燃焼装
置は、高空気比の運転時において発生しやすいCOをは
じめとする不完全燃焼成分を除去できるように構成する
ことができる。即ち、請求項3に記載されているよう
に、前記伝熱変換体に、可燃性ガスに酸化活性を有する
触媒物質を塗布して備えることができる。即ち、伝熱変
換体にアルミナ、シリカ、ジルコニア等の高比表面積を
有する担体をコートし、それに、触媒酸化活性を有する
パラジウム、白金、マンガン、クロム、コバルト、ニッ
ケル等の遷移金属、若しくはその酸化物の前駆体化合物
を含浸担持し、活性化する、又は、伝熱変換体を製造す
る時点で、触媒酸化活性を有する上述の遷移金属若しく
はその酸化物の前駆体化合物を混合成形することで、伝
熱変換体に可燃性ガスに酸化活性を有する触媒物質を塗
布することができる。このことによって、排ガス中に含
まれるCO、アルデヒドなど有害の燃焼中間生成物を伝
熱変換体の下流側に放出することが無くなり、燃焼装置
からの排出を抑制することができる。In general, when combustion is performed under a high air ratio condition to realize low NOx, incomplete combustion is likely to occur. However, the hybrid catalytic combustion device according to the present invention can be configured so that incomplete combustion components such as CO that are likely to be generated during operation at a high air ratio can be removed. That is, as described in claim 3, the heat transfer converter can be provided by applying a catalytic substance having an oxidizing activity to a combustible gas. That is, the heat transfer converter is coated with a carrier having a high specific surface area such as alumina, silica, zirconia, and the like, and a transition metal such as palladium, platinum, manganese, chromium, cobalt, nickel or the like having catalytic oxidation activity, or its oxidation. The precursor compound of the product is impregnated and supported, and is activated, or at the time of producing the heat transfer converter, by mixing and molding the above-mentioned transition metal having catalytic oxidation activity or the precursor compound of the oxide thereof, A combustible gas can be coated with a catalytic substance having an oxidizing activity on the heat transfer converter. As a result, harmful combustion intermediate products such as CO and aldehyde contained in the exhaust gas are not released to the downstream side of the heat transfer converter, and the emission from the combustion device can be suppressed.
【0011】又は、請求項4に記載されているように、
前記伝熱変換体が、可燃性ガスに酸化活性を有する触媒
物質であることもできる。このように、伝熱変換体を触
媒物質そのものとすることで、同じく、不完全燃焼成分
を下流側へ放出することなく、更に、簡単な構造で、経
済的である。又、この場合においては、高温酸化触媒の
マンガン置換形ヘキサアルミネートから直接、ハニカム
成形若しくはセラミックフォーム成形したものも、伝熱
変換体として効果的に使用できる。Alternatively, as described in claim 4,
The heat transfer converter may be a catalytic substance having an oxidizing activity for a combustible gas. In this way, by using the heat transfer converter as the catalytic substance itself, the incomplete combustion component is not discharged to the downstream side, and the structure is simpler and more economical. In this case, a honeycomb or ceramic foam molded directly from a manganese-substituted hexaaluminate as a high-temperature oxidation catalyst can also be effectively used as a heat transfer converter.
【0012】これまでのハイブリッド触媒燃焼装置にお
いて、請求項5に記載されているように、前記伝熱変換
体と前記触媒燃焼部の間に、前記触媒燃焼部に供給され
る前の前記混合ガスを予熱する予熱機構の吸熱部を備え
ることができる。このように構成することによって、触
媒燃焼部に供給される混合ガスを予熱することができ、
例えば、触媒活性が低いメタンを主成分とする都市ガス
を燃料とした場合においても、超低NOxで安定したハ
イブリッド触媒燃焼を実現することができる。このよう
な予熱機構は、気相燃焼部から排出される燃焼ガスと触
媒燃焼部に供給される前の混合ガスとの熱交換を行うよ
うに構成することができるが、それに加えて、伝熱変換
体から放射される輻射熱を利用して、混合ガスの予熱を
行うように構成することができる。In the conventional hybrid catalytic combustion apparatus, the mixed gas before being supplied to the catalytic combustion section is provided between the heat transfer converter and the catalytic combustion section, as described in claim 5. May be provided with a heat absorbing portion of a preheating mechanism for preheating the heat. With this configuration, the mixed gas supplied to the catalytic combustion unit can be preheated,
For example, even when city gas containing methane as a main component having low catalytic activity is used as fuel, stable hybrid catalytic combustion with extremely low NOx can be realized. Such a preheating mechanism can be configured to perform heat exchange between the combustion gas discharged from the gas-phase combustion section and the mixed gas before being supplied to the catalytic combustion section. It can be configured that the mixed gas is preheated by using radiant heat radiated from the converter.
【0013】これまでのハイブリッド触媒燃焼装置にお
ける燃焼方法は、請求項6に記載されているように、燃
焼流路を内部に形成する燃焼室を備え、前記燃焼流路に
燃焼触媒からなる触媒燃焼部を備えるとともに、前記触
媒燃焼部の下流側に気相燃焼部を備え、前記触媒燃焼部
において燃料と空気の混合ガスの一部を、前記気相燃焼
部で混合ガスの残部を燃焼するハイブリッド触媒燃焼方
法であって、前記気相燃焼部の出口部に、通気性を有
し、気体の顕熱を輻射に変換して上流側に放出する伝熱
変換体を設け、前記気相燃焼部において燃焼後の排ガス
を前記伝熱変換体の内部に流通させて、前記排ガスの顕
熱を輻射に変換して上流側に放出し、前記燃焼室からの
対流熱損失を抑制することを特徴とする。このようなハ
イブリッド触媒燃焼方法を行うことによって、超低NO
xで安定したハイブリッド触媒燃焼を実現することがで
きる。According to a sixth aspect of the present invention, there is provided a combustion method in a hybrid catalytic combustion apparatus including a combustion chamber having a combustion flow path formed therein, wherein the combustion flow path comprises a catalyst comprising a combustion catalyst. A hybrid that includes a gas-phase combustion unit downstream of the catalytic combustion unit, and burns a part of the mixed gas of fuel and air in the catalytic combustion unit and the remainder of the mixed gas in the gas-phase combustion unit. A catalytic combustion method, wherein a heat transfer converter that has air permeability, converts sensible heat of gas into radiation, and discharges the gas upstream is provided at an outlet of the gas-phase combustion unit, By flowing the exhaust gas after combustion inside the heat transfer converter, converting the sensible heat of the exhaust gas into radiation and releasing it to the upstream side, suppressing convective heat loss from the combustion chamber. I do. By performing such a hybrid catalytic combustion method, ultra low NO
x can realize stable hybrid catalytic combustion.
【0014】[0014]
【発明の実施の形態】〔実施例1〕本発明に係るハイブ
リッド触媒燃焼装置の基本構成を図1に基づいて説明す
る。燃焼器100は燃焼触媒からなる触媒燃焼部1とそ
の下流側の気相燃焼部2からなる燃焼室3を備えてい
る。このことによって、触媒燃焼部1において燃料の一
部を、気相燃焼部2において燃料の残部を燃焼させるハ
イブリッド触媒燃焼を実現することができる。更に、気
相燃焼部2に燃焼ガスの流れに再循環を誘起させる邪魔
部材5を壁面に突出させて備えている。又、本発明に係
る燃焼器100は、燃焼室3の出口部に、通気性を有
し、排ガスの顕熱を輻射に変換して上流側に放出する伝
熱変換体4を備えており、排ガスが気相燃焼部2から伝
熱変換体4を通って排出される構成となっている。この
伝熱変換体4は、後に説明するが、三次元骨格構造を有
するアルミナ−コーデイエライト製のセラミックフォー
ムからできており、セラミックフォームの隙間に排ガス
が流通する際に、排ガスの顕熱を奪い、燃焼室3側に輻
射する構成となっている。このことによって、伝熱変換
体4の上流側は伝熱変換体4による輻射によって加温さ
れ、排ガスの顕熱損失が抑制され、より高空気比の運転
が可能となり、超低NOxのハイブリッド触媒燃焼装置
を実現することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 The basic structure of a hybrid catalytic combustion device according to the present invention will be described with reference to FIG. The combustor 100 is provided with a catalytic combustion section 1 composed of a combustion catalyst and a combustion chamber 3 composed of a gas phase combustion section 2 on the downstream side. This makes it possible to realize hybrid catalytic combustion in which part of the fuel is burned in the catalytic combustion part 1 and the remainder of the fuel is burned in the gas phase combustion part 2. Further, the gas-phase combustion unit 2 is provided with a baffle member 5 for inducing recirculation in the flow of the combustion gas, protruding from the wall surface. Further, the combustor 100 according to the present invention includes, at the outlet of the combustion chamber 3, a heat transfer converter 4 having air permeability, converting sensible heat of exhaust gas into radiation, and discharging the radiation to the upstream side, The exhaust gas is discharged from the gas phase combustion section 2 through the heat transfer converter 4. As will be described later, the heat transfer converter 4 is made of alumina-cordierite ceramic foam having a three-dimensional skeletal structure. When the exhaust gas flows through the gaps between the ceramic foams, the sensible heat of the exhaust gas is reduced. It is configured to rob and radiate to the combustion chamber 3 side. As a result, the upstream side of the heat transfer converter 4 is heated by the radiation of the heat transfer converter 4, the sensible heat loss of the exhaust gas is suppressed, the operation at a higher air ratio becomes possible, and the ultra-low NOx hybrid catalyst is used. A combustion device can be realized.
【0015】次に、伝熱変換体4の排ガス流通時の温度
分布を図2に示す。この伝熱変換体4は3次元骨格構造
を有するアルミナ−コーデイエライト製のセラミックフ
ォームでできており、大きな骨格表面積を持つため極め
て効率よく排ガスの顕熱が伝熱変換体4へ伝わり、固体
放射エネルギとして放射される。この時、伝熱変換体4
における上流側では、熱線は遮られずに上流側へ放射さ
れるが、下流側へ向かう熱線は大部分が遮蔽され、排ガ
スは放射された熱量分だけ温度を下げ下流側へ移動す
る。こうして、伝熱変換体4内で放射される熱線はその
点前後の光学的厚みに応じて減衰し、更に放射熱量は絶
対温度の4乗に比例することが相乗し、排ガスは伝熱変
換体4の上流側で急激に温度を降下させ、排ガスの顕熱
の大部分は上流側へ放射される。従って、排ガスの顕熱
損失が大幅に抑制され、より高空気比側で燃焼が完了で
きるようになり、超低NOxを達成できる燃焼量範囲も
拡大できる。Next, FIG. 2 shows the temperature distribution of the heat transfer converter 4 when the exhaust gas flows. The heat transfer converter 4 is made of a ceramic foam made of alumina-cordierite having a three-dimensional skeleton structure, and has a large skeleton surface area, so that the sensible heat of the exhaust gas is transferred to the heat transfer converter 4 with high efficiency, and Radiated as radiant energy. At this time, the heat transfer converter 4
On the upstream side, the heat rays are radiated to the upstream side without being interrupted, but most of the heat rays going to the downstream side are shielded, and the exhaust gas lowers the temperature by the radiated heat quantity and moves to the downstream side. Thus, the heat rays radiated in the heat transfer converter 4 are attenuated according to the optical thickness before and after the point, and the amount of radiated heat is synergistic in proportion to the fourth power of the absolute temperature. The temperature drops rapidly upstream of 4, and most of the sensible heat of the exhaust gas is radiated upstream. Therefore, the sensible heat loss of the exhaust gas is greatly suppressed, the combustion can be completed at a higher air ratio, and the combustion amount range in which ultra-low NOx can be achieved can be expanded.
【0016】〔実施例2〕次に、本願の実施の形態とし
て、都市ガス、天然ガスを燃料とする温風暖房機への応
用を意図した、本発明に係るハイブリッド触媒燃焼装置
の概要を図3〜6に示す。図3は本発明に係るハイブリ
ッド触媒燃焼装置の全体斜視図、図4は図3のハイブリ
ッド触媒燃焼装置の立面断面図、図5は図3のハイブリ
ッド触媒燃焼装置の混合ガスを予熱する熱交換部の平面
断面図、図6は図3のハイブリッド触媒燃焼装置の燃焼
部の平面断面図である。[Embodiment 2] Next, as an embodiment of the present invention, an outline of a hybrid catalytic combustion apparatus according to the present invention, which is intended to be applied to a hot air heater using city gas or natural gas as fuel, is shown. 3 to 6. 3 is an overall perspective view of the hybrid catalytic combustion device according to the present invention, FIG. 4 is an elevational sectional view of the hybrid catalytic combustion device of FIG. 3, and FIG. 5 is a heat exchange for preheating the mixed gas of the hybrid catalytic combustion device of FIG. FIG. 6 is a plan sectional view of the combustion section of the hybrid catalytic combustion device of FIG.
【0017】図4、5を参照して、空気入口16からの
空気と、燃料導入管17からの燃料はまず、混合ガスを
予熱するための熱交換部18へ導入される。燃料導入管
17の先端は燃料と空気の混合を充分に行うように分散
ノズルが取り付けられている(図示されていない)。熱
交換部18では燃焼ガスで加熱された天板からの熱が伝
導により混合ガスへ伝達されるように形成されている。
このための種々の構造が考えられるがここでは、天板に
溶接され下方側へ延びて千鳥状に取り付けられた直径4
mmのSUS性伝伝熱棒形熱交換器19が用いられてい
る。混合ガスは仕切板13の周囲を迂回しながら予熱さ
れ、図3にも示すように、同入部の反対側の開放部から
触媒ホルダー20の内部へ導かれる。燃焼室入口では混
合ガスの分散をよくするための分散板が用いられた(図
示されていない)。Referring to FIGS. 4 and 5, air from air inlet 16 and fuel from fuel introduction pipe 17 are first introduced into heat exchange section 18 for preheating the mixed gas. A dispersion nozzle is attached to the tip of the fuel introduction pipe 17 so as to sufficiently mix the fuel and air (not shown). The heat exchange section 18 is formed so that heat from the top plate heated by the combustion gas is transmitted to the mixed gas by conduction.
Various structures for this purpose are conceivable, but here, the diameter 4 is welded to the top plate, extends downward, and is attached in a staggered manner.
mm SUS heat transfer rod type heat exchanger 19 is used. The mixed gas is preheated while circumventing the periphery of the partition plate 13, and is guided to the inside of the catalyst holder 20 from the opening on the opposite side of the inlet as shown in FIG. 3. At the inlet of the combustion chamber, a dispersion plate for improving the dispersion of the mixed gas was used (not shown).
【0018】図3、4を参照して、触媒ホルダー20の
出口部には幅85mm、奥行き20mm、層高20mm
の角型燃焼触媒部11を備え、触媒ホルダー20の外側
は断熱材で被覆されている。燃焼触媒部11は波形の金
属シートからなる支持体の片側に、高比表面積を有する
担体層を形成し、その担体層に触媒活性を有する遷移金
属のパラジウム系触媒物質を塗布し活性化した後、支持
体を螺旋状に巻き上げハニカム状に成形したものであ
る。このように形成された燃焼触媒部11では触媒を有
する壁面と、触媒を有さず混合ガスのみが流通する壁面
への熱伝導によって発生熱が分散し触媒の再高温度を9
50℃以下に抑制でき触媒の劣化を抑制でき、安定した
触媒燃焼を維持できる。燃焼触媒部11には触媒反応を
検知し、燃焼制御するための熱電対21を備えている。Referring to FIGS. 3 and 4, the outlet of the catalyst holder 20 has a width of 85 mm, a depth of 20 mm, and a layer height of 20 mm.
And the outside of the catalyst holder 20 is covered with a heat insulating material. The combustion catalyst unit 11 forms a carrier layer having a high specific surface area on one side of a support made of a corrugated metal sheet, and applies and activates a palladium-based catalytic material of a transition metal having catalytic activity on the carrier layer. The support is spirally wound and formed into a honeycomb shape. In the combustion catalyst portion 11 thus formed, heat generated is dispersed by heat conduction to the wall surface having a catalyst and the wall surface having no catalyst and through which only the mixed gas flows, and the re-high temperature of the catalyst is reduced by 9%.
The temperature can be suppressed to 50 ° C. or less, deterioration of the catalyst can be suppressed, and stable catalytic combustion can be maintained. The combustion catalyst section 11 includes a thermocouple 21 for detecting a catalytic reaction and controlling combustion.
【0019】図3、4、6を参照して、気相燃焼部12
は触媒燃焼によって部分的に燃焼し昇温された未燃焼の
燃料が気相ラジカル反応によって完全燃焼されるに必要
な滞留時間を確保する空間である。気相燃焼部12の内
側には断熱部材22が設置されており、気相燃焼部12
は折り返し構造となっている。気相燃焼部12の折り返
し部分に、混合ガスに火花点火し燃焼を開始するための
イグナイタ23、更に、気相反応の状況を観測するため
の熱電対24が備えられている。気相燃焼部12では長
手方向の一方向側に出口が設けられており、その出口部
分にセル数6ケ/25mm、見かけ比重0.43、厚み
12mmのアルミナ−コーデイエライト製のセラミック
フォームからなる伝熱変換体14が備えられている。更
に、この伝熱変換体14に高比表面積を有する担体とし
てアルミナ系等の高比表面積物質をコートし、それに、
CO若しくは未然の炭化水素の燃焼中間生成物に触媒活
性を有するパラジウム、白金等の酸化活性物質を含浸担
持し、活性化させている。Referring to FIGS.
Is a space for securing a residence time necessary for the unburned fuel partially burned by the catalytic combustion and heated to be completely burned by the gas-phase radical reaction. A heat insulating member 22 is installed inside the gas phase combustion unit 12,
Has a folded structure. An igniter 23 for starting the combustion by spark ignition of the mixed gas and a thermocouple 24 for observing the state of the gas phase reaction are provided at the folded portion of the gas phase combustion unit 12. In the gas-phase combustion part 12, an outlet is provided on one side in the longitudinal direction. The outlet portion is made of alumina-cordierite ceramic foam having 6 cells / 25mm, an apparent specific gravity of 0.43, and a thickness of 12mm. The heat transfer converter 14 is provided. Further, the heat transfer converter 14 is coated with a high specific surface area material such as alumina as a carrier having a high specific surface area,
Oxidation active substances such as palladium and platinum having catalytic activity are impregnated and supported on the intermediate products of combustion of CO or hydrocarbons to be activated.
【0020】このハイブリッド触媒燃焼装置の空気入口
16の上流側に羽根径60mmの低圧ファン(図示され
ていない)をセットして、天然ガス系都市ガスを用いて
性能テストを行った。燃焼開始は以下のように行った。
まずファン電圧をおよそ2500kcal/hの燃焼量
において空気比1.4に相当する空気風量が得られる電
圧値にセットした状態で、イグナイタ23をONする。
ついで、2500kcal/hに相当するガスをマスフ
ローコントローラ(図示されていない)による流量調整
を伴って導入すると、燃焼触媒部11にセットされた熱
電対21によって昇温状態を見ながらファン電圧を上昇
させていき、触媒着火から定常状態まで移行する。この
時の燃焼触媒部11の温度は950℃を超えないように
制御できる。 定常状態に至った後、ファン電圧を制御
しながら低NOxを達成する安定燃焼量範囲を求めた。
この結果、燃焼量3500kcal/hから700kc
al/hまでの範囲において、NOx排出濃度2ppm
以下(酸素0%換算)、完全酸化率は99.9%以上、
CO/CO2比は0.0005以下の超低NOx安定燃
焼が達成される。A low-pressure fan (not shown) having a blade diameter of 60 mm was set upstream of the air inlet 16 of the hybrid catalytic combustion device, and a performance test was performed using natural gas-based city gas. The combustion was started as follows.
First, the igniter 23 is turned on with the fan voltage set to a voltage value at which an air flow rate corresponding to an air ratio of 1.4 is obtained at a combustion rate of about 2500 kcal / h.
Next, when a gas corresponding to 2500 kcal / h is introduced with a flow rate adjustment by a mass flow controller (not shown), the fan voltage is increased by the thermocouple 21 set in the combustion catalyst unit 11 while observing the temperature rising state. Then, the state shifts from catalyst ignition to a steady state. At this time, the temperature of the combustion catalyst section 11 can be controlled so as not to exceed 950 ° C. After reaching the steady state, a stable combustion amount range for achieving low NOx while controlling the fan voltage was determined.
As a result, the combustion amount from 3500 kcal / h to 700 kc
NOx emission concentration 2ppm in the range up to al / h
Below (converted to oxygen 0%), the complete oxidation rate is 99.9% or more,
An ultra-low NOx stable combustion with a CO / CO 2 ratio of 0.0005 or less is achieved.
【0021】〔別実施の形態〕上記の図1の本願に係る
ハイブリッド触媒燃焼装置において、伝熱変換体として
Mn−置換形ヘキサアルミネート[Another Embodiment] In the hybrid catalytic combustion apparatus according to the present invention shown in FIG. 1, the Mn-substituted hexaaluminate is used as a heat transfer converter.
【化1】 を1平方インチ当たり300セルに押し出しハニカム成
形し、1200℃で焼成した厚さ10mmのものを使用
した。この結果、燃焼室の圧力損失は上昇したので、最
高燃焼量は3200kcal/hに限られたが、最低燃
焼量は700kcal/hまで、安定燃焼が達成され
た。不完全燃焼が発生しないで良好に燃焼するファン電
圧制御範囲は広くなり、全範囲にわたってNOx1pp
m以下(酸素0%換算)が達成された。Embedded image Was extruded at a rate of 300 cells per square inch, formed into a honeycomb, and fired at 1200 ° C. to have a thickness of 10 mm. As a result, the pressure loss in the combustion chamber increased, so that the maximum combustion amount was limited to 3200 kcal / h, but the minimum combustion amount was up to 700 kcal / h, and stable combustion was achieved. The fan voltage control range in which good combustion is performed without incomplete combustion is widened, and NOx1pp
m (0% oxygen conversion) was achieved.
【0022】尚、触媒燃焼部の触媒として、触媒活性を
有する遷移金属のパラジウム、白金、又は、パラジウム
若しくは白金を主成分として、これに、銀、金、白金、
パラジウム、ルテニウム、イリジウム若しくはロジウム
から選択される1つ又はそれ以上の補助触媒を包含する
触媒を使用することができる。The catalyst used in the catalytic combustion section is mainly composed of palladium or platinum, which is a transition metal having catalytic activity, or palladium or platinum.
Catalysts can be used that include one or more cocatalysts selected from palladium, ruthenium, iridium or rhodium.
【0023】更に、上記の実施の形態において、図3に
示す触媒ホルダー20には伝熱促進のための伝熱棒ある
いはパンチングメタル等を挿入し、気相燃焼部12、及
び伝熱変換体14からの輻射熱を触媒ホルダー20内の
混合ガスに伝熱させる構造とすることができる。Further, in the above embodiment, a heat transfer rod or a punching metal for promoting heat transfer is inserted into the catalyst holder 20 shown in FIG. Radiated heat from the catalyst holder 20 can be transferred to the mixed gas.
【0024】又、図3に示す伝熱変換体14にコートす
る担体として、アルミナ、シリカ、若しくはジルコニア
等の高表面積を有する物質をコートすることができる。
又、その担体に含浸担持させる触媒としては、パラジウ
ム、白金、マンガン、クロム、コバルト等の遷移金属や
その酸化物を使用することができる。更に、高温度酸化
触媒としてマンガン置換形ヘキサアルミネートから直接
ハニカム成形、若しくはセラミックスフォームに成形し
たものを伝熱変換体として使用することができる。As a carrier for coating the heat transfer converter 14 shown in FIG. 3, a substance having a high surface area such as alumina, silica, or zirconia can be coated.
Further, as a catalyst to be impregnated and supported on the carrier, a transition metal such as palladium, platinum, manganese, chromium, and cobalt, or an oxide thereof can be used. Further, as a high-temperature oxidation catalyst, one formed directly from a manganese-substituted hexaaluminate into a honeycomb or formed into a ceramic foam can be used as a heat transfer converter.
【0025】上記の実施の形態において、燃料として天
然ガス系都市ガスを使用したが、天然ガス、都市ガスに
限らず、LPG、灯油気化ガスなどに燃料は自由に選択
できる。更に、本願発明に係るハイブリッド触媒燃焼装
置は、低圧から高圧までの燃焼装置に適用することがで
きる。In the above embodiment, the natural gas-based city gas is used as the fuel. However, the fuel is not limited to the natural gas and the city gas, and the fuel can be freely selected from LPG, kerosene vaporized gas and the like. Further, the hybrid catalytic combustion device according to the present invention can be applied to a low-pressure to high-pressure combustion device.
【0026】[0026]
【発明の効果】燃焼装置から持ち去られる顕熱を大幅に
抑制することにより、より過剰空気燃焼を可能とし、一
層の低NOx化が図られる。又、基準レベル以下のNO
x値を達成する空気比の制御範囲が拡大でき、安全性に
富んだ制御を行うことができる。According to the present invention, the sensible heat carried away from the combustion device is largely suppressed, so that excess air combustion can be achieved and the NOx can be further reduced. NO below the reference level
The control range of the air ratio that achieves the x value can be expanded, and control with high safety can be performed.
【図1】本発明に係るハイブリッド触媒燃焼装置の断面
図FIG. 1 is a cross-sectional view of a hybrid catalytic combustion device according to the present invention.
【図2】伝熱変換体の燃焼ガス流通時の温度分布を示す
図FIG. 2 is a diagram showing a temperature distribution of the heat transfer converter during combustion gas flow.
【図3】本発明に係るハイブリッド触媒燃焼装置の全体
斜視図FIG. 3 is an overall perspective view of a hybrid catalytic combustion device according to the present invention.
【図4】図3のハイブリッド触媒燃焼装置の立面断面図FIG. 4 is an elevational sectional view of the hybrid catalytic combustion device of FIG. 3;
【図5】図3のハイブリッド触媒燃焼装置の混合ガスを
予熱する熱交換部の平面断面図5 is a plan sectional view of a heat exchange unit for preheating a mixed gas of the hybrid catalytic combustion device of FIG. 3;
【図6】図3のハイブリッド触媒燃焼装置の燃焼部の平
面断面図FIG. 6 is a plan sectional view of a combustion section of the hybrid catalytic combustion device of FIG. 3;
【図7】従来のハイブリッド触媒燃焼装置の基本構成を
説明する断面図FIG. 7 is a cross-sectional view illustrating a basic configuration of a conventional hybrid catalytic combustion device.
1 触媒燃焼部 2 気相燃焼部 3 燃焼室 4 伝熱変換体 100 燃焼器 DESCRIPTION OF SYMBOLS 1 Catalytic combustion part 2 Gas-phase combustion part 3 Combustion chamber 4 Heat transfer converter 100 Combustor
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23C 11/00 312 F23C 11/00 312 Fターム(参考) 3K017 BA03 BA06 BB04 BB07 BC07 BC09 BC10 BD01 BE05 BF01 3K065 TA01 TA11 TB09 TC05 TC08 TD05 TE04 TF03 TH01 TK02 TK04 TL04 TM02 TP09 4G069 AA01 AA11 AA15 BA01B BA02B BA05B BA13A BC32B BC33B BC58B BC62B BC67B BC70B BC71B BC72A BC72B BC74B BC75A BC75B CD01 DA05 EA24 EB11 FA06 FB13 FB23 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F23C 11/00 312 F23C 11/00 312 F term (reference) 3K017 BA03 BA06 BB04 BB07 BC07 BC09 BC10 BD01 BE05 BF01 3K065 TA01 TA11 TB09 TC05 TC08 TD05 TE04 TF03 TH01 TK02 TK04 TL04 TM02 TP09 4G069 AA01 AA11 AA15 BA01B BA02B BA05B BA13A BC32B BC33B BC58B BC62B BC67B BC70B BC71B BC72A BC72B BC74B BC75A BC75B CD01 DA05 EA24 EB24
Claims (6)
え、前記燃焼流路に燃焼触媒からなる触媒燃焼部を備え
るとともに、前記触媒燃焼部の下流側に気相燃焼部を備
え、前記触媒燃焼部において燃料と空気の混合ガスの一
部を、前記気相燃焼部で混合ガスの残部を燃焼するハイ
ブリッド触媒燃焼装置であって、 前記気相燃焼部の出口部に、通気性を有し、気体の顕熱
を輻射に変換して上流側に放出する伝熱変換体を備えた
ハイブリッド触媒燃焼装置。A combustion chamber having a combustion flow path formed therein; a catalytic combustion section comprising a combustion catalyst in the combustion flow path; and a gas phase combustion section downstream of the catalytic combustion section. A hybrid catalytic combustion device that burns a part of a mixed gas of fuel and air in a catalytic combustion part, and burns the remainder of the mixed gas in the vapor-phase combustion part. A hybrid catalytic combustion device including a heat transfer converter that converts sensible heat of gas into radiation and discharges the gas upstream.
ラミックフォーム、若しくはハニカム構造のセラミック
で構成される請求項1に記載のハイブリッド触媒燃焼装
置。2. The hybrid catalytic combustion device according to claim 1, wherein the heat transfer converter is made of a ceramic foam having a three-dimensional skeletal structure or a ceramic having a honeycomb structure.
性を有する触媒物質を塗布して備えた請求項1又は2に
記載のハイブリッド触媒燃焼装置。3. The hybrid catalytic combustion apparatus according to claim 1, wherein the combustible gas is coated with a catalytic substance having an oxidizing activity on the heat transfer converter.
性を有する触媒物質である請求項1又は2に記載のハイ
ブリッド触媒燃焼装置。4. The hybrid catalytic combustion device according to claim 1, wherein the heat transfer converter is a catalytic substance having an oxidizing activity for a combustible gas.
に、前記触媒燃焼部に供給される前の前記混合ガスを予
熱する予熱機構の吸熱部を備えた請求項1から4の何れ
か1項に記載のハイブリッド触媒燃焼装置。5. A heat absorbing portion of a preheating mechanism for preheating the mixed gas before being supplied to the catalytic combustion portion, between the heat transfer converter and the catalytic combustion portion. The hybrid catalytic combustion device according to claim 1.
え、前記燃焼流路に燃焼触媒からなる触媒燃焼部を備え
るとともに、前記触媒燃焼部の下流側に気相燃焼部を備
え、前記触媒燃焼部において燃料と空気の混合ガスの一
部を、前記気相燃焼部で混合ガスの残部を燃焼するハイ
ブリッド触媒燃焼方法であって、 前記気相燃焼部の出口部に、通気性を有し、気体の顕熱
を輻射に変換して上流側に放出する伝熱変換体を設け、 前記気相燃焼部において燃焼後の排ガスを前記伝熱変換
体の内部に流通させて、前記排ガスの顕熱を輻射に変換
して上流側に放出し、 前記燃焼室からの対流熱損失を抑制するハイブリッド触
媒燃焼方法。6. A combustion chamber having a combustion passage formed therein, a combustion chamber comprising a catalytic combustion section comprising a combustion catalyst, and a gas phase combustion section provided downstream of the catalytic combustion section. A hybrid catalytic combustion method in which a part of a mixed gas of fuel and air is burned in a catalytic combustion part, and the remaining part of the mixed gas is burned in the gaseous phase combustion part. A heat transfer converter that converts sensible heat of gas into radiation and discharges the gas upstream is provided, and the exhaust gas after combustion in the gas-phase combustion section is allowed to flow inside the heat transfer converter, and A hybrid catalytic combustion method for converting sensible heat into radiation and releasing it to the upstream side to suppress convective heat loss from the combustion chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04639999A JP3732034B2 (en) | 1999-02-24 | 1999-02-24 | Hybrid catalytic combustion apparatus and combustion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04639999A JP3732034B2 (en) | 1999-02-24 | 1999-02-24 | Hybrid catalytic combustion apparatus and combustion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000240907A true JP2000240907A (en) | 2000-09-08 |
JP3732034B2 JP3732034B2 (en) | 2006-01-05 |
Family
ID=12746087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04639999A Expired - Fee Related JP3732034B2 (en) | 1999-02-24 | 1999-02-24 | Hybrid catalytic combustion apparatus and combustion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3732034B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009503433A (en) * | 2005-08-05 | 2009-01-29 | カスケード デザイン,インク. | High efficiency radiant burner with optional heat exchanger |
CN114110658A (en) * | 2021-11-19 | 2022-03-01 | 上海交通大学 | Hydrogen fuel staged flameless combustion method and combustion device |
-
1999
- 1999-02-24 JP JP04639999A patent/JP3732034B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009503433A (en) * | 2005-08-05 | 2009-01-29 | カスケード デザイン,インク. | High efficiency radiant burner with optional heat exchanger |
CN114110658A (en) * | 2021-11-19 | 2022-03-01 | 上海交通大学 | Hydrogen fuel staged flameless combustion method and combustion device |
Also Published As
Publication number | Publication date |
---|---|
JP3732034B2 (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6674045B2 (en) | Catalytic flameless combustion apparatus and combustion method with emission of pollutants lower than 1 ppm | |
JP5152811B2 (en) | Reformer | |
EP1621246A1 (en) | Reformer with a static mixer within the gas feeding means | |
JP2006118854A (en) | Method and system for rich-lean catalytic combustion | |
JP2008540310A (en) | Process for heating and partial oxidation of a steam / natural gas mixture after a first reformer | |
CN107327856A (en) | One kind catalysis combustion heat supplying system and heating technique | |
US6712602B2 (en) | Hybrid type high pressure combustion burner employing catalyst and CST combustion with staged mixing system | |
JP3071833B2 (en) | Catalytic combustion device | |
JPS61180818A (en) | Hot air generation by catalytic burning | |
JP2000240907A (en) | Device and method for hybrid catalyst combustion | |
CN207648854U (en) | A kind of soft homogeneous catalysis burner | |
JPS61235609A (en) | Combustion method for methane fuel in catalyst system | |
WO1998012476A1 (en) | Catalytic radiant heater | |
JPS6380849A (en) | Catalytic system for combustion of high pressure methane based fuel and combustion method using the same | |
CN109751622A (en) | A kind of compound soft catalytic combustion system | |
JP4155692B2 (en) | Hybrid catalytic combustion device | |
EP1750835A2 (en) | Startup burner | |
Budzianowski et al. | Catalytic converters and processes in selected energy technologies: I. gas turbines and II. radiant burners in drying | |
JPH0545293B2 (en) | ||
JP2003306310A (en) | Autothermal reforming device and method of autothermal reforming using the same | |
JP3815887B2 (en) | Hybrid catalytic combustion device | |
US10532315B1 (en) | System for flameless catalytic destruction of fugitive organics and producing environmentally clean hot gas for other uses of thermal energy | |
JP4226143B2 (en) | Catalytic combustion apparatus and combustion control method thereof | |
JP3868167B2 (en) | Hybrid catalytic combustion apparatus and gas fan heater | |
KR20180100840A (en) | Catalytic combustion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051011 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081021 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |